Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Epidemiologic Information
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Samet, J.M. Carcinogenesis and lung cancer: 70 years of progress and more to come. Carcinogenesis 2020, 41, 1309–1317. [Google Scholar] [CrossRef]
- Cao, C.; Lai, T.; Li, M.; Zhou, H.; Lv, D.; Deng, Z.; Ying, S.; Chen, Z.; Li, W.; Shen, H. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis. Oncotarget 2016, 7, 18919–18926. [Google Scholar] [CrossRef]
- Goldkorn, T.; Filosto, S.; Chung, S. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: Molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid. Redox Signal. 2014, 21, 2149–2174. [Google Scholar] [CrossRef] [Green Version]
- Samynathan, R.; Thiruvengadam, M.; Nile, S.H.; Shariati, M.A.; Rebezov, M.; Mishra, R.K.; Venkidasamy, B.; Periyasamy, S.; Chung, I.M.; Pateiro, M.; et al. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Crit. Rev. Food Sci. Nutr. 2021, 4, 1–20. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhao, C.N.; Cao, S.Y.; Tang, G.Y.; Gan, R.Y.; Li, H.B. Effects and mechanisms of tea for the prevention and management of cancers: An updated review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1693–1705. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Chong, F.; Song, M.; Sun, Q.; Li, T.; Xu, L.; Song, C. A dose-response meta-analysis of green tea consumption and breast cancer risk. Int. J. Food Sci. Nutr. 2020, 71, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Du, M.; Chu, H.; Zhu, L.; Tong, N.; Zhang, Z.; Wang, M.; Gu, D.; Chen, J. An inverse association between tea consumption and colorectal cancer risk. Oncotarget 2017, 8, 37367–37376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, I.H.; Ho, M.L.; Chen, H.Y.; Lee, H.S.; Huang, C.C.; Chu, Y.H.; Lin, S.Y.; Deng, Y.R.; He, Y.H.; Lien, Y.H.; et al. Smoking, green tea consumption, genetic polymorphisms in the insulin-like growth factors and lung cancer risk. PLoS ONE 2012, 7, e30951. [Google Scholar] [CrossRef] [Green Version]
- Ramassone, A.; Pagotto, S.; Veronese, A.; Visone, R. Epigenetics and microRNAs in cancer. Int. J. Mol. Sci. 2018, 19, 459. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 14, 1141–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, R.L.; Licht, J.D. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, N. Epigenetic mechanisms and the hallmarks of cancer: An intimate affair. Am. J. Cancer Res. 2020, 10, 1954–1978. [Google Scholar]
- Duruisseaux, M.; Esteller, M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol. 2018, 51, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Gusyatiner, O.; Hegi, M.E. Glioma epigenetics: From subclassification to novel treatment options. Semin. Cancer Biol. 2018, 51, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016, 354, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, J.; Li, J.; Zeng, Z.; Jiang, X.; Gao, Y.; Huang, Z.; Wu, Q.; Gong, Y.; Xie, C. Comprehensive analysis reveals common DNA methylation patterns of tobacco-associated cancers: A pan-cancer analysis. Gene 2021, 804, 145900. [Google Scholar] [CrossRef]
- Lin, R.K.; Hsieh, Y.S.; Lin, P.; Hsu, H.S.; Chen, C.Y.; Tang, Y.A.; Lee, C.F.; Wang, Y.C. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J. Clin. Investig. 2010, 120, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.M.; Wheeler, R.; Singh, N.; Vosloo, D.; Ray, D.W.; Sommer, P. The tobacco carcinogen NNK drives accumulation of DNMT1 at the GR promoter thereby reducing GR expression in untransformed lung fibroblasts. Sci. Rep. 2018, 8, 4903. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.H.; Liu, M.; Zhou, X.E.; Liang, G.; Zhao, G.; Xu, H.E.; Melcher, K.; Jones, P.A. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 2020, 586, 151–155. [Google Scholar] [CrossRef]
- Huang, C.C.; Lai, C.Y.; Tsai, C.H.; Wang, J.Y.; Wong, R.H. Combined effects of cigarette smoking, DNA methyltransferase 3B genetic polymorphism, and DNA damage on lung cancer. BMC Cancer 2021, 21, 1066. [Google Scholar] [CrossRef]
- Hussen, B.M.; Hidayat, H.J.; Salihi, A.; Sabir, D.K.; Taheri, M.; Ghafouri-Fard, S. MicroRNA: A signature for cancer progression. Biomed. Pharm. 2021, 138, 111528. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, G.; Wu, J.H.; Jiang, C.P. Diverse roles of miR-29 in cancer (review). Oncol. Rep. 2014, 31, 1509–1516. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Guan, X.; Tu, Y.; Zheng, S.; Long, J.; Li, S.; Qi, C.; Xie, X.; Zhang, H.; Zhang, Y. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. J. Exp. Clin. Cancer Res. 2015, 34, 59. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, M.; Garzon, R.; Cimmino, A.; Liu, Z.; Zanesi, N.; Callegari, E.; Liu, S.; Alder, H.; Costinean, S.; Fernandez-Cymering, C.; et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA 2007, 104, 15805–15810. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Crawford, M.; Mao, Y.; Lee, R.J.; Davis, I.C.; Elton, T.S.; Lee, L.J.; Nana-Sinkam, S.P. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol. Ther. Nucleic Acids 2013, 2, e84. [Google Scholar] [CrossRef]
- Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem. 2022, 379, 132135. [Google Scholar] [CrossRef]
- Khan, M.A.; Hussain, A.; Sundaram, M.K.; Alalami, U.; Gunasekera, D.; Ramesh, L.; Hamza, A.; Quraishi, U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol. Rep. 2015, 33, 1976–1984. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Shi, W.; Guo, H.; Long, W.; Wang, Y.; Qi, J.; Liu, J.; Xu, Y. The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules 2019, 24, 2899. [Google Scholar] [CrossRef] [Green Version]
- Kansal, V.; Agarwal, A.; Harbour, A.; Farooqi, H.; Singh, V.K.; Prasad, R. Regular Intake of green tea polyphenols suppresses the development of nonmelanoma skin cancer through miR-29-mediated epigenetic modifications. J. Clin. Med. 2022, 11, 398. [Google Scholar] [CrossRef]
- Shi, J.; Liu, F.; Zhang, W.; Liu, X.; Lin, B.; Tang, X. Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol. Rep. 2015, 33, 2972–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, W.; Sun, Q.; Dacic, S.; Landreneau, R.J.; Siegfried, J.M.; Yu, J.; Zhang, L. Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesis 2008, 29, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothschild, S.I.; Tschan, M.P.; Federzoni, E.A.; Jaggi, R.; Fey, M.F.; Gugger, M.; Gautschi, O. MicroRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Oncogene 2012, 31, 4221–4232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Histological Typing of Lung Tumors, 2nd ed.; World Health Organization: Geneva, Switzerland, 1981.
- Tsubono, Y.; Nishino, Y.; Komatsu, S.; Hsieh, C.C.; Kanemura, S.; Tsuji, I.; Nakatsuka, H.; Fukao, A.; Satoh, H.; Hisamichi, S. Green tea and the risk of gastric cancer in Japan. N. Engl. J. Med. 2001, 344, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Carlier, F.M.; Dupasquier, S.; Ambroise, J.; Detry, B.; Lecocq, M.; Biétry-Claudet, C.; Boukala, Y.; Gala, J.L.; Bouzin, C.; Verleden, S.E.; et al. Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020, 61, 103034. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, I.S.; Grippo, P.; Pandol, S.J.; Gukovskaya, A.S.; Edderkaoui, M. Akt kinase mediates the prosurvival effect of smoking compounds in pancreatic ductal cells. Pancreas 2013, 42, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Henning, S.M.; Wang, P.; Carpenter, C.L.; Heber, D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics 2013, 5, 729–741. [Google Scholar] [CrossRef] [Green Version]
Cases | Controls | ||
---|---|---|---|
Variables | n = 132 | n = 132 | OR (95% CI) b |
Gender | |||
Male | 83 (62.9%) | 83 (62.9%) | 0.98 (0.76–1.26) |
Female | 49 (37.1%) | 49 (37.1%) | 1.00 |
Age at recruitment (years, mean ± SD) | 63.9 ± 11.6 | 62.1 ± 11.9 | |
≥60 | 86 (65.2%) | 79 (59.9%) | 1.16 (0.62–2.17) |
51–59 | 30 (22.7%) | 28 (21.2%) | 1.24 (0.78–1.96) |
≤50 | 16 (12.1%) | 25 (18.9%) | 1.00 |
Smoking status | |||
Current and ever smokers | 73 (55.3%) | 43 (32.6%) | 2.07 (1.49–2.86) *** |
Non-smokers | 59 (44.7%) | 89 (67.4%) | 1.00 |
Pack-years smoked | |||
≥40 | 43 (32.6%) | 17 (12.9%) | 2.51 (1.70–3.70) *** |
1–39 | 30 (22.7%) | 26 (19.7%) | 1.72 (1.19–2.50) ** |
0 | 59 (44.7%) | 89 (67.4%) | 1.00 |
Green tea consumption (cups/day) | |||
0 | 90 (68.1%) | 73 (55.3%) | 1.67 (1.19–2.36) ** |
<1 | 27 (20.5%) | 23 (17.4%) | 1.69 (1.12–2.56) * |
≥1 | 15 (11.4%) | 36 (27.3%) | 1.00 |
Green tea consumption (years) | |||
0 | 90 (68.1%) | 73 (55.3%) | 1.27 (0.92–1.75) |
≤10 | 20 (15.2%) | 29 (22.0%) | 0.98 (0.66–1.46) |
>10 | 22 (16.7%) | 30 (22.7%) | 1.00 |
Fruit and vegetable intake (servings/week) | |||
≤14 | 38 (28.8%) | 51 (38.6%) | 0.84 (0.63–1.11) |
15–20 | 32 (24.2%) | 23 (17.4%) | 1.16 (0.84–1.60) |
≥21 | 62 (47.0%) | 58 (44.0%) | 1.00 |
Exposure to cooking fumes (hours/week) | |||
≥3 | 13 (9.9%) | 5 (3.8%) | 1.71 (0.99–2.94) c |
1–3 | 8 (6.1%) | 8 (6.1%) | 1.09 (0.64–1.84) |
<1 | 111 (84.0%) | 119 (90.1%) | 1.00 |
Family history of lung cancer | |||
Yes | 16 (12.1%) | 6 (4.6%) | 1.71 (1.05–2.79) * |
No | 116 (87.9%) | 126 (95.4%) | 1.00 |
Histological type | |||
Adenocarcinoma | 88 (66.6%) | ||
Squamous cell carcinoma | 31 (23.5%) | ||
Others a | 13 (9.9%) |
miR-29b Expression | DNMT3B mRNA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cases | Controls | Cases | Controls | |||||||
Variables | n | Median (Min–Max) | n | Median (Min–Max) | p-Value b | n | Median (Min–Max) | n | Median (Min–Max) | p-Value b |
Total | 132 | 57.2 (0.4–1317.6) | 132 | 81.6 (0.01–15,100.2) | 0.02 | 132 | 37.2 (0.4–920.0) | 132 | 25.8 (0.01–1972.8) | <0.001 |
Gender | ||||||||||
Male | 83 | 68.5 (0.6–1317.6) | 83 | 75.2 (0.01–6400.0) | 0.88 | 83 | 63.1 (0.4–920.0) | 83 | 23.6 (0.01–1972.8) | <0.001 |
Female | 49 | 40.1 (0.4–409.9) | 49 | 90.6 (5.2–15,100.2) | <0.001 | 49 | 24.5 (1.9–146.3) | 49 | 29.8 (1.3–440.3) | 0.09 |
p-Value c | <0.001 | 0.24 | <0.001 | 0.07 | ||||||
Age at recruitment (years) | ||||||||||
≥60 | 86 | 63.5 (0.6–1317.6) | 79 | 75.8 (6.1–15,100.2) | 0.27 | 86 | 56.0 (0.4–544.0) | 79 | 21.2 (0.01–1972.8) | <0.001 |
51–59 | 30 | 43.4 (0.9–1032.3) | 28 | 48.9 (0.01–768.6) | 0.78 | 30 | 24.8 (2.6–920.0) | 28 | 30.8 (1.3–165.7) | 0.97 |
<50 | 16 | 34.9 (0.4–241.3) | 25 | 160.4 (5.2–6400.0) | <0.001 | 16 | 24.1 (4.8–60.9) | 25 | 35.6 (3.4–440.3) | 0.02 |
p-Value c | 0.04 | <0.001 | 0.002 | <0.001 | ||||||
Smoking status | ||||||||||
Current and ever smokers | 73 | 74.1 (3.7–1317.6) | 43 | 31.3 (0.01–6400.0) | <0.001 | 73 | 66.5 (2.6–920.0) | 43 | 27.0 (12.2–190.1) | <0.001 |
Non-smokers | 59 | 38.7 (0.4–409.9) | 89 | 96.5 (6.1–15,100.2) | <0.001 | 59 | 24.5 (0.4–146.3) | 89 | 25.5 (0.01–1972.8) | 0.84 |
p-Value c | <0.001 | <0.001 | <0.001 | 0.45 | ||||||
Pack-years smoked | ||||||||||
≥40 | 43 | 75.7 (3.7–1317.6) | 17 | 27.1 (9.5–182.2) | <0.001 | 43 | 67.8 (2.6–196.6) | 17 | 24.3 (12.3–144.9) | 0.001 |
1–39 | 30 | 68.5 (3.8–558.1) | 26 | 37.8 (0.01–6400.0) | 0.04 | 30 | 61.7 (10.0–920.0) | 26 | 29.2 (12.2–190.1) | 0.004 |
0 | 59 | 38.7 (0.4–409.9) | 89 | 96.5 (6.1–15,100.2) | <0.001 | 59 | 24.5 (0.4–146.3) | 89 | 25.5 (0.01–1972.8) | 0.84 |
p-Value c | <0.001 | <0.001 | <0.001 | 0.62 | ||||||
Green tea consumption (cups/day) | ||||||||||
0 | 90 | 56.4 (0.4–1032.3) | 73 | 89.3 (9.5–15,100.2) | 0.003 | 90 | 54.5 (2.6–920.0) | 73 | 21.2 (1.3–204.8) | <0.001 |
<1 | 27 | 63.8 (0.9–402.3) | 23 | 72.3 (5.2–6400.0) | 0.91 | 27 | 25.1 (0.4–205.1) | 23 | 35.6 (3.4–1972.8) | 0.29 |
≥1 | 15 | 49.8 (3.7–1317.6) | 36 | 76.1 (0.01–794.3) | 0.88 | 15 | 23.6 (11.9–196.6) | 36 | 35.5 (0.01–440.3) | 0.18 |
p-Value c | 0.91 | 0.34 | <0.001 | <0.001 | ||||||
Green tea consumption (years) | ||||||||||
0 | 90 | 56.4 (0.4–1032.3) | 73 | 89.3 (9.5–15,100.2) | 0.003 | 90 | 54.5 (2.6–920.0) | 73 | 21.2 (1.3–204.8) | <0.001 |
≤10 | 20 | 47.2 (9.7–402.3) | 29 | 58.8 (0.01–794.3) | 0.82 | 20 | 24.4 (1.9–205.1) | 29 | 32.2 (3.4–440.3) | 0.28 |
>10 | 22 | 65.8 (0.9–1317.6) | 30 | 84.2 (5.2–6400.0) | 0.49 | 22 | 25.7 (0.4–196.6) | 30 | 35.7 (0.01–1972.8) | 0.13 |
p-Value c | 0.83 | 0.15 | <0.001 | <0.001 | ||||||
Fruit and vegetable intake (servings/week) | ||||||||||
≤14 | 38 | 63.3 (3.8–1032.3) | 51 | 77.1 (12.2–15,100.2) | 0.3 | 38 | 51.6 (1.9–920.0) | 51 | 26.0 (1.3–165.0) | 0.002 |
15–20 | 32 | 42.0 (0.4–478.2) | 23 | 89.8 (0.01–6400.0) | 0.1 | 32 | 28.9 (0.4–165.7) | 23 | 25.5 (3.4–190.1) | 0.4 |
≥21 | 62 | 57.7 (0.6–1317.6) | 58 | 83.7 (6.1–2793.4) | 0.24 | 62 | 38.0 (3.4–544.0) | 58 | 25.6 (0.01–1972.8) | 0.01 |
p-Value c | 0.27 | 0.95 | 0.17 | 0.99 | ||||||
Exposure to cooking fumes (hours/week) | ||||||||||
≥3 | 13 | 42.7 (29.0–231.7) | 5 | 142.7 (118.7–164.3) | 0.05 | 13 | 29.3 (10.0–910.8) | 5 | 32.4 (10.8–35.9) | 0.77 |
1–3 | 8 | 43.8 (31.0–154.9) | 8 | 124.2 (39.2–794.3) | 0.004 | 8 | 24.0 (13.5–70.6) | 8 | 23.9 (1.3–95.5) | 1 |
<1 | 111 | 62.3 (0.4–1317.7) | 119 | 77.1 (0.01–15,100.2) | 0.14 | 111 | 43.5 (0.4–920.0) | 119 | 25.5 (0.01–1972.8) | <0.001 |
p-Value c | 0.46 | 0.04 | 0.24 | 0.9 | ||||||
Family history of lung cancer | ||||||||||
Yes | 16 | 41.3 (0.6–155.6) | 6 | 59.6 (13.3–571.4) | 0.49 | 16 | 22.1 (1.9–87.7) | 6 | 9.4 (0.01–31.6) | 0.06 |
No | 116 | 63.3 (0.4–1317.6) | 126 | 81.7 (0.01–15,100.2) | 0.07 | 116 | 40.0 (0.4–920.0) | 126 | 26.7 (1.3–1972.8) | <0.001 |
p-Value c | 0.02 | 0.42 | 0.45 | 0.004 | ||||||
Histological type | ||||||||||
Adenocarcinoma | 88 | 56.4 (0.4–1317.6) | 88 | 30.1 (1.9–920.0) | ||||||
Squamous cell carcinoma | 31 | 51.8 (0.9–305.7) | 31 | 60.9 (0.4–910.8) | ||||||
Others a | 13 | 69.0 (4.0–231.7) | 13 | 67.7 (11.1–196.0) | ||||||
p-Value c | 0.45 | 0.09 |
Cases | Controls | ||||||
---|---|---|---|---|---|---|---|
Variables | n = 132 | n = 132 | OR (95% CI) | p-Value a | OR (95% CI) | p-Value a | |
miR-29b/DNMT3B mRNA | |||||||
Low/High b | 58 (44.0%) | 29 (22.0%) | 2.59 (1.56–4.31) | <0.001 | |||
High/High | 30 (22.7%) | 37 (28.0%) | 1.62 (0.97–2.72) | 0.07 | 1.95 (1.23–3.10) | 0.005 | |
Low/Low | 37 (28.0%) | 37 (28.0%) | 1.75 (1.06–2.90) | 0.03 | |||
High/Low | 7 (5.3%) | 29 (22.0%) | 1.00 (reference) | 1.00 (reference) | |||
Test for interaction | χ2 = 0.09 (1 df); p = 0.76 |
Cases | Controls | |||
---|---|---|---|---|
Variables | n = 132 | n = 132 | OR (95% CI) | p-Value a |
Smoking status/miR-29b | ||||
Smokers/Low | 45 (34.1%) | 33 (25.0%) | 3.95 (2.37–6.59) | <0.001 |
Smokers/High | 28 (21.2%) | 10 (7.6%) | 6.09 (3.35–11.07) | < 0.001 |
Non-smokers/Low | 50 (37.9%) | 33 (25.0%) | 3.27 (2.06–5.19) | <0.001 |
Non-smokers/High | 9 (6.8%) | 56 (42.4%) | 1.00 (reference) | |
Test for interaction | χ2 = 27.73 (1 df); p < 0.001 | |||
Smoking status/DNMT3B mRNA | ||||
Smokers/High | 61 (46.2%) | 22 (16.7%) | 2.96 (1.94–4.50) | <0.001 |
Smokers/Low | 12 (9.1%) | 21 (15.9%) | 1.17 (0.72–1.89) | 0.53 |
Non-smokers/High | 27 (20.5%) | 44 (33.3%) | 0.94 (0.65–1.37) | 0.77 |
Non-smokers/Low | 32 (24.2%) | 45 (34.1%) | 1.00 (reference) | |
Test for interaction | χ2 = 10.89 (1 df); p = 0.001 | |||
Smoking status/miR-29b/DNMT3B mRNA | ||||
Smokers/Low/High | 36 (27.3%) | 16 (12.1%) | 5.12 (2.64–9.91) | <0.001 |
Smokers/Low/Low | 9 (6.8%) | 17 (12.9%) | 2.04 (1.00–4.15) | 0.054 |
Smokers/High/High | 25 (18.9%) | 6 (4.6%) | 6.88 (3.27–14.46) | <0.001 |
Smokers/High/Low | 3 (2.3%) | 4 (3.0%) | 3.38 (1.26–9.08) | 0.02 |
Non-smokers/Low/High | 22 (16.7%) | 13 (9.9%) | 3.18 (1.65–6.15) | 0.001 |
Non-smokers/Low/Low | 28 (21.2%) | 20 (15.2%) | 2.79 (1.49–5.21) | 0.002 |
Non-smokers/High/High | 5 (3.8%) | 31 (23.4%) | 0.83 (0.38–1.83) | 0.65 |
Non-smokers/High/Low | 4 (3.0%) | 25 (18.9%) | 1.00 (reference) | |
Test for interaction | χ2 = 34.26 (3 df); p < 0.001 | |||
p for trend | <0.001 |
Cases | Controls | |||
---|---|---|---|---|
Variables | n = 132 | n = 132 | OR (95% CI) | p-Value a |
Green tea consumption/miR-29b | ||||
Nondrinkers/Low | 67 (50.8%) | 33 (25.0%) | 1.75 (1.15–2.67) | 0.01 |
Nondrinkers/High | 23 (17.4%) | 40 (30.3%) | 0.98 (0.62–1.55) | 0.93 |
Drinkers/Low | 28 (21.2%) | 33 (25.0%) | 1.16 (0.75–1.79) | 0.51 |
Drinkers/High | 14 (10.6%) | 26 (19.7%) | 1.00 (reference) | |
Test for interaction | χ2 = 2.96 (1 df); p = 0.09 | |||
Green tea consumption/DNMT3B mRNA | ||||
Nondrinkers/High | 69 (52.3%) | 27 (20.4%) | 1.42 (0.94–2.14) | 0.10 |
Nondrinkers/Low | 21 (15.9%) | 46 (34.8%) | 0.12 (0.40–0.95) | 0.03 |
Drinkers/High | 19 (14.4%) | 39 (29.6%) | 0.63 (0.41–0.99) | 0.05 |
Drinkers/Low | 23 (17.4%) | 20 (15.2%) | 1.00 (reference) | |
Test for interaction | χ2 = 18.21 (1 df); p < 0.001 | |||
Green tea consumption/miR-29b/DNMT3B mRNA | ||||
Nondrinkers/Low/High | 48 (36.4%) | 7 (5.3%) | 3.23 (1.55–6.72) | 0.0026 |
Nondrinkers/Low/Low | 19 (14.4%) | 26 (19.7%) | 1.05 (0.28–2.08) | 0.89 |
Nondrinkers/High/High | 21 (15.9%) | 20 (15.2%) | 1.29 (0.64–2.59) | 0.48 |
Nondrinkers/High/Low | 2 (1.5%) | 20 (15.2%) | 0.49 (0.19–1.27) | 0.15 |
Drinkers/Low/High | 10 (7.6%) | 22 (16.6%) | 0.83 (0.41–1.70) | 0.62 |
Drinkers/Low/Low | 18 (13.6%) | 11 (8.3%) | 1.67 (0.82–3.44) | 0.17 |
Drinkers/High/High | 9 (6.8%) | 17 (12.9%) | 0.99 (0.48–2.06) | 0.98 |
Drinkers/High/Low | 5 (3.8%) | 9 (6.8%) | 1.00 (reference) | |
Test for interaction | χ2 = 34.59 (3 df); p < 0.001 | |||
p for trend | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-C.; Lai, C.-Y.; Lin, I.-H.; Tsai, C.-H.; Tsai, S.-M.; Lam, K.-L.; Wang, J.-Y.; Chen, C.-C.; Wong, R.-H. Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes 2022, 13, 836. https://doi.org/10.3390/genes13050836
Huang C-C, Lai C-Y, Lin I-H, Tsai C-H, Tsai S-M, Lam K-L, Wang J-Y, Chen C-C, Wong R-H. Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes. 2022; 13(5):836. https://doi.org/10.3390/genes13050836
Chicago/Turabian StyleHuang, Chia-Chen, Chung-Yu Lai, I-Hsin Lin, Chin-Hung Tsai, Shi-Mei Tsai, Kit-Lai Lam, Jiun-Yao Wang, Chun-Chieh Chen, and Ruey-Hong Wong. 2022. "Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer" Genes 13, no. 5: 836. https://doi.org/10.3390/genes13050836
APA StyleHuang, C. -C., Lai, C. -Y., Lin, I. -H., Tsai, C. -H., Tsai, S. -M., Lam, K. -L., Wang, J. -Y., Chen, C. -C., & Wong, R. -H. (2022). Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes, 13(5), 836. https://doi.org/10.3390/genes13050836