Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies—Data from a Romanian Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- (1)
- Onset of febrile or afebrile focal (usually hemiclonic), generalized tonic-clonic, myoclonic, or atypical/typical absence seizures before 36 months of age;
- (2)
- Normal development before the onset of seizures;
- (3)
- Intractable seizures requiring treatment with more than 2 antiepileptic drugs (AEDs);
- (4)
- Exclusion of other epilepsy syndromes.
2.2. Genetic Testing
2.3. Variant Interpretation
3. Results
3.1. Phenotypic Description
3.2. Genetic Findings
4. Discussion
4.1. Phenotype in DEEs
4.2. Genetic Findings in Our Study and Their Clinical Correlates
4.3. SCN1A Cases
4.4. Other Cases
4.5. Diagnosis Rate and Choice of a Genetic Test in Early-Onset Epilepsy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Symonds, J.D.; Elliott, K.S.; Shetty, J.; Armstrong, M.; Brunklaus, A.; Cutcutache, I.; A Diver, L.; Dorris, L.; Gardiner, S.; Jollands, A.; et al. Early childhood epilepsies: Epidemiology, classification, aetiology, and socio-economic determinants. Brain 2021, 144, 2879–2891. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Trevick, S. The Epidemiology of Global Epilepsy. Neurol. Clin. 2016, 34, 837–847. [Google Scholar] [CrossRef]
- Newton, C.R.; Garcia, H.H. Epilepsy in poor regions of the world. Lancet 2012, 380, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.T.; Langfitt, J.T.; Testa, F.M.; Levy, S.R.; DiMario, F.; Westerveld, M.; Kulas, J. Global cognitive function in children with epilepsy: A community-based study. Epilepsia 2008, 49, 608–614. [Google Scholar] [CrossRef]
- Wirrell, E.; Wong-Kisiel, L.; Mandrekar, J.; Nickels, K. Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: A retrospective, population-based study. Epilepsia 2012, 53, 1563–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseley, B.D.; Wirrell, E.C.; Wong-Kisiel, L.C.; Nickels, K. Early onset epilepsy is associated with increased mortality: A population-based study. Epilepsy Res. 2013, 105, 410–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, A.T.; Zelko, F.A.; Levy, S.R.; Testa, F.M. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: A prospective cohort study. Neurology 2012, 79, 1384–1391. [Google Scholar] [CrossRef]
- Wirrell, E.C.; Nabbout, R.; Scheffer, I.E.; Alsaadi, T.; Bogacz, A.; French, J.A.; Hirsch, E.; Jain, S.; Kaneko, S.; Riney, K.; et al. Methodology for Classification and Definition of Epilepsy Syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1333–1348. [Google Scholar] [CrossRef]
- Howell, K.B.; Freeman, J.L.; Mackay, M.T.; Fahey, M.C.; Archer, J.; Berkovic, S.F.; Chan, E.; Dabscheck, G.; Eggers, S.; Hayman, M.; et al. The severe epilepsy syndromes of infancy: A population-based study. Epilepsia 2021, 62, 358–370. [Google Scholar] [CrossRef]
- Eltze, C.M.; Chong, W.K.; Cox, T.; Whitney, A.; Cortina-Borja, M.; Chin, R.F.M.; Scott, R.C.; Cross, J.H. A population-based study of newly diagnosed epilepsy in infants. Epilepsia 2013, 54, 437–445. [Google Scholar] [CrossRef]
- Morrison-Levy, N.; Borlot, F.; Jain, P.; Whitney, R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr. Neurol. 2021, 116, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.; Youn, S.E.; Kim, S.H.; Lee, J.S.; Kim, S.; Choi, J.R.; Kim, H.D.; Lee, S.-T.; Kang, H.-C. Targeted gene panel and genotype-phenotype correlation in children with developmental and epileptic encephalopathy. Epilepsy Res. 2018, 141, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Carapancea, E.; Hospital, B.V.G.C.; Roza, E.; Nedelea, F.M.; Puiu, M.; Teleanu, R.I. An Atypical Case of Cluster Convulsions with Gastroenteritis in a child harboring a likely benign heterozygous variant of the NTRK2 gene. Rom. Biotechnol. Lett. 2020, 25, 2127–2131. [Google Scholar] [CrossRef]
- Roza, E.; Streață, I.; Șoșoi, S.; Burada, F.; Puiu, M.; Ioana, M.; Teleanu, R.I. A 14q31.1–q32.11 deletion case: Genotype—neurological phenotype correlations in 14q interstitial deletion syndrome. Rom. Biotechnol. Lett. 2020, 25, 1677–1682. [Google Scholar] [CrossRef]
- Wirrell, E.C.; Grossardt, B.; Wong-Kisiel, L.C.; Nickels, K.C. Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in Olmsted County, Minnesota from 1980 to 2004: A population-based study. Epilepsy Res. 2011, 95, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Liao, J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur. J. Paediatr. Neurol. 2020, 24, 11–14. [Google Scholar] [CrossRef]
- Kalser, J.; Cross, J.H. The epileptic encephalopathy jungle–from Dr West to the concepts of aetiology-related and developmental encephalopathies. Curr. Opin. Neurol. 2018, 31, 216–222. [Google Scholar] [CrossRef]
- Lagae, L. Dravet syndrome. Curr. Opin. Neurol. 2021, 34, 213–218. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, C.; Mou, C.; Dong, Y.; Tu, Y. dbNSFP v4: A comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020, 12, 103. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2018, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; Kaur, K.; Liu, C.; et al. ClinVar: Improvements to accessing data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) World Wide Web URL. Available online: https://omim.org/ (accessed on 1 May 2022).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.-W.; Yu, M.-J.; Long, Y.-S.; Qin, B.; He, N.; Meng, H.; Liu, X.-R.; Deng, W.-Y.; Gao, M.-M.; Yi, Y.-H.; et al. Mosaic SCN1A mutations in familial partial epilepsy with antecedent febrile seizures. Genes Brain Behav. 2012, 11, 170–176. [Google Scholar] [CrossRef]
- Depienne, C.; Trouillard, O.; Gourfinkel-An, I.; Saint-Martin, C.; Bouteiller, D.; Graber, D.; Barthez-Carpentier, M.-A.; Gautier, A.; Villeneuve, N.; Dravet, C.; et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J. Med Genet. 2010, 47, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yang, X.; Wu, Q.; Liu, A.; Yang, X.; Ye, A.Y.; Huang, A.Y.; Li, J.; Wang, M.; Yu, Z.; et al. Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “de novo” SCN1A Mutations in Children with Dravet Syndrome. Hum. Mutat. 2015, 36, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Catarino, C.B.; Liu, J.Y.; Liagkouras, I.; Gibbons, V.S.; Labrum, R.W.; Ellis, R.; Woodward, C.; Davis, M.B.; Smith, S.J.; Cross, J.H.; et al. Dravet syndrome as epileptic encephalopathy: Evidence from long-term course and neuropathology. Brain 2011, 134, 2982–3010. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.H.; Hodgson, B.L.; Grinton, B.E.; Gardiner, R.M.; Robinson, R.; Rodriguez-Casero, V.; Sadleir, L.; Morgan, J.; Harkin, L.A.; Dibbens, L.M.; et al. Sodium channel 1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003, 61, 765–769. [Google Scholar] [CrossRef]
- Claes, L.; Del-Favero, J.; Ceulemans, B.; Lagae, L.; Van Broeckhoven, C.; De Jonghe, P. De Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of Infancy. Am. J. Hum. Genet. 2001, 68, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Mulley, J.C.; Hodgson, B.; McMahon, J.M.; Iona, X.; Bellows, S.; A Mullen, S.; Farrell, K.; Mackay, M.; Sadleir, L.; Bleasel, A.; et al. Role of the sodium channelSCN9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia 2013, 54, e122–e126. [Google Scholar] [CrossRef]
- Arsov, T.; Mullen, S.A.; Rogers, S.; Phillips, A.M.; Lawrence, K.M.; Damiano, J.A.; Goldberg-Stern, H.; Afawi, Z.; Kivity, S.; Trager, C.; et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann. Neurol. 2012, 72, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Fountain-Capal, J.K.; Holland, K.D.; Gilbert, D.L.; Hallinan, B.E. When should clinicians order genetic testing for Dravet syndrome? Pediatric Neurol. 2011, 45, 319–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, P.; Perucca, E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res. 2019, 152, 18–30. [Google Scholar] [CrossRef]
- Parrini, E.; Marini, C.; Mei, D.; Galuppi, A.; Cellini, E.; Pucatti, D.; Chiti, L.; Rutigliano, D.; Bianchini, C.; Virdò, S.; et al. Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum. Mutat. 2016, 38, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Tong, L.; Song, S.; Niu, Y.; Li, J.; Wu, X.; Zhang, J.; Zai, C.C.; Luo, F.; Wu, J.; et al. Novel and de novo mutations in pediatric refractory epilepsy. Mol. Brain 2018, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Shen, Y.; Chen, H.; Yuan, Z.; Mao, S.; Gao, F. Clinical and molecular analysis of epilepsy-related genes in patients with Dravet syndrome. Medicine 2018, 97, e13565. [Google Scholar] [CrossRef]
- Bender, A.C.; Morse, R.P.; Scott, R.C.; Holmes, G.L.; Lenck-Santini, P.-P. SCN1A mutations in Dravet syndrome: Impact of interneuron dysfunction on neural networks and cognitive outcome. Epilepsy Behav. 2012, 23, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Parihar, R.; Ganesh, S. The SCN1A gene variants and epileptic encephalopathies. J. Hum. Genet. 2013, 58, 573–580. [Google Scholar] [CrossRef]
- Marini, C.; Scheffer, I.E.; Nabbout, R.; Suls, A.; De Jonghe, P.; Zara, F.; Guerrini, R. The genetics of Dravet syndrome. Epilepsia 2011, 52, 24–29. [Google Scholar] [CrossRef]
- de Lange, I.M.; Weuring, W.; van ‘t Slot, R.; Gunning, B.; Sonsma, A.C.M.; McCormack, M.; de Kovel, C.; van Gemert, L.J.J.M.; Mulder, F.; van Kempen, M.J.A.; et al. Influence of common SCN1A promoter variants on the severity of SCN1A-related phenotypes. Mol. Genet. Genom. Med. 2019, 7, e00727. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, R.; Cellini, E.; Mei, D.; Metitieri, T.; Petrelli, C.; Pucatti, D.; Marini, C.; Zamponi, N. Variable epilepsy phenotypes associated with a familial intragenic deletion of the SCN1A gene. Epilepsia 2010, 51, 2474–2477. [Google Scholar] [CrossRef] [PubMed]
- Suls, A.; Velizarova, R.; Yordanova, I.; Deprez, L.; Van Dyck, T.; Wauters, J.; Guergueltcheva, V.; Claes, L.R.F.; Kremensky, I.; Jordanova, A.; et al. Four generations of epilepsy caused by an inherited microdeletion of the SCN1A gene. Neurology 2010, 75, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Kanai, K.; Hirose, S.; Oguni, H.; Fukuma, G.; Shirasaka, Y.; Miyajima, T.; Wada, K.; Iwasa, H.; Yasumoto, S.; Matsuo, M.; et al. Effect of localization of missense mutations in SCN1A on epilepsy phenotype severity. Neurology 2004, 63, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Stosser, M.B.; Lindy, A.S.; Butler, E.; Retterer, K.; Piccirillo-Stosser, C.M.; Richard, G.; McKnight, D.A. High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders. Genet. Med. 2018, 20, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Ishii, A.; Yoshida, T.; Nasu, H.; Shimojima, K.; Yamamoto, T.; Kure, S.; Hirose, S. Somatic mosaic deletions involving SCN1A cause Dravet syndrome. Am. J. Med Genet. Part A 2018, 176, 657–662. [Google Scholar] [CrossRef]
- Kwong, A.K.-Y.; Fung, C.-W.; Chan, S.-Y.; Wong, V.C.-N. Identification of SCN1A and PCDH19 Mutations in Chinese Children with Dravet Syndrome. PLoS ONE 2012, 7, e41802. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.Q.; Macdonald, R.L. Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol. 2016, 73, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Gontika, M.P.; Konialis, C.; Pangalos, C.; Papavasiliou, A. Novel SCN1A and GABRA1 Gene Mutations with Diverse Phenotypic Features and the Question on the Existence of a Broader Spectrum of Dravet Syndrome. Child Neurol. Open 2017, 4, 2329048x17706794. [Google Scholar] [CrossRef] [Green Version]
- Depienne, C.; Bouteiller, D.; Keren, B.; Cheuret, E.; Poirier, K.; Trouillard, O.; Benyahia, B.; Quelin, C.; Carpentier, W.; Julia, S.; et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009, 5, e1000381. [Google Scholar] [CrossRef]
- Steel, D.; Symonds, J.D.; Zuberi, S.M.; Brunklaus, A. Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia 2017, 58, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Wolff, M.; Johannesen, K.M.; Hedrich, U.; Masnada, S.; Rubboli, G.; Gardella, E.; Lesca, G.; Ville, D.; Milh, M.; Villard, L.; et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017, 140, 1316–1336. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.; Brunklaus, A.; Zuberi, S.M. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia 2019, 60, S59–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, K.B.; McMahon, J.M.; Carvill, G.L.; Tambunan, D.; Mackay, M.T.; Rodriguez-Casero, V.; Webster, R.; Clark, D.; Freeman, J.L.; Calvert, S.; et al. SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015, 85, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.A.; Pappas, C.; Dahle, E.J.; Claes, L.R.F.; Pruess, T.H.; De Jonghe, P.; Thompson, J.; Dixon, M.; Gurnett, C.A.; Peiffer, A.; et al. A Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome. PLoS Genet. 2009, 5, e1000649. [Google Scholar] [CrossRef]
- Musumeci, O.; Ferlazzo, E.; Rodolico, C.; Gambardella, A.; Gagliardi, M.; Aguglia, U.; Toscano, A. A Family with a Complex Phenotype Caused by Two Different Rare Metabolic Disorders: GLUT1 and Very-Long-Chain Fatty Acid Dehydrogenase (VLCAD) Deficiencies. Front. Neurol. 2020, 11, 514. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.S.; Lee, Y.; Kim, S.Y.; Lim, B.C.; Kim, K.J.; Choi, M.; Chae, J.-H. Diagnostic Challenges Associated with GLUT1 Deficiency: Phenotypic Variabilities and Evolving Clinical Features. Yonsei Med. J. 2019, 60, 1209–1215. [Google Scholar] [CrossRef]
- Leen, W.G.; Klepper, J.; Verbeek, M.M.; Leferink, M.; Hofste, T.; Van Engelen, B.G.; Wevers, R.A.; Arthur, T.; Bahi-Buisson, N.; Ballhausen, D.; et al. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder. Brain 2010, 133, 655–670. [Google Scholar] [CrossRef]
- Ritter, D.M.; Holland, K. (Eds.) Genetic Testing in Epilepsy. In Seminars in Neurology; Thieme Medical Publishers, Inc.: New York, NY, USA, 2020. [Google Scholar]
- Balciuniene, J.; DeChene, E.T.; Akgumus, G.; Romasko, E.J.; Cao, K.; Dubbs, H.A.; Mulchandani, S.; Spinner, N.B.; Conlin, L.K.; Marsh, E.D.; et al. Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw. Open 2019, 2, e192129. [Google Scholar] [CrossRef]
- Lal, D.; Reinthaler, E.M.; Dejanovic, B.; May, P.; Thiele, H.; Lehesjoki, A.-E.; Schwarz, G.; Riesch, E.; Ikram, M.A.; Van Duijn, C.M.; et al. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes. PLoS ONE 2016, 11, e0150426. [Google Scholar] [CrossRef]
- Djémié, T.; Weckhuysen, S.; von Spiczak, S.; Carvill, G.L.; Jaehn, J.; Anttonen, A.-K.; Brilstra, E.; Caglayan, H.S.; de Kovel, C.G.; Depienne, C.; et al. Pitfalls in genetic testing: The story of missed SCN1A mutations. Mol. Genet. Genom. Med. 2016, 4, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Sahli, M.; Zrhidri, A.; Elaloui, S.C.; Smaili, W.; Lyahyai, J.; Oudghiri, F.Z.; Sefiani, A. Clinical exome sequencing identifies two novel mutations of the SCN1A and SCN2A genes in Moroccan patients with epilepsy: A case series. J. Med Case Rep. 2019, 13, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemke, J.R.; Riesch, E.; Scheurenbrand, T.; Schubach, M.; Wilhelm, C.; Steiner, I.; Hansen, J.; Courage, C.; Gallati, S.; Bürki, S.; et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 2012, 53, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Carvill, G.L.; Weckhuysen, S.; McMahon, J.M.; Hartmann, C.; Møller, R.S.; Hjalgrim, H.; Cook, J.; Geraghty, E.; O’Roak, B.J.; Petrou, S.; et al. GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology 2014, 82, 1245–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suls, A.; Jaehn, J.A.; Kecskés, A.; Weber, Y.; Weckhuysen, S.; Craiu, D.C.; Siekierska, A.; Djémié, T.; Afrikanova, T.; Gormley, P.; et al. De Novo Loss-of-Function Mutations in CHD2 Cause a Fever-Sensitive Myoclonic Epileptic Encephalopathy Sharing Features with Dravet Syndrome. Am. J. Hum. Genet. 2013, 93, 967–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costain, G.; Cordeiro, D.; Matviychuk, D.; Mercimek-Andrews, S. Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy. Neuroscience 2019, 418, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kong, Y.; Dong, X.; Hu, L.; Lin, Y.; Chen, X.; Ni, Q.; Lu, Y.; Wu, B.; Wang, H.; et al. Clinical and genetic spectrum of a large cohort of children with epilepsy in China. Genet. Med. 2018, 21, 564–571. [Google Scholar] [CrossRef]
- Poduri, A. When should genetic testing be performed in epilepsy patients? Epilepsy Curr. 2017, 17, 16–22. [Google Scholar] [CrossRef]
- van de Warrenburg, B.P.; Schouten, M.I.; de Bot, S.T.; Vermeer, S.; Meijer, R.; Pennings, M.; Gilissen, C.; Willemsen, M.A.A.P.; Scheffer, H.; Kamsteeg, E.-J. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene–disease associations and unanticipated rare disorders. Eur. J. Hum. Genet. 2016, 24, 1460–1466. [Google Scholar] [CrossRef] [Green Version]
- Mercimek-Mahmutoglu, S.; Patel, J.; Cordeiro, D.; Hewson, S.; Callen, D.; Donner, E.J.; Hahn, C.; Kannu, P.; Kobayashi, J.; Minassian, B.A.; et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia 2015, 56, 707–716. [Google Scholar] [CrossRef]
- Zhou, P.; He, N.; Zhang, J.-W.; Lin, Z.-J.; Wang, J.; Yan, L.-M.; Meng, H.; Tang, B.; Li, B.-M.; Liu, X.-R.; et al. Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav. 2018, 17, e12456. [Google Scholar] [CrossRef]
- Takata, A.; Nakashima, M.; Saitsu, H.; Mizuguchi, T.; Mitsuhashi, S.; Takahashi, Y.; Okamoto, N.; Osaka, H.; Nakamura, K.; Tohyama, J.; et al. Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy. Nat. Commun. 2019, 10, 2506. [Google Scholar] [CrossRef] [PubMed]
- Mefford, H.C. Clinical Genetic Testing in Epilepsy:Clinical Genetic Testing in Epilepsy. Epilepsy Curr. 2015, 15, 197–201. [Google Scholar] [CrossRef] [PubMed]
Clinical Phenotype | Study Group n = 36 | Phenotype of Our Patients Diagnosed with Likely Pathogenic/Pathogenic Variants n = 9 | Phenotype of Our Patients Undiagnosed or Diagnosed with VUS Variants n = 27 |
---|---|---|---|
Sex | 23 M/13 F | 5 F/4 M | 8 F/19 M |
Seizure onset age (months) | 13.9 (M)/8.7 (F) | 7 mo | 14 mo |
Seizure semiology | Generalized tonic-clonic seizures: 23/36 (63.89%) Generalized tonic seizures: 4/36 (11.11%) Generalized clonic seizures: 2/36 (5.56%) Myoclonic seizures: 3/36 (8.33%) Atypical absence seizures: 3/36 (8.33%) Typical absence seizures: 1/36 (2.78%) | Generalized tonic-clonic seizures: 4/9 (44.44%) Generalized tonic seizures: 1/9 (11.11%) Generalized clonic seizures: 1/9 (11.11%) Myoclonic seizures: 1/9 (11.11%) Atypical absence seizures: 1/9 (11.11%) Typical absence seizures: 1/9 (11.11%) | Generalized tonic-clonic seizures: 19/27 (70.37%) Generalized tonic seizures: 3/27 (11.11%) Generalized clonic seizures: 1/27 (3.70%) Myoclonic seizures: 2/27 (7.40%) Atypical absence seizures: 2/27 (7.40%) |
Electrophysiology-interictal EEG * | Normal: 25/34 (73.53%) EEG with epileptiform discharges: 9/34 (26.47%) | Normal: 7/9 (77.78%) EEG with epileptiform discharges: 2/9 (22.22%) | Normal: 18/27 (66.67%) EEG with epileptiform discharges: 7/27 (25.93%) 2 NA (7.40%) |
Seizure-inducing factors | Fever/infections/vaccines: 34/36 (94.44%) | Fever/infections/vaccines: 9/9 (100%) | Fever/infections/vaccines: 25/27 (92.59%) 2/27 NA (7.40%) |
Status epilepticus at onset/in evolution | 12/36 (33.33%) | 4/9 (44.44%) | 8/27 (29.63%) |
Intellectual disability/global developmental delay | 4/36 (11.11%) | 3/9 (33.33%) | 1/27 (3.40%) |
Speech delay/no speech | 8/36 (22.22%) | 3/9 (33.33%) | 5/27 (18.52%) |
Behavioral issues | 4/36 (11.11%) | 2/9(22.22%) | 2/6 (33.34%) |
Neuroimaging findings * | Normal brain MRI: 33/35 (94.29%) Brain atrophy: 1/35(2.86%) Demyelinating lesion in the left frontal area: 1/35(2.86%) | Normal brain MRI: 8/9 (88.89%) Brain atrophy: 1/9 (11.11%) | Normal brain MRI: 26/27 (96.60%) Demyelinating lesion in the left frontal area: 1/27 (3.40%) |
Other health issues | Motor delay: 4/36 (11.11%) Macrocephaly: 2/36 (5.56%) Microcephaly: 1/36 (2.78%) | Motor delay: 3/9 (33.33%) Microcephaly: 1/9 (11.11%) | Motor delay: 1/27 (3.40%) Macrocephaly: 2/27 (7.40%) |
Prenatal history | Normal pregnancy history: 33/36 (91.67%) | Normal pregnancy history: 9/9 (100%) | Normal pregnancy history: 24/27 (88.88%) 3/27 NA (11.12%) |
Familial history of seizures/epilepsy | 6/36 (16.67%) | 1/9 (11.11%) | 5/27 (18.52%) |
Parental consanguinity | No | - | - |
Genetic findings | SCN1A: 7/36 (19.44%) SCN1B: 2/36 (5.56%) SCN2A: 1/36 (2.78%) SCN9A: 2/36 (5.56%) SLC2A1 (GLUT1): 1/36 (2.78%) | SCN1A: 7/9; SCN1B: 2/9 | SCN2A: 1/27; SCN9A: 2/27; SLC2A1 (GLUT1): 1/27 |
Gene Variant | Variant Type | NCBI ClinVar | ACMG Score | Relevant Literature | Associated Phenotype |
---|---|---|---|---|---|
SCN1A NM_001165963.4: c.1285C > T p.Gln429Ter | Null variant (nonsense), exon 12 of 29, position 115 of 207 (coding, NMD) | Pathogenic, 1 star (criteria provided, 1 submission), associated with developmental and epileptic encephalopathy, early infantile epileptic encephalopathy, early infantile epileptic encephalopathy with suppression bursts, and Ohtahara syndrome | Pathogenic (PVS1, PM2, PP5) | - | Patient 7 DS |
SCN1A NM_001165963.4: c.2134C > T p.Arg712Ter | Null variant (nonsense), exon 15 of 29, position 91 of 133 (coding, NMD) | Pathogenic, 2 stars (criteria provided, multiple submitters, no conflicts) associated with severe myoclonic epilepsy in infancy, early infantile epileptic encephalopathy with suppression bursts, generalized epilepsy with febrile seizures plus, type 2, autosomal dominant epilepsy, epileptic encephalopathy, early infantile, 1 | Pathogenic (PVS1, PP5, PS3, PM2) | [25,26] | Patient 26 DS |
SCN1A NM_001165963.4: c.2208del p.Cys737ValfsTer10 | Null variant (frameshift), exon 16 of 29, position 32 of 239 (coding, NMD) | Not reported | Pathogenic (PVS1, PM2) | - | Patient 12 DS |
SCN1A NM_001165963.4: c.2958_2959del p.Phe987SerfsTer9 | Frameshift, exon 19 of 29, position 12–13 of 483 (coding, NMD) | Likely pathogenic (criteria provided, single submitter) associated with severe myoclonic epilepsy in infancy, generalized epilepsy with febrile seizures plus type 2 | Likely pathogenic (PVS1, PM2, PP5) | - | Patient 13 DS |
SCN1A NM_001165963.4: c.3718del p.Ile1240TyrfsTer30 | Frameshift, exon 22 of 29, position 13 of 174 (coding, NMD) | Not reported | Likely pathogenic (PVS1, PM2) | - | Patient 19 DS |
SCN1A NM_001165963.4: c.5515C > G p.Leu1839Val | Missense, exon 29 of 29, position 663 of 6610 (coding) | Pathogenic, 1 star (criteria provided, single submitters) associated with severe myoclonic epilepsy in infancy | Pathogenic (PM1, PM5, PM2, PP2, PP3, PP5) | [27] | Patient 14 DS |
SCN1A NM_001165963.4: c.5536_5539del p.Lys1846SerfsTer11 | Null variant (frameshift), exon 29 of 29, position 684–687 of 6610 (coding, NMD) | Pathogenic, 2 stars (criteria provided, multiple submitters, no conflicts) associated with severe myoclonic epilepsy in infancy, early infantile epileptic encephalopathy with suppression bursts, generalized epilepsy with febrile seizures plus, type 2 | Pathogenic (PVS1, PM2, PP5) | [27,28,29,30] | Patient 8 DS |
SCN1B* NM_001037.5: c.655T > C p.Ter219Glnext*214 | Stop loss, exon 5 of 6, position 65 of 72 (splicing, coding) | Not reported | Likely pathogenic (PM4, PM2, BP4) | - | Patient 5, 28 GEFS+ |
SCN2A NM_001040143.2: c.5211C > A p.His1737Gln | Missense, exon 28 of 28, position 389 of 3676 (coding) | Not reported | Uncertain significance (PM2, PP3) | - | Patient 16 DEE 11 |
SCN9A NM_001365536.1: c.1675G > A p.Gly559Ser | Missense, exon 12 of 27, position 73 of 339 (coding) | Uncertain significance, 2 stars (criteria provided, multiple submitters, no conflicts) associated with generalized epilepsy with febrile seizures plus, type 7 | Uncertain significance (PM2, PP3) | [31] | Patient 10 GEFS+ |
SCN9A NM_001365536.1: c.5693G > A p.Arg1898His | Missense, exon 27 of 27, position 919 of 4680 (coding) | Not reported | Uncertain significance (PM2, PP3) | - | Patient 36 GEFS+ |
SLC2A1 (GLUT1) NM_006516.4: c.179C > T p.Thr60Met | Missense, exon 3 of 10, position 65 of 161 (coding) | Uncertain significance, 2 stars (criteria provided, multiple submitters, no conflicts) associated with GLUT1 deficiency syndrome 1, autosomal recessive | Uncertain significance (PM2, PP2) | [32] | Patient 34 GLUT1 deficiency syndrome-DEE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riza, A.-L.; Streață, I.; Roza, E.; Budișteanu, M.; Iliescu, C.; Burloiu, C.; Dobrescu, M.-A.; Dorobanțu, S.; Dragoș, A.; Grigorescu, A.; et al. Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies—Data from a Romanian Cohort. Genes 2022, 13, 1253. https://doi.org/10.3390/genes13071253
Riza A-L, Streață I, Roza E, Budișteanu M, Iliescu C, Burloiu C, Dobrescu M-A, Dorobanțu S, Dragoș A, Grigorescu A, et al. Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies—Data from a Romanian Cohort. Genes. 2022; 13(7):1253. https://doi.org/10.3390/genes13071253
Chicago/Turabian StyleRiza, Anca-Lelia, Ioana Streață, Eugenia Roza, Magdalena Budișteanu, Catrinel Iliescu, Carmen Burloiu, Mihaela-Amelia Dobrescu, Stefania Dorobanțu, Adina Dragoș, Andra Grigorescu, and et al. 2022. "Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies—Data from a Romanian Cohort" Genes 13, no. 7: 1253. https://doi.org/10.3390/genes13071253
APA StyleRiza, A. -L., Streață, I., Roza, E., Budișteanu, M., Iliescu, C., Burloiu, C., Dobrescu, M. -A., Dorobanțu, S., Dragoș, A., Grigorescu, A., Tătaru, T., Ioana, M., & Teleanu, R. (2022). Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies—Data from a Romanian Cohort. Genes, 13(7), 1253. https://doi.org/10.3390/genes13071253