Stroke and Etiopathogenesis: What Is Known?
Abstract
:1. Background
2. Materials and Methods
3. Results
3.1. Association between Genetic Alterations and Risk Factors
3.1.1. Monogenic Alterations
- A.
- CADASIL—It is an autosomal-dominant arteriopathy characterized by subcortical infarct and leuko-encephalopathy (CADASIL). It is a major monogenic cause of ischemic stroke [24] and it is related to a pathogenic variant of the NOTCH3 gene [25,26] that is inherited in an autosomal-dominant way. The characteristic of CADASIL is deposition of granular osmiophilic material (GOM) in the vascular wall [27].
- B.
- CARASIL—It is an autosomal-recessive cerebral artery disease, and it is related to a mutation of the HTRA1 gene [28]. It is defined by intense arteriosclerosis without amyloid deposits and intimal proliferation or loss of smooth muscle cells in small arteries [29]. Retinal vasculopathy with systemic manifestations (RVCL-S) affects the small vessels of the retina, brain, kidneys and liver and it has an autosomal-dominant inheritance pattern [30]. The gene responsible for RVCL-S is TREX1 and it encodes the TREX1 protein, which, after mutation, makes endothelial cells more vulnerable to oxidative DNA damage [31]. TREX1 is detectable in the microglia surrounding the white matter micro vascularization, and probably the incorrect localization of TREX1 may induce the vulnerability to white matter failure [32,33]. It has been reported that these circulating endothelial markers are present in retinal vasculopathy with cerebral leukoencephalopathy [34,35].
- C.
- MELAS—It is a mitochondrial encephalomyopathy characterized by lactic acidosis and stroke-like episodes (MELAS). The genetic alterations typical of this disease involve the bioenergetic functions of the cell [36]. MELAS is associated with:
- growth retardation
- lactic acidosis
- neuromyopathy
- epilepsy
- migraine-like headache
- D.
- Sickle cell anemia—It is caused by a point mutation (GAG to GTG) in the ß-globin gene [41]. The clinical manifestations are characterized by chronic hemolysis and acute vaso-occlusive crisis. The prevalence of stroke is about 3.75%, specifically in the first decade of life [42]. Large-vessel occlusion and high development of aneurysms are reported [43,44,45,46].
- E.
- Type IV Ehlers–Danlos syndrome (EDS-IV)—It is a hereditary disorder associated with an abnormal synthesis of procollagen III. It is characterized by heterozygous mutations in the COL3A1 gene [47], and EDS-IV is characterized by facial malformations, skin changes, a tendency to develop bruises and hematomas, and arterial, digestive, and obstetric complications. In this condition, intracranial aneurysms, dissection of the vertebral and carotid arteries and spontaneous rupture of large and medium-sized arteries are reported [48,49].
- F.
- Homocystinuria—It is an autosomal-recessive disease affecting the metabolism of the amino acid methionine. Prevalence has been estimated at 1 in 344,000 [50]. It is characterized by an abnormal accumulation of homocysteine and its metabolites in the blood and urine. Clinical manifestations are heterogeneous and include abnormalities of the eye, skeleton, and nervous system. The complications are related to endothelial damage and the stimulation of platelet aggregation [51].
- G.
- Elastic pseudoxanthoma—It is known as Groenblad–Strandberg syndrome, and it is an autosomal-recessive elastic tissue disease caused by mutations in the ABCC6 gene [52]. Cardiovascular conditions are prevalent in females, and in affected subjects there is an accelerated arteriosclerosis mainly affecting small and medium-sized arteries [53].
- H.
- Fabry disease—It is X-linked recessive and caused by a mutation in the GLA gene encoding the enzyme alpha-galactosidase A [54,55]. Neurological manifestations include polyneuropathy, autonomic dysfunction, and brain manifestations. Stroke may be the first manifestation of the disease, which more frequently affects the posterior cerebral circulation.
- I.
- L.
- Type IV collagen dysfunctions α1 and α2—Both are autosomal dominant conditions, caused by mutations in the COL4A1 (13q34) and COL4A2 (13q34) genes. The clinical features include neurological features (such as stroke, migraine, infantile hemiparesis, epilepsy) and systemic symptoms [58]. Forms of COL4A1 mutations include infantile hemiparesis, seizures, migraine with aura, single or recurrent intracerebral hemorrhages, eye symptoms and muscle spasms [58].
- M.
- Cerebral cavernous malformations—These are known as cavernous angiomas or cavernomas. The prevalence is 0.8% in the general population. The familial form is autosomal dominant and associated with KRIT1 mutations. The clinical manifestations are characterized by seizures, headaches, and intracranial hemorrhage [59]. Cavernous brain malformations can be familiar or sporadic [60].
- N.
- Cerebral amyloid angiopathy—It is responsible for 15% of hemorrhagic strokes. The hereditary form is rare. The degenerative process leads to the development of microaneurysms as well as to hemorrhagic and ischemic lesions of the brain [61].
3.1.2. Polygenic Cerebrovascular Diseases
- The largest genetic correlation was found for arterial hypertension.
- This suggests a strong link with a cardiac mechanism.
- New stroke risk can constitute drug targets for antithrombotic therapy.
3.2. Atherosclerotic Stroke
3.2.1. Atherosclerotic Stroke
- isolated lacunar stroke.
- multiple lacunar stroke with leuko-araiosis.
- altered oxidative phosphorylation pathways.
- various single nucleotide polymorphisms.
3.2.2. Cardioembolic Stroke
3.2.3. Cases of Stroke Related to Other Diseases
3.3. Epigenetic Causes of Stroke
3.3.1. DNA Methylation
- Hypermethylation of the genetic sequences encoding thrombospondin has been observed in vitro as a cause of ischemia. This factor is involved in platelet aggregation as well as in the neo-angiogenesis, for example, linked to post ischemic damage [80].
- Elevated levels of both triglycerides and low-density lipoprotein (LDL) cholesterol are associated with an increased risk of stroke [81,82,83,84,85]. This phenomenon is correlated in the human organism with the role of apolipoprotein E, a lipoprotein involved in lipid metabolism [86]. It has been observed that polymorphisms of the ApoE gene, the protagonist of the expression of this lipoprotein, are correlated with a greater progress of atherosclerosis [86]. ApoE hypermethylation can be prevented by reducing homocysteine levels [87].
- In humans, it is also known that high plasma homocysteine levels are an independent risk factor for atherosclerosis and coronary heart disease [88,89,90]. Homocysteine is an amino acid present in the body in very small quantities; it derives from biochemical reactions that start from methionine, an amino acid that we ingest by consuming foods such as meat, eggs, legumes, and dairy products. Alterations in homocysteine metabolism are associated with a higher incidence of stroke. Homocysteine metabolism is regulated by dietary factors such as methionine, B vitamins, methylenetetrahydrofolate reductase (MTHFR), cystathionine beta-synthase (CBS) and methionine synthase (MS). Above all, the hypermethylation of CBS leads to low enzymatic activity and, therefore, the accumulation of plasma homocysteine [90]. High levels of plasma homocysteine are also associated with DNA hypermethylation of thrombomodulin in patients with ischemic stroke [89,90,91].
- Baccarelli et al. [91] reported that hypomethylation of long nucleotide elements was associated with increased levels of a vascular cell adhesion protein (VCAM-1). The association between hypomethylation and the expression of VCAM-1 may be a link for cardiovascular and cerebrovascular diseases [92,93]. In discussing the role of epigenetic factors involving inflammation on the pathogenesis of ischemic injury, it should be remembered that the hypomethylation of TNF receptor–associated factor 3 (TRAF3) and protein phosphatase 1A (PPM1A) was associated with increased risk for stroke in patients treated with antiplatelet therapy [94,95].
3.3.2. Histone Modifications
3.3.3. Non-Coding RNA
- The regulatory mechanisms attributable to RNA are counted among the epigenetic factors of stroke. The regulation of gene expression involves microRNAs (miRNAs). MiRNAs are described in cell proliferation and differentiation, apoptosis, fat metabolism and hematopoiesis [108]. LncRNAs are a regulator of vascular function, and their dysregulation contributes to cardiovascular disease [109,110]. Studies have revealed alterations in miRNA levels in arterial hypertension, dyslipidemia, atherosclerosis, and inflammation [111,112,113,114]. Furthermore, changes in miRNA levels have been identified at different stages of stroke, and it is possible that they can be used for diagnostic, prognostic, and therapeutic purposes [115]. From studies, miRNAs have been shown to influence the function of genes that induce inflammatory pathways, such as interleukin 1β and 6, intercellular adhesion molecule 1 (ICAM1) and cyclooxygenase 2 (COX2) [116,117,118,119,120,121,122,123]. These processes play a crucial role during post-ischemic brain remodeling [124,125]. In rats, a reduced level of miR-122 is related to reduced endothelial integrity, apoptosis, and inflammation [126]. These findings describe the growing role of miRNAs in the pathogenesis of stroke [127,128,129,130].
- LncRNAs ANRIL (non-coding antisense RNA in the INK4 locus), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), MEG3 (maternally expressed 3), TUG1 (taurine upregulated 1) [131] and ANRIL expression were significantly increased in stroke models [131]. MALAT1, MEG3 and TUG1 are involved with LncRNAs in the regulation of cell proliferation, inflammation, and apoptosis [132]. These results suggest that LncRNAs can have a crucial role in the development of ischemic stroke [133,134,135,136,137].
4. Discussion
- Gene expression is involved in brain inflammation and remodeling after stroke.
- Epigenetic mechanisms may induce different injury responses to cerebral ischemia.
- Epigenetics has recently sparked interest because it appears to offer an alternative therapeutic solution by altering our genetic “destiny”.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnston, S.C.; Mendis, S.; Mathers, C.D. Global variation in stroke burden and mortality: Estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009, 8, 345–354. [Google Scholar] [CrossRef]
- GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted lifeyears (DALYs) for 315 diseases injuries and healthy life expectancy (HALE) 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef] [Green Version]
- GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality cause-specific mortality for 249 causes of death 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, S.M. Small vessels, big problems. N. Engl. J. Med. 2006, 354, 1451–1453. [Google Scholar] [CrossRef]
- Seshadri, S.; Wolf, P.A. Lifetime risk of stroke and dementia: Current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007, 6, 1106–1114. [Google Scholar] [CrossRef]
- Falcone, G.J.; Malik, R.; Dichgans, M.; Rosand, J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014, 13, 405–418. [Google Scholar] [CrossRef]
- Diener, H.-C.; Sacco, R.L.; Easton, J.D.; Granger, C.B.; Bernstein, R.A.; Uchiyama, S.; Kreuzer, J.; Cronin, L.; Cotton, D.; Grauer, C.; et al. Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source. N. Engl. J. Med. 2019, 380, 1906–1917. [Google Scholar] [CrossRef]
- Ekker, M.S.; Verhoeven, J.I.; Vaartjes, I.; van Nieuwenhuizen, K.M.; Klijn, C.J.M.; de Leeuw, F.-E. Stroke incidence in young adults according to age, subtype, sex, and time trends. Neurology 2019, 92, e2444–e2454. [Google Scholar] [CrossRef]
- Bevan, S.; Traylor, M.; Adib-Samii, P.; Malik, R.; Paul, N.L.M.; Jackson, C.; Farrall, M.; Rothwell, P.M.; Sudlow, C.; Dichgans, M.; et al. Genetic Heritability of Ischemic Stroke and the Contribution of Previously Reported Candidate Gene and Genomewide Associations. Stroke 2012, 43, 3161–3167. [Google Scholar] [CrossRef]
- Chen, W.; Sinha, B.; Li, Y.; Benowitz, L.; Chen, Q.; Zhang, Z.; Patel, N.J.; Aziz-Sultan, A.M.; Chiocca, A.E.; Wang, X. Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke. Mol. Neurobiol. 2019, 56, 1330–1343. [Google Scholar] [CrossRef]
- Ekkert, A.; Šliachtenko, A.; Grigaitė, J.; Burnytė, B.; Utkus, A.; Jatužis, D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes 2022, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007, 448, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Holm, H.; Gretarsdottir, S.; Thorleifsson, G.; Walters, G.B.; Thorgeirsson, G.; Gulcher, J.; Mathiesen, E.B.; Njølstad, I.; Nyrnes, A.; et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet. 2009, 41, 876–878. [Google Scholar] [CrossRef] [PubMed]
- International Stroke Genetics Consortium (ISGC); Wellcome Trust Case Control Consortium (WTCCC2); Bellenguez, C.; Bevan, S.; Gschwendtner, A.; Spencer, C.C.; Burgess, A.I.; Pirinen, M.; Jackson, C.A.; Traylor, M.; et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 2012, 44, 328–333. [Google Scholar] [CrossRef]
- Woo, D.; Falcone, G.J.; Devan, W.J.; Brown, W.M.; Biffi, A.; Howard, T.D.; Anderson, C.D.; Brouwers, H.B.; Valant, V.; Battey, T.W.; et al. Meta-analysis of Genome-wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage. Am. J. Hum. Genet. 2014, 94, 511–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilarski, L.; Achterberg, S.; Devan, W.J.; Traylor, M.; Malik, R.; Lindgren, A.; Pare, G.; Sharma, P.; Slowik, A.; Thijs, V.; et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 2014, 83, 678–685. [Google Scholar] [CrossRef] [Green Version]
- Traylor, M.A.; Mäkelä, K.-M.; Kilarski, L.L.; Holliday, E.G.; Devan, W.J.; Nalls, M.A.; Wiggins, K.L.; Zhao, W.; Cheng, Y.C.; Achterberg, S.; et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet. 2014, 10, e1004469. [Google Scholar] [CrossRef] [Green Version]
- NINDS; Stroke Genetics Network (SiGN); International Stroke Genetics Consortium (ISGC); Pulit, S.L.; McArdle, P.F.; Wong, Q.; Malik, R.; Gwinn, K.; Achterberg, S.; Algra, A.; et al. Loci associated with ischaemic stroke and its subtypes (SiGN): A genome-wide association study. Lancet Neurol. 2016, 15, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Neurology Working Group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium; the Stroke Genetics Network (SiGN); the International Stroke Genetics Consortium (ISGC); Chauhan, G.; Arnold, C.R.; Chu, A.Y.; Fornage, M.; Reyahi, A.; Bis, J.C.; Havulinna, A.S.; et al. Identification of additional risk loci for stroke and small vessel disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2016, 15, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; Traylor, M.; Pulit, S.L.; Bevan, S.; Hopewell, J.C.; Holliday, E.G.; Zhao, W.; Abrantes, P.; Amouyel, P.; Attia, J.R.; et al. Low-frequency and common genetic variation in ischemic stroke. Neurology 2016, 86, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Traylor, M.; Malik, R.; Nalls, M.A.; Cotlarciuc, I.; Radmanesh, F.; Thorleifsson, G.; Hanscombe, K.B.; Langefeld, C.; Saleheen, D.; Rost, N.S.; et al. Genetic variation at 16q24.2 is associated with small vessel stroke. Ann. Neurol. 2017, 81, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilinca, A.; Samuelsson, S.; Piccinelli, P.; Soller, M.; Kristoffersson, U.; Lindgren, A.G. A stroke gene panel for whole-exome sequencing. Eur. J. Hum. Genet. 2019, 27, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leys, D.; Bandu, L.; Henon, H.; Lucas, C.; Mounier-Vehier, F.; Rondepierre, P.; Godefroy, O. Clinical outcome in 287 consecutive young adults (15 to 45 years) with ischemic stroke. Neurology 2002, 59, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bersano, A.; Markus, H.S.; Quaglini, S.; Arbustini, E.; Lanfranconi, S.; Micieli, G.; Boncoraglio, G.B.; Taroni, F.; Gellera, C.; Baratta, S.; et al. Clinical Pregenetic Screening for Stroke Monogenic Diseases. Stroke 2016, 47, 1702–1709. [Google Scholar] [CrossRef] [Green Version]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.G. Cadasil. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef]
- Rutten, J.W.; Haan, J.; Terwindt, G.M.; van Duinen, S.G.; Boon, E.M.; Oberstein, S.A.L. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev. Mol. Diagn. 2014, 14, 593–603. [Google Scholar] [CrossRef]
- Gravesteijn, G.; Munting, L.P.; Overzier, M.; Mulder, A.A.; Hegeman, I.; Derieppe, M.; Koster, A.J.; van Duinen, S.G.; Meijer, O.C.; Aartsma-Rus, A.; et al. Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice. Transl. Stroke Res. 2020, 11, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Wang, M. CADASIL. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 148, pp. 733–743. [Google Scholar] [CrossRef]
- Fukutake, T. Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CARASIL): From Discovery to Gene Identification. J. Stroke Cerebrovasc. Dis. 2011, 20, 85–93. [Google Scholar] [CrossRef]
- Uemura, M.; Nozaki, H.; Kato, T.; Koyama, A.; Sakai, N.; Ando, S.; Kanazawa, M.; Hishikawa, N.; Nishimoto, Y.; Polavarapu, K.; et al. HTRA1-Related Cerebral Small Vessel Disease: A Review of the Literature. Front. Neurol. 2020, 11, 545. [Google Scholar] [CrossRef]
- Stam, A.H.; Kothari, P.H.; Shaikh, A.; Gschwendter, A.; Jen, J.C.; Hodgkinson, S.; Hardy, T.A.; Hayes, M.; Kempster, P.A.; Kotschet, K.E.; et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 2016, 139, 2909–2922. [Google Scholar] [CrossRef] [Green Version]
- Ford, A.L.; Chin, V.W.; Fellah, S.; Binkley, M.M.; Bodin, A.M.; Balasetti, V.; Taiwo, Y.; Kang, P.; Lin, D.; Jen, J.C.; et al. Lesion evolution and neurodegeneration in RVCL-S: A monogenic microvasculopathy. Neurology 2020, 95, e1918–e1931. [Google Scholar] [CrossRef] [PubMed]
- Paradis, C.; Cadieux-Dion, M.; Meloche, C.; Gravel, M.; Paradis, J.; Des Roches, A.; Leclerc, G.; Cossette, P.; Begin, P. TREX-1-Related Disease Associated with the Presence of Cryofibrinogenemia. J. Clin. Immunol. 2019, 39, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Rice, G.I.; Rodero, M.P.; Crow, Y.J. Human Disease Phenotypes Associated with Mutations in TREX1. J. Clin. Immunol. 2015, 35, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, N.; Bijkerk, R.; Reinders, M.E.; van Zonneveld, A.J.; Ferrari, M.D.; van den Maagdenberg, A.M.; Eikenboom, J.; Terwindt, G.M. Circulating Endothelial Markers in Retinal Vasculopathy with Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke 2017, 48, 3301–3307. [Google Scholar] [CrossRef]
- Raynowska, J.; Miskin, D.P.; Pramanik, B.; Asiry, S.; Anderson, T.; Boockvar, J.; Najjar, S.; Harel, A. Retinal vasculopathy with cerebral leukoencephalopathy (RVCL): A rare mimic of tumefactive MS. Neurology 2018, 91, e1423–e1428. [Google Scholar] [CrossRef]
- Yokota, Y.; Hara, M.; Akimoto, T.; Mizoguchi, T.; Goto, Y.I.; Nishino, I.; Kamei, S.; Nakajima, H. Late-onset MELAS syndrome with mtDNA 14453G → A mutation masquerading as an acute encephalitis: A case report. BMC Neurol. 2020, 20, 247. [Google Scholar] [CrossRef]
- Fassone, E.; Rahman, S. Complex I deficiency: Clinical features, biochemistry and molecular genetics. J. Med Genet. 2012, 49, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Ravn, K.; Wibrand, F.; Hansen, F.J.; Horn, N.; Rosenberg, T.; Schwartz, M. An mtDNA mutation, 14453G → A, in the NADH dehydrogenase subunit 6 associated with severe MELAS syndrome. Eur. J. Hum. Genet. 2001, 9, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Rodan, L.H.; Poublanc, J.; Fisher, J.A.; Sobczyk, O.; Mikulis, D.J.; Tein, I. L-arginine effects on cerebrovascular reactivity, perfusionand neurovascular coupling in MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) syndrome. PLoS ONE 2020, 15, e0238224. [Google Scholar] [CrossRef]
- Yokoyama, T.; Hasegawa, K.; Obama, R.; Ishihara, T.; Yagishita, S. MELAS with diffuse degeneration of the cerebral white matter: Report of an autopsy case. Neuropathology 2010, 30, 56–60. [Google Scholar] [CrossRef]
- Hoban, M.D.; Orkin, S.H.; Bauer, D.E. Genetic treatment of a molecular disorder: Gene therapy approaches to sickle cell disease. Blood 2016, 127, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Ohene-Frempong, K. Stroke in sickle cell disease: Demographic, clinical, and therapeutic considerations. Semin. Hematol. 1991, 28, 213–219. [Google Scholar] [PubMed]
- Switzer, J.A.; Hess, D.C.; Nichols, F.T.; Adams, R.J. Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol. 2006, 5, 501–512. [Google Scholar] [CrossRef]
- Strouse, J. Sickle cell disease. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 311–324. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128029732000185 (accessed on 1 September 2021).
- Farooq, S.; Testai, F.D. Neurologic complications of sickle cell disease. Curr. Neurol. Neurosci. Rep. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pepin, M.; Schwarze, U.; Superti-Furga, A.; Byers, P.H. Clinical and Genetic Features of Ehlers–Danlos Syndrome Type IV, the Vascular Type. N. Engl. J. Med. 2000, 342, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Dohle, C.; Baehring, J. Multiple strokes and bilateral carotid dissections: A fulminant case of newly diagnosed Ehlers–Danlos Syndrome Type IV. J. Neurol. Sci. 2012, 318, 168–170. [Google Scholar] [CrossRef] [PubMed]
- North, K.N.; Whiteman, D.A.; Pepin, M.G.; Byers, P.H. Cerebrovascular complications in Ehlers-Danlos syndrome type IV. Ann. Neurol. 1995, 38, 960–964. [Google Scholar] [CrossRef]
- Mudd, S.H.; Levy, H.L.; Skovby, F. Disorders of trans sulfuration. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed.; Scriver, C.R., Sly, W.S., Childs, B., Beaudet, A.L., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Cardo, E.; Campistol, J.; Caritg, J.; Ruiz, S.; Vilaseca, M.A.; Kirkham, F.; Blom, H.J. Fatal haemorrhagic infarct in an infant with homo-cystinuria. Dev. Med. Child Neurol. 1999, 41, 132–135. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, Q.; Uitto, J. Ectopic mineralization disorders of the extracellular matrix of connective tissue: Molecular genetics and pathomechanisms of aberrant calcification. Matrix Biol. 2013, 33, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Lefthériotis, G.; Omarjee, L.; Saux, O.L.; Henrion, D.; Abraham, P.; Prunier, F.; Willoteaux, S.; Martin, L. The vascular phenotype in Pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification. Front. Genet. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Branton, M.H.; Schiffmann, R.; Sabnis, S.G.; Murray, G.J.; Quirk, J.M.; Altarescu, G.; Goldfarb, L.; Brady, R.O.; Balow, J.E.; Austin Iii, H.A.; et al. Natural History of Fabry Renal Disease: Influence of α-Galactosidase A Activity and Genetic Mutations on Clinical Course. Medicine 2002, 81, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judge, D.P.; Dietz, H.C. Marfan’s syndrome. Lancet 2005, 366, 1965–1976. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meuwissen, M.E.C.; Halley, D.J.J.; Smit, L.S.; Lequin, M.H.; Cobben, J.M.; de Coo, R.; van Harssel, J.; Sallevelt, S.; Woldringh, G.; van der Knaap, M.S.; et al. The expanding phenotype of COL4A1 and COL4A2 mutations: Clinical data on 13 newly identified families and a review of the literature. Genet. Med. 2015, 17, 843–853. [Google Scholar] [CrossRef] [Green Version]
- El-Koussy, M.; Stepper, F.; Spreng, A.; Lukes, A.; Brekenfeld, C.; Sturzenegger, M.; Schroth, G. Incidence, clinical presentation and imaging findings of cavernous malformations of the CNS. A twenty-year experience. Swiss Med. Wkly. 2011, 141, w13172. [Google Scholar] [CrossRef]
- Lanfranconi, S.; Piergallini, L.; Ronchi, D.; Valcamonica, G.; Conte, G.; Marazzi, E.; Manenti, G.; Bertani, G.A.; Locatelli, M.; Triulzi, F.; et al. Clinical, neuroradiological and genetic findings in a cohort of patients with multiple Cerebral Cavernous Malformations. Metab. Brain Dis. 2021, 36, 1871–1878. [Google Scholar] [CrossRef]
- Rannikmäe, K.; Samarasekera, N.; Martînez-Gonzâlez, N.A.; Salman, R.A.S.; Sudlow, C.L. Genetics of cerebral amyloid angiopathy: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 901–908. [Google Scholar] [CrossRef]
- Fox, C.S.; Polak, J.F.; Chazaro, I.; Cupples, A.; Wolf, P.A.; D’Agostino, R.A.; O’Donnell, C.J. Genetic and Environmental Contributions to Atherosclerosis Phenotypes in Men and Women. Stroke 2003, 34, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Malik, R.; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.-K.; van der Laan, S.W.; Gretarsdottir, S.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Cai, B.; Liu, Z.; Wu, W.; Chen, D.; Fang, L.; Chen, L.; Sun, W.; Liang, J.; Zhang, H. Genetic correlations and causal inferences in ischemic stroke. J. Neurol. 2020, 267, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.; Zorowitz, R.D.; Becker, K.; Keller, E.; Saposnik, G.; Strbian, D.; Dichgans, M.; Woo, D.; Reeves, M.; Thrift, A.; et al. Advances in Stroke 2017. Stroke 2018, 49, e174–e199. [Google Scholar] [CrossRef] [PubMed]
- Regenhardt, R.; Das, A.S.; Lo, E.H.; Caplan, L.R. Advances in Understanding the Pathophysiology of Lacunar Stroke. JAMA Neurol. 2018, 75, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Gretarsdottir, S.; Thorleifsson, G.; Manolescu, A.; Styrkarsdottir, U.; Helgadottir, A.; Gschwendtner, A.; Kostulas, K.; Kuhlenbäumer, G.; Bevan, S.; Bsc, T.J.; et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann. Neurol. 2008, 64, 402–409. [Google Scholar] [CrossRef]
- Zou, R.; Zhang, D.; Lv, L.; Shi, W.; Song, Z.; Yi, B.; Lai, B.; Chen, Q.; Yang, S.; Hua, P. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke. J. Transl. Med. 2019, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.M.K.; Carter, A.M.; Hysi, P.G.; Msc, G.S.; Hodgkiss, D.; Soranzo, N.; Traylor, M.; Bevan, S.; Dichgans, M.; Rothwell, P.M.W.; et al. Ischemic stroke is associated with the ABO locus: The EuroCLOT study. Ann. Neurol. 2012, 73, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Corte, V.; Tuttolomondo, A.; Pecoraro, R.; Di Raimondo, D.; Vassallo, V.; Pinto, A. Inflammation, Endothelial Dysfunction and Arterial Stiffness as Therapeutic Targets in Cardiovascular Medicine. Curr. Pharm. Des. 2016, 22, 4658–4668. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Casuccio, A.; Di Bona, D.; Aiello, A.; Accardi, G.; Arnao, V.; Clemente, G.; Corte, V.D.; et al. HLA and killer cell immunoglobulin-like receptor (KIRs) genotyping in patients with acute ischemic stroke. J. Neuroinflamm. 2019, 16, 88. [Google Scholar] [CrossRef] [Green Version]
- Rubattu, S.; Giliberti, R.; Volpe, M. Etiology and pathophysiology of stroke as a complex trait. Am. J. Hypertens. 2000, 13, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Markus, H.S. Genetics and ischaemic stroke. Brain 2000, 123 Pt 9, 1784–1812. [Google Scholar] [CrossRef] [Green Version]
- Morgado-Pascual, J.L.; Marchant, V.; Rodrigues-Diez, R.; Dolade, N.; Suarez-Alvarez, B.; Kerr, B.; Valdivielso, J.M.; Ruiz-Ortega, M.; Rayego-Mateos, S. Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediat. Inflamm. 2018, 2018, 2931049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udali, S.; Guarini, P.; Moruzzi, S.; Choi, S.-W.; Friso, S. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol. Asp. Med. 2013, 34, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Heard, E.; Martienssen, R.A. Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell 2014, 157, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Song, M.; Qu, J.; Liu, G.-H. Epigenetic Modifications in Cardiovascular Aging and Diseases. Circ. Res. 2018, 123, 773–786. [Google Scholar] [CrossRef]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef]
- Endres, M.; Meisel, A.; Biniszkiewicz, D.; Namura, S.; Prass, K.; Ruscher, K.; Lipski, A.; Jaenisch, R.; Moskowitz, M.A.; Dirnagl, U. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 2000, 20, 3175–3181. [Google Scholar] [CrossRef] [Green Version]
- Dock, H.; Theodorsson, A.; Theodorsson, E. DNA Methylation Inhibitor Zebularine Confers Stroke Protection in Ischemic Rats. Transl. Stroke Res. 2015, 6, 296–300. [Google Scholar] [CrossRef]
- Faraco, G.; Pancani, T.; Formentini, L.; Mascagni, P.; Fossati, G.; Leoni, F.; Moroni, F.; Chiarugi, A. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol. 2006, 70, 1876–1884. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.J.; Chen, S.D.; Yang, D.I.; Lin, T.N.; Chen, C.M.; Huang, T.H.M.; Hsu, C.Y. Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. J. Cereb. Blood Flow Metab. 2006, 26, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Doi, Y.; Arima, H.; Yonemoto, K.; Hata, J.; Kubo, M.; Tanizaki, Y.; Ibayashi, S.; Iida, M.; Kiyohara, Y. LDL cholesterol and the development of stroke subtypes and coronary heart disease in a general Japanese population: The Hisayama study. Stroke 2009, 40, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirschwell, D.L.; Smith, N.L.; Heckbert, S.R.; Lemaitre, R.N.; Longstreth, W.T.; Psaty, B.M. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology 2004, 63, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Tanne, D.; Koren-Morag, N.; Graff, E.; Goldbourt, U. Blood lipids and first-ever ischemic stroke/transient ischemic attack in the Bezafibrate Infarction Prevention (BIP) Registry: High triglycerides constitute an independent risk factor. Circulation 2001, 104, 2892–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannamethee, S.G.; Shaper, A.G.; Ebrahim, S. HDL-Cholesterol, total cholesterol, and the risk of stroke in middle-aged British men. Stroke 2000, 31, 1882–1888. [Google Scholar] [CrossRef] [Green Version]
- Mahley, R.W. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Wang, C.; Du, R.; Wang, X.; Fu, J.; Sun, Q. A Preliminary Study of the Association between Apolipoprotein E Promoter Methylation and Atherosclerotic Cerebral Infarction. J. Stroke Cerebrovasc. Dis. 2019, 28, 1056–1061. [Google Scholar] [CrossRef]
- Van Meurs, J.B.; Pare, G.; Schwartz, S.M.; Hazra, A.; Tanaka, T.; Vermeulen, S.H.; Cotlarciuc, I.; Yuan, X.; Mälarstig, A.; Bandinelli, S.; et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am. J. Clin. Nutr. 2013, 98, 668–676. [Google Scholar] [CrossRef]
- Wang, C.; Xu, G.; Wen, Q.; Peng, X.; Chen, H.; Zhang, J.; Xu, S.; Zhang, C.; Zhang, M.; Ma, J.; et al. CBS promoter hypermethylation increases the risk of hypertension and stroke. Clinics 2019, 74, e630. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Zhang, W.; Wang, X.; Zhou, S. Plasma homocysteine involved in methylation and expression of thrombomodulin in cerebral infarction. Biochem. Biophys. Res. Commun. 2016, 473, 1218–1222. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Wang, L.; Zhang, Z.; Cai, B.; Liu, K.; Zhang, H.; Dai, M.; Sun, L.; Xu, X.; et al. CDKN2B Methylation and Aortic Arch Calcification in Patients with Ischemic Stroke. J. Atheroscler. Thromb. 2017, 24, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Baccarelli, A.; Tarantini, L.; Wright, R.O.; Bollati, V.; Litonjua, A.A.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 2010, 5, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M. Role of inflammatory biomarkers in prediction of coronary heart disease. Lancet 2001, 358, 946–948. [Google Scholar] [CrossRef]
- Malik, I.; Danesh, J.; Whincup, P.; Bhatia, V.; Papacosta, O.; Walker, M.; Lennon, L.; Thomson, A.; Haskard, D. Soluble adhesion molecules and predtion of coronary heart disease: A prospective study and meta-analysis. Lancet 2001, 358, 971–976. [Google Scholar] [CrossRef]
- Gallego-Fabrega, C.; Carrera, C.; Reny, J.L.; Fontana, P.; Slowik, A.; Pera, J.; Pezzini, A.; Serrano-Heras, G.; Segura, T.; Martí-Fàbregas, J.; et al. TRAF3 Epigenetic Regulation Is Associated with Vascular Recurrence in Patients with Ischemic Stroke. Stroke 2016, 47, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Fabrega, C.; Carrera, C.; Reny, J.L.; Fontana, P.; Slowik, A.; Pera, J.; Pezzini, A.; Serrano-Heras, G.; Segura, T.; Bin Dukhyil, A.A.A.; et al. PPM1A Methylation Is Associated with Vascular Recurrence in Aspirin-Treated Patients. Stroke 2016, 47, 1926–1929. [Google Scholar] [CrossRef]
- Marmorstein, R.; Roth, S.Y. Histone acetyltransferases: Function, structure, and catalysis. Curr. Opin. Genet. Dev. 2001, 11, 155–161. [Google Scholar] [CrossRef]
- Rice, J.C.; Briggs, S.D.; Ueberheide, B.; Barber, C.M.; Shabanowitz, J.; Hunt, D.F.; Shinkai, Y.; Allis, C. Histone Methyltransferases Direct Different Degrees of Methylation to Define Distinct Chromatin Domains. Mol. Cell 2003, 12, 1591–1598. [Google Scholar] [CrossRef]
- Margueron, R.; Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 2010, 11, 285–296. [Google Scholar] [CrossRef]
- Kim, H.J.; Rowe, M.; Ren, M.; Hong, J.-S.; Chen, P.-S.; Chuang, D.-M. Histone Deacetylase Inhibitors Exhibit Anti-Inflammatory and Neuroprotective Effects in a Rat Permanent Ischemic Model of Stroke: Multiple Mechanisms of Action. J. Pharmacol. Exp. Ther. 2007, 321, 892–901. [Google Scholar] [CrossRef]
- Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci. 2012, 90, 463–468. [Google Scholar] [CrossRef]
- Ren, M.; Leng, Y.; Jeong, M.; Leeds, P.R.; Chuang, D. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: Potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 2004, 89, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Langley, B.; Brochier, C.; Rivieccio, M.A. Targeting Histone Deacetylases as a Multifaceted Approach to Treat the Diverse Outcomes of Stroke. Stroke 2009, 40, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Majdzadeh, N.; Wang, L.; Morrison, B.E.; Bassel-Duby, R.; Olson, E.N.; D’Mello, S.R. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev. Neurobiol. 2008, 68, 1076–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.Y.; Wang, Z.J.; Sun, D.M.; Wang, Y.; Xu, P.; Wu, W.-J.; Liu, X.H.; Zhu, Y.-Z. Novel Therapeutic Effects of Leonurine on Ischemic Stroke: New Mechanisms of BBB Integrity. Oxid. Med. Cell. Longev. 2017, 2017, 7150376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Zhuang, S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin. Sci. 2019, 133, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Patnala, R.; Arumugam, T.V.; Gupta, N.; Dheen, S.T. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke. Mol. Neurobiol. 2017, 54, 6391–6411. [Google Scholar] [CrossRef]
- Lin, T.-N.; Kao, M.-H. Histone deacetylases in stroke. Chin. J. Physiol. 2019, 62, 95–107. [Google Scholar] [CrossRef]
- Mattick, J.S.; Makunin, I.V. Non-coding RNA. Hum. Mol. Genet. 2006, 15 (Suppl. S1), R17–R29. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska, A.; Braniewska, A.; Kozar-Kamińska, K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017, 26, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sun, Y.; Cai, R.; Wang, G.; Shu, X.; Pang, W. Long noncoding RNA: Multiple players in gene expression. BMB Rep. 2018, 51, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Maass, P.G.; Luft, F.C.; Bähring, S. Long non-coding RNA in health and disease. J. Mol. Med. 2014, 92, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rink, C.; Khanna, S. MicroRNA in ischemic stroke etiology and pathology. Physiol. Genom. 2011, 43, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.-W.; Wang, Y.-L.; Lin, J.-X.; Li, N.; Zhao, X.-Q.; Liu, G.-F.; Liu, L.-P.; Jiao, Y.; Gu, W.-K.; Wang, D.Z.; et al. Circulating MicroRNAs as Potential Risk Biomarkers for Hematoma Enlargement after Intracerebral Hemorrhage. CNS Neurosci. Ther. 2012, 18, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Momeni, F.; Saadatpour, L.; Sahebkar, A.; Goodarzi, M.; Masoudifar, A.; Kouhpayeh, S.; Salehi, H.; Mirzaei, H.R.; Jaafari, M.R. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J. Cell. Physiol. 2018, 233, 856–865. [Google Scholar] [CrossRef]
- Eyileten, C.; Wicik, Z.; De Rosa, S.; Mirowska-Guzel, D.; Soplinska, A.; Indolfi, C.; Jastrzebska-Kurkowska, I.; Czlonkowska, A.; Postula, M. MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke—A Comprehensive Review and Bioinformatic Analysis. Cells 2018, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Dharap, A.; Bowen, K.K.; Place, R.F.; Li, L.-C.; Vemuganti, R. Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome. J. Cereb. Blood Flow Metab. 2009, 29, 675–687. [Google Scholar] [CrossRef]
- Stanzione, R.; Bianchi, F.; Cotugno, M.; Marchitti, S.; Forte, M.; Busceti, C.; Ryskalin, L.; Fornai, F.; Volpe, M.; Rubattu, S. A Decrease of Brain MicroRNA-122 Level Is an Early Marker of Cerebrovascular Disease in the Stroke-Prone Spontaneously Hypertensive Rat. Oxidative Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rubattu, S.D.; Volpe, M.; Kreutz, R.; Ganten, U.; Ganten, D.; Lindpaintner, K. Chromosomal mapping of quantitative trait loci contributing to stroke in a rat model of complex human disease. Nat. Genet. 1996, 13, 429–434. [Google Scholar] [CrossRef]
- Rubattu, S.; Stanzione, R.; Bianchi, F.; Cotugno, M.; Forte, M.; Della Ragione, F.; Fioriniello, S.; D’Esposito, M.; Marchitti, S.; Madonna, M.; et al. Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat. Cell Death Dis. 2017, 8, e2891. [Google Scholar] [CrossRef]
- Chen, J.; Yang, T.; Yu, H.; Sun, K.; Shi, Y.; Song, W.; Bai, Y.; Wang, X.; Lou, K.; Song, Y.; et al. A functional variant in the 3′-UTR of angiopoietin-1 might reduce stroke risk by interfering with the binding efficiency of microRNA 211. Hum. Mol. Genet. 2010, 19, 2524–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papapetropoulos, A.; García-Cardeña, G.; Dengler, T.J.; Maisonpierre, P.C.; Yancopoulos, G.D.; Sessa, W.C. Direct actions of angiopoietin-1 on human endothelium: Evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab. Investig. 1999, 79, 213–223. [Google Scholar] [PubMed]
- Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis. Cell 1996, 87, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yuan, H.; Denton, K.; Li, X.-J.; McCullough, L.; Li, J. Calcium/calmodulin-dependent protein kinase kinase beta is neuroprotective in stroke in aged mice. Eur. J. Neurosci. 2016, 44, 2139–2146. [Google Scholar] [CrossRef]
- Stanzione, R.; Sciarretta, S.; Marchitti, S.; Bianchi, F.; Castro, S.D.; Scarpino, S.; Cotugno, M.; Frati, G.; Volpe, M.; Rubattu, S. C2238/alphaANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro. Cell Death Dis. 2015, 6, e2033. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.S.; Armugam, A.; Sepramaniam, S.; Lim, K.Y.; Setyowati, K.D.; Wang, C.W.; Jeyaseelan, K. Expression Profile of MicroRNAs in Young Stroke Patients. PLoS ONE 2009, 4, e7689. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.; Trotta, M.C.; Ciarambino, T.; D’Amico, M.; Galdiero, M.; Schettini, F.; Paternosto, D.; Salzillo, M.; Alfano, R.; Andreone, V.; et al. Circulating MiRNA-195-5p and -451a in Diabetic Patients with Transient and Acute Ischemic Stroke in the Emergency Department. Int. J. Mol. Sci. 2020, 21, 7615. [Google Scholar] [CrossRef]
- Giordano, M.; Ciarambino, T.; D’Amico, M.; Trotta, M.C.; Di Sette, A.M.; Marfella, R.; Malatino, L.; Paolisso, G.; Adinolfi, L.E. Circulating MiRNA-195-5p and -451a in Transient and Acute Ischemic Stroke Patients in an Emergency Department. J. Clin. Med. 2019, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Bao, M.H.; Szeto, V.; Yang, B.B.; Zhu, S.Z.; Sun, H.S.; Feng, Z.P. Long non-coding RNAs in ischemic stroke. Cell Death Dis. 2018, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Xu, X.; Huang, L.; Zhong, W.; Cui, L. The Regulatory Role of Long Noncoding RNAs in Different Brain Cell Types Involved in Ischemic Stroke. Front. Mol. Neurosci. 2019, 12, 61. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D.; Ji, T.F.; Shi, L.; Yu, J.L. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-kappaB signaling pathway in a rat model. Oncotarget 2017, 8, 17347–17359. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tang, X.; Liu, K.; Hamblin, M.H.; Yin, K.J. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J. Neurosci. 2017, 37, 1797–1806. [Google Scholar] [CrossRef]
- Yan, H.; Yuan, J.; Gao, L.; Rao, J.; Hu, J. Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 2016, 337, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.E.; Karatas, H.; Liu, Y.; Yalcin, A.; Montaner, J.; Lo, E.H.; Van Leyen, K. STAT-dependent upregulation of 12/15-lipoxygenase contributes to neuronal injury after stroke. J. Cereb. Blood Flow Metab. 2015, 35, 2043–2051. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hou, L.; Huang, W.; Gao, Y.; Lv, X.; Tang, J.Y. The Mechanism of Long Non-coding RNA MEG3 for Neurons Apoptosis Caused by Hypoxia: Mediated by miR-181b-12/15-LOX Signaling Pathway. Front. Cell. Neurosci. 2016, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Cheng, G.; Yang, X.; Li, C.; Shi, R.; Zhao, N. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am. J. Transl. Res. 2016, 8, 2981–2991. [Google Scholar] [PubMed]
- Li, J.; Zhang, M.; An, G.; Ma, Q. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp. Biol. Med. 2016, 241, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Tian, L.; Yue, X.; Liu, J.; Fu, Y.; Yan, Y. LncRNA Expression Profiling of Ischemic Stroke During the Transition from the Acute to Subacute Stage. Front. Neurol. 2019, 10, 36. [Google Scholar] [CrossRef]
- Igo, R.P.; Kinzy, T.G.; Bailey, J.N.C. Genetic Risk Scores. Curr. Protoc. Hum. Genet. 2019, 104, e95. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Bevan, S.; Nalls, M.A.; Holliday, E.G.; Devan, W.J.; Cheng, Y.-C.; Ibrahim-Verbaas, C.A.; Verhaaren, B.F.; Bis, J.C.; Joon, A.Y.; et al. Multilocus Genetic Risk Score Associates with Ischemic Stroke in Case–Control and Prospective Cohort Studies. Stroke 2014, 45, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fava, C.; Sjögren, M.; Olsson, S.; Lövkvist, H.; Jood, K.; Engström, G.; Hedblad, B.; Norrving, B.; Jern, C.; Lindgren, A.; et al. A genetic risk score for hypertension associates with the risk of ischemic stroke in a Swedish case–control study. Eur. J. Hum. Genet. 2014, 23, 969–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachiya, T.; Hata, J.; Hirakawa, Y.; Yoshida, D.; Furuta, Y.; Kitazono, T.; Shimizu, A.; Ninomiya, T. Genome-Wide Polygenic Score and the Risk of Ischemic Stroke in a Prospective Cohort. Stroke 2020, 51, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Marston, N.A.; Patel, P.N.; Kamanu, F.K.; Nordio, F.; Melloni, G.M.; Roselli, C.; Gurmu, Y.; Weng, L.-C.; Bonaca, M.P.; Giugliano, R.P.; et al. Clinical Application of a Novel Genetic Risk Score for Ischemic Stroke in Patients with Cardiometabolic Disease. Circulation 2021, 143, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Demyanenko, S.V.; Nikul, V.V.; Uzdensky, A.B. The Neuroprotective Effect of the HDAC2/3 Inhibitor MI192 on the Penumbra after Photothrombotic Stroke in the Mouse Brain. Mol. Neurobiol. 2019, 57, 239–248. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.-F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; et al. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem. 2019, 294, 19565–19576. [Google Scholar] [CrossRef]
- Kassis, H.; Shehadah, A.; Li, C.; Zhang, Y.; Cui, Y.; Roberts, C.; Sadry, N.; Liu, X.; Chopp, M.; Zhang, Z.G. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem. Int. 2016, 96, 24–31. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarambino, T.; Crispino, P.; Mastrolorenzo, E.; Viceconti, A.; Giordano, M. Stroke and Etiopathogenesis: What Is Known? Genes 2022, 13, 978. https://doi.org/10.3390/genes13060978
Ciarambino T, Crispino P, Mastrolorenzo E, Viceconti A, Giordano M. Stroke and Etiopathogenesis: What Is Known? Genes. 2022; 13(6):978. https://doi.org/10.3390/genes13060978
Chicago/Turabian StyleCiarambino, Tiziana, Pietro Crispino, Erika Mastrolorenzo, Antonello Viceconti, and Mauro Giordano. 2022. "Stroke and Etiopathogenesis: What Is Known?" Genes 13, no. 6: 978. https://doi.org/10.3390/genes13060978
APA StyleCiarambino, T., Crispino, P., Mastrolorenzo, E., Viceconti, A., & Giordano, M. (2022). Stroke and Etiopathogenesis: What Is Known? Genes, 13(6), 978. https://doi.org/10.3390/genes13060978