Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Breeding Experiments or Breeding for Sample Size
2.3. Meat Quality Trait Detection and Correlation Analysis
2.4. Variant Calling and Genotyping
2.5. CNV Calling
2.6. Population Structure and SNP and CNV Distribution
2.7. Genome-Wide Association Analysis
3. Results
3.1. Meat Quality Trait Correlation Analysis
3.2. SNP Disequilibrium and Population Structure
3.3. GWAS for Four Meat Quality Traits Based on SNPs
3.4. GWAS for Four Meat Quality Traits Based on CNVs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SNP | Single nucleotide polymorphisms |
CNV | Copy Number Variation |
GWAS | Genome-Wide Association Studies |
PCA | Principal component analysis |
MAF | Minor allele frequency |
References
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15 (Suppl. S1), 100287. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Bryant, C.; Szejda, K.; Parekh, N.; Deshpande, V.; Tse, B. A Survey of Consumer Perceptions of Plant-Based and Clean Meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3, 11. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). Appl. Sci. 2020, 10, 5201. [Google Scholar] [CrossRef]
- Leal-Gutierrez, J.D.; Elzo, M.A.; Johnson, D.D.; Hamblen, H.; Mateescu, R.G. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genom. 2019, 20, 151. [Google Scholar] [CrossRef]
- Leal-Gutiérrez, J.D.; Rezende, F.M.; Reecy, J.M.; Kramer, L.M.; Peñagaricano, F.; Mateescu, R.G. Whole Genome Sequence Data Provides Novel Insights Into the Genetic Architecture of Meat Quality Traits in Beef. Front. Genet. 2020, 11, 1046. [Google Scholar] [CrossRef]
- Picard, B.; Lefèvre, F.; Lebret, B. Meat and fish flesh quality improvement with proteomic applications. Anim. Front. 2012, 2, 18–25. [Google Scholar] [CrossRef]
- Starcevic, M.; Mahmutovic, H.; Glamoclija, N.; Basic, M.; Andjelkovic, R.; Mitrovic, R.; Markovic, R.; Janjic, J.; Boskovic, M.; Baltic, M.Z. Growth performance, carcass characteristics, and selected meat quality traits of two strains of Pekin duck reared in intensive vs semi-intensive housing systems. Animal 2021, 15, 100087. [Google Scholar] [CrossRef]
- Kokoszyński, D.; Wilkanowska, A.; Arpášová, H.; Hrnčár, C. Comparison of some meat quality and liver characteristics in Muscovy and mule ducks. Arch. Anim. Breed. 2020, 63, 137–144. [Google Scholar] [CrossRef]
- Biesek, J.; Banaszak, M.; Adamski, M. Ducks’ Growth, Meat Quality, Bone Strength, and Jejunum Strength Depend on Zeolite in Feed and Long-Term Factors. Animals 2021, 11, 1015. [Google Scholar] [CrossRef]
- Gao, G.; Gao, N.; Li, S.; Kuang, W.; Zhu, L.; Jiang, W.; Yu, W.; Guo, J.; Li, Z.; Yang, C.; et al. Genome-Wide Association Study of Meat Quality Traits in a Three-Way Crossbred Commercial Pig Population. Front. Genet. 2021, 12, 614087. [Google Scholar] [CrossRef]
- Zalewska, M.; Puppel, K.; Sakowski, T. Associations between gene polymorphisms and selected meat traits in cattle—A review. Anim. Biosci. 2021, 34, 1425–1438. [Google Scholar] [CrossRef]
- Bedhane, M.; van der Werf, J.; Gondro, C.; Duijvesteijn, N.; Lim, D.; Park, B.; Park, M.N. Genome-Wide Association Study of Meat Quality Traits in Hanwoo Beef Cattle Using Imputed Whole-Genome Sequence Data. Front. Genet. 2019, 10, 1235. [Google Scholar] [CrossRef]
- Mortimer, S.I.; van der Werf, J.H.; Jacob, R.H.; Hopkins, D.L.; Pannier, L.; Pearce, K.L.; Gardner, G.E.; Warner, R.D.; Geesink, G.H.; Edwards, J.E.; et al. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 2013, 96, 1016–1024. [Google Scholar] [CrossRef]
- Sanchez, M.P.; Tribout, T.; Iannuccelli, N.; Bouffaud, M.; Servin, B.; Tenghe, A.; Dehais, P.; Muller, N.; del Schneider, M.P.; Mercat, M.J.; et al. A genome-wide association study of production traits in a commercial population of Large White pigs: Evidence of haplotypes affecting meat quality. Genet. Sel. Evol. 2014, 46, 12. [Google Scholar] [CrossRef] [Green Version]
- Stafuzza, N.B.; Silva, R.M.O.; Fragomeni, B.O.; Masuda, Y.; Huang, Y.; Gray, K.; Lourenco, D.A.L. A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive. BMC Genom. 2019, 20, 321. [Google Scholar] [CrossRef]
- Liu, G.E.; Hou, Y.; Zhu, B.; Cardone, M.F.; Jiang, L.; Cellamare, A.; Mitra, A.; Alexander, L.J.; Coutinho, L.L.; Dell’Aquila, M.E.; et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010, 20, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.K.; Li, M.; Cheng, H.; Fan, W.L.; Yuan, Z.R.; Gao, Q.; Xu, Y.X.; Guo, Z.B.; Zhang, Y.S.; Hu, J.; et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat. Commun. 2018, 9, 2648. [Google Scholar] [CrossRef] [Green Version]
- Simcoe, M.; Valdes, A.; Liu, F.; Furlotte, N.A.; Evans, D.M.; Hemani, G.; Ring, S.M.; Smith, G.D.; Duffy, D.L.; Zhu, G.; et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 2021, 7, eabd1239. [Google Scholar] [CrossRef]
- Garcia-Fernandez, C.; Campa, A.; Garzon, A.S.; Miklas, P.; Ferreira, J.J. GWAS of pod morphological and color characters in common bean. BMC Plant. Biol. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Seo, J.Y.; You, S.W.; Shin, J.G.; Kim, Y.; Park, S.G.; Won, H.H.; Kang, N.G. GWAS Identifies Multiple Genetic Loci for Skin Color in Korean Women. J. Investig. Dermatol. 2021, 142, 1077–1084. [Google Scholar] [CrossRef]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Borte, S.; Winsvold, B.S.; Drange, O.K.; et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hagg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Bertram, L.; Tanzi, R.E. Genome-wide association studies in Alzheimer’s disease. Hum. Mol. Genet. 2009, 18, R137–R145. [Google Scholar] [CrossRef]
- Cao, Y.; Song, X.; Shan, H.; Jiang, J.; Xiong, P.; Wu, J.; Shi, F.; Jiang, Y. Genome-Wide Association Study of Body Weights in Hu Sheep and Population Verification of Related Sin-gle-Nucleotide Polymorphisms. Front. Genet. 2020, 11, 588. [Google Scholar] [CrossRef]
- Cha, J.; Choo, H.; Srikanth, K.; Lee, S.H.; Son, J.W.; Park, M.R.; Kim, N.; Jang, G.W.; Park, J.E. Genome-Wide Association Study Identifies 12 Loci Associated with Body Weight at Age 8 Weeks in Korean Native Chickens. Genes 2021, 12, 1170. [Google Scholar] [CrossRef]
- Tizioto, P.C.; Decker, J.E.; Taylor, J.F.; Schnabel, R.D.; Mudadu, M.A.; Silva, F.L.; Mourão, G.B.; Coutinho, L.L.; Tholon, P.; Sonstegard, T.S.; et al. Genome scan for meat quality traits in Nelore beef cattle. Physiol. Genom. 2013, 45, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Milan, D.; Jeon, J.T.; Looft, C.; Amarger, V.; Robic, A.; Thelander, M.; Rogel-Gaillard, C.; Paul, S.; Iannuccelli, N.; Rask, L.; et al. A Mutation in PRKAG3 Associated with Excess Glycogen Content in Pig Skeletal Muscle. Science 2000, 288, 1248–1251. [Google Scholar] [CrossRef]
- Stinckens, A.; Mathur, P.; Janssens, S.; Bruggeman, V.; Onagbesan, O.M.; Schroyen, M.; Spincemaille, G.; Decuypere, E.; Georges, M.; Buys, N. Indirect effect of IGF2 intron3 g.3072G>A mutation on prolificacy in sows. Anim. Genet. 2010, 41, 493–498. [Google Scholar] [CrossRef]
- Oczkowicz, M.; Mucha, A.; Tyra, M.; Ropka-Molik, K.; Piórkowska, K. Lack of the associations of the polymorphisms in IGF2, MC4R and GNAS genes with reproduction traits in pigs and imprinting analysis of IGF2 gene in ovary and cornus uteri. Reprod. Domest. Anim. 2013, 48, 562–568. [Google Scholar] [CrossRef]
- Lu, H.; Yan, H.; Ward, M.G.; Stewart, T.; Adeola, O.; Ajuwon, K.M. Effect on Rendement Napole genotype on metabolic markers in Ossabaw pigs fed different levels of fat. J. Anim. Physiol. Anim. Nutr. 2018, 102, e132–e138. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Usman, T.; Wang, Y.; Wang, Z.; Xu, X.; Wu, M.; Zhang, Y.; Zhang, X.; Li, Q.; Liu, L.; et al. Polymorphisms in Epigenetic and Meat Quality Related Genes in Fourteen Cattle Breeds and Association with Beef Quality and Carcass Traits. Asian-Australasian J. Anim. Sci. 2015, 28, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, G.; Liu, R.; Zheng, M.; Hu, Y.; Wu, D.; Zhang, L.; Li, P.; Wen, J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genom. 2013, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sainz-De-Abajo, B.; García-Alonso, J.M.; Berrocal-Olmeda, J.J.; Laso-Mangas, S.; Torre-Díez, I.D.L. FoodScan: Food Monitoring App by Scanning the Groceries Receipts. IEEE Access 2020, 8, 227915–227924. [Google Scholar] [CrossRef]
- Friendly, M. Corrgrams. Am. Stat. 2002, 56, 316–324. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv. 2018, 005165. [Google Scholar] [CrossRef] [Green Version]
- Hafez, H.M.; Attia, Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future after the COVID-19 Outbreak. Front. Vet. Sci. 2020, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Joo, S.-T. Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 873–883. [Google Scholar] [CrossRef]
- Liu, R.; Sun, Y.; Zhao, G.; Wang, F.; Wu, D.; Zheng, M.; Chen, J.; Zhang, L.; Hu, Y.; Wen, J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS ONE 2013, 8, e61172. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, Q.C.; Wang, J.Y.; Zhang, G.X.; Gu, Y.P.; Tang, Y. Genome-wide association study of meat quality traits in chicken. Genet. Mol. Res. 2015, 14, 10452–10460. [Google Scholar] [CrossRef]
- San, J.; Du, Y.; Wu, G.; Xu, R.; Yang, J.; Hu, J. Transcriptome analysis identifies signaling pathways related to meat quality in broiler chickens—The extracellular matrix (ECM) receptor interaction signaling pathway. Poult. Sci. 2021, 100, 101135. [Google Scholar] [CrossRef]
- Miller, M.F.; Cross, H.R.; Lunt, D.K.; Smith, B.S. Lipogenesis in acute and 48-h cultures of bovine intramuscular and subcutaneous adipose tissue explants. J. Anim. Sci. 1991, 69, 162–170. [Google Scholar] [CrossRef]
- Gardan, D.; Gondret, F.; Louveau, I. Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E372–E380. [Google Scholar] [CrossRef]
- He, H.; Sun, D.; Zeng, Y.; Wang, R.; Zhu, W.; Cao, S.; Bray, G.A.; Chen, W.; Shen, H.; Sacks, F.M. A Systems Genetics Approach Identified GPD1L and its Molecular Mechanism for Obesity in Human Adipose Tissue. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Weston, A.R.; Rogers, R.W.; Althen, T.G. Review: The Role of Collagen in Meat Tenderness. Prof. Anim. Sci. 2002, 18, 107–111. [Google Scholar] [CrossRef]
- Lepetit, J. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci. 2007, 76, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Rogov, I.A.; Tokaev, E.S.; Kovalev, Y.I.; Tolstoguzov, V.B. Collagen and its rational content in meat products: Part 1. Analytical studies. Meat Sci. 1992, 31, 35–42. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Z.; Liu, F.; Bai, Y.; Wu, F. FGD5-AS1 Inhibits Osteoarthritis Development by Modulating miR-302d-3p/TGFBR2 Axis. Cartilage 2021, 13, 1412–1420. [Google Scholar] [CrossRef]
- Gillespie, S. Food Security, Nutrition and Health. Epidemiology 2009, 20, S235. [Google Scholar] [CrossRef]
Trait | Mean (g) | SD (g) | CV | Min (g) | Max (g) |
---|---|---|---|---|---|
Water | 76.83 | 0.76 | 0.01 | 74.98 | 80.12 |
Fat | 22.47 | 0.9 | 0.04 | 20.52 | 26.42 |
Protein | 1.39 | 0.29 | 0.21 | 0.58 | 2.07 |
Collagen | 1.65 | 0.27 | 0.16 | 0.73 | 2.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Huang, L.; Bai, H.; Wang, Z.; Bi, Y.; Chen, G.; Jiang, Y.; Chang, G. Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks. Genes 2022, 13, 986. https://doi.org/10.3390/genes13060986
Guo Q, Huang L, Bai H, Wang Z, Bi Y, Chen G, Jiang Y, Chang G. Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks. Genes. 2022; 13(6):986. https://doi.org/10.3390/genes13060986
Chicago/Turabian StyleGuo, Qixin, Lan Huang, Hao Bai, Zhixiu Wang, Yulin Bi, Guohong Chen, Yong Jiang, and Guobin Chang. 2022. "Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks" Genes 13, no. 6: 986. https://doi.org/10.3390/genes13060986
APA StyleGuo, Q., Huang, L., Bai, H., Wang, Z., Bi, Y., Chen, G., Jiang, Y., & Chang, G. (2022). Genome-Wide Association Study of Potential Meat Quality Trait Loci in Ducks. Genes, 13(6), 986. https://doi.org/10.3390/genes13060986