TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subject
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
3.1. The Distribution of Clinicopathological Characteristics, Genotypes, and Alleles of the Patients with Cervical Cancer
3.2. Association Analysis
3.3. Logistic Regression Analysis
3.4. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, Y.; Li, C. The role of TLRs in cervical cancer with HPV infection: A review. Sig. Transduct. Target Ther. 2017, 2, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020, 32, 720. [Google Scholar] [CrossRef] [PubMed]
- Kutikhin, A.G. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum. Immunol. 2011, 11, 1095–1116. [Google Scholar] [CrossRef]
- Prasad, S.B.; Kumar, R. Role of Toll-LikeReceptor (TLR) Signaling in Cancer Progression and Treatment. In Cell Interaction-Molecular and Immunological Basis for Disease Management; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/73895 (accessed on 15 February 2022). [CrossRef]
- Noreen, M.; Arshad, M. Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility. Immunol. Res. 2015, 62, 234–252. [Google Scholar] [CrossRef]
- Noreen, M.; Imran, M.; Safi, S.Z.; Bashir, M.A.; Gul, S.; Alkhuriji, A.F.; Aloma, S.Y.; Alharbi, H.M.; Arshad, M. Protective role of TIRAP functional variant against development of coronary artery disease. Saudi J. Biol. Sci. 2021, 28, 3548–3552. [Google Scholar] [CrossRef]
- Rajpoot, S.; Wary, K.K.; Ibbott, R.; Liu, D.; Saqib, U.; Thurston, T.L.M.; Baig, M.S. TIRAP in the Mechanism of Inflammation. Front. Immunol. 2021, 12, 2722. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [Green Version]
- Piao, W.; Shirey, K.A.; Ru, L.W.; Lai, W.; Szmacinski, H.; Snyder, G.A.; Sundberg, E.J.; Lakowicz, J.R.; Vogel, S.N.; Toshchakov, V.Y. A decoy peptide that disrupts TIRAP recruitment to TLRs is protective in a murine model of influenza. Cell Rep. 2015, 11, 1941–1952. [Google Scholar] [CrossRef] [Green Version]
- Dissanayeke, S.R.; Levin, S.; Pienaar, S.; Wood, K.; Eley, B.; Beatty, D.; Henderson, H.; Anderson, S.; Levin, M. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE 2009, 4, e6698. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Tong, C.; Sun, Z.; Shen, Y.; Yao, C.; Jiang, J.; Yin, J.; Gao, L.; Song, Y.; Bai, C. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. BMC Med. Genet. 2010, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Cerhan, J.R.; Ansell, S.M.; Fredericksen, Z.S.; Kay, N.E.; Liebow, M.; Call, T.G.; Dogan, A.; Cunningham, J.M.; Wang, A.H.; Liu-Mares, W.; et al. Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 2007, 110, 4455–4463. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Kubarenko, A.V.; Rautanen, A.; Mills, T.C.; Colak, E.; Kempf, T.; Hill, A.V.; Nieters, A.; Weber, A.N. MyD88 adaptor-like D96N is a naturally occurring loss-of-function variant of TIRAP. J. Immunol. 2010, 184, 3025–3032. [Google Scholar] [CrossRef] [Green Version]
- Rajaraman, P.; Brenner, A.V.; Butler, M.A.; Wang, S.S.; Pfeiffer, R.M.; Ruder, A.M.; Linet, M.S.; Yeager, M.; Wang, Z.; Orr, N.; et al. Common variation in genes related to innate immunity and risk of adult glioma. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Klimosch, S.N.; Försti, A.; Eckert, J.; Knežević, J.; Bevier, M.; von Schönfels, W.; Heits, N.; Walter, J.; Hinz, S.; Lascorz, J.; et al. Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer Res. 2013, 73, 7232–7242. [Google Scholar] [CrossRef] [Green Version]
- DeCarlo, C.A.; Rosa, B.; Jackson, R.; Niccoli, S.; Escott, N.G.; Zehbe, I. Toll-like receptor transcriptome in the HPV-positive cervical cancer microenvironment. Clin. Dev. Immunol. 2012, 2012, 785825. [Google Scholar] [CrossRef] [PubMed]
- Barros, M.R., Jr.; de Oliveira, T.H.A.; de Melo, C.M.L.; Venuti, A.; de Freitas, A.C. Viral Modulation of TLRs and Cytokines and the Related Immunotherapies for HPV-Associated Cancers. J. Immunol. Res. 2018, 2018, 2912671. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Xu, X.; Liang, L.; Sun, H.; Liu, G.; Zhang, L.; Su, Y. The influence of genetic polymorphisms in TLR4 and TIRAP, and their expression levels in peripheral blood, on susceptibility to sepsis. Exp. Ther. Med. 2016, 11, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Belhaouane, I.; Hoffmann, E.; Chamaillard, M.; Brodin, P.; Machelart, A. Paradoxical roles of the MAL/Tirap adaptor in pathologies. Front. Immunol. 2020, 11, 2317. [Google Scholar] [CrossRef]
- Carter, T.C.; Ye, Z.; Ivacic, L.C.; Budi, N.; Rose, W.E.; Shukla, S.K. Association of variants in selected genes mediating host immune response with duration of Staphylococcus aureus bacteremia. Genes Immun. 2020, 21, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.R.; Wiklund, F.; Grönberg, H.; Schumacher, F.; Sinnott, J.A.; Stampfer, M.J.; Mucci, L.A.; Kraft, P. Toll-like receptor signaling pathway variants and prostate cancer mortality. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1859–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khor, C.C.; Chapman, S.J.; Vannberg, F.O.; Dunne, A.; Murphy, C.; Ling, E.Y.; Frodsham, A.J.; Walley, A.J.; Kyrieleis, O.; Khan, A.; et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 2007, 39, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Bagratuni, T.; Terpos, E.; Eleutherakis-Papaiakovou, E.; Kalapanida, D.; Gavriatopoulou, M.; Migkou, M.; Liacos, C.I.; Tasidou, A.; Matsouka, C.; Mparmparousi, D.; et al. TLR 4/TIRAP polymorphisms are associated with progression and survival of patients with symptomatic myeloma. Br. J. Haematol. 2016, 172, 44–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SNP | PCR | RFLP | |||||
---|---|---|---|---|---|---|---|
Primer Sequences | Annealing Temperature (°C) | Number of Cycles | Fragment Size of PCR Product (bp) | Restriction Enzyme | Incubation Temperature (°C) | Fragment Size (bp) | |
rs8177376 | F: 5′-GGTTTGGGAG | 58.0 | 30 | 245 | TasI (Tsp509I) 3 | 65 | T: 158, 87 G: 245 |
GTGTGACAAC-3′ 1 | |||||||
R: 5′-ATGGTCTTCTT | |||||||
AGGGAGCCC-3′ 1 | |||||||
rs611953 | F: 5′-GTGACAACGC | 57.6 | 30 | 223 | BseXI (BbvI) 3 | 65 | A: 223 G: 170, 53 |
TGTGATTGGT-3′ 1 | |||||||
R: 5′-TAGGGAGCCC | |||||||
ACAGTAATGG-3′ 1 | |||||||
rs3802814 | F: 5′-AGCCTCAGCT | 58.4 | 30 | 153 | Eco47I (AvaII) 3 | 37 | G: 126, 27 A: 153 |
CAGTCACGTC-3′ 1 | |||||||
R: 5′-GCTGCCTTCCA | |||||||
AGTAGGAGA-3′ 1 | |||||||
rs8177374 | F: 5′-AGTGCTGTACC | 64.4 | 40 | 161 | Eam1150I (AhdI) 3 | 37 | C: 141, 20 T: 161 |
ATCGACCTGCTG-3′ 2 | |||||||
R: 5′-TTCCCCTTCTCCC | |||||||
TCCTGTAGTAG-3′ 2 |
Clinicopathological Characteristics | Subgroups | n (%) |
---|---|---|
Age group | ≤50 years old | 65 (37.8) |
>50 years old | 107 (62.2) | |
Tumor size (T) | T1 + T2 | 110 (64.0) |
T3 + T4 | 62 (36.0) | |
Lymph node involvement (N) | N0 | 95 (55.2) |
N1 | 77 (44.8) | |
Metastasis (M) | M0 | 162 (94.2) |
M1 | 10 (5.8) | |
Tumor grade (G) | G1 + G2 | 125 (72.7) |
G3 X1 | 45 (26.2) 2 (1.1) | |
Presence of disease progression | No | 121 (70.3) |
Yes | 51 (29.7) | |
Death | No | 132 (76.7) |
Yes | 40 (23.3) |
SNP | Dependent | Covariates | Multivariate Logistic Regression Analysis | |||||
---|---|---|---|---|---|---|---|---|
Model No. 2 | Model No. 3 | |||||||
OR | 95% Cl | p | OR | 95% Cl | p | |||
rs8177376 | Older age at the time of diagnosis (>50 years old) | Carrier of T allele vs. non-carrier | - | - | - | 2.901 | 1.750–4.808 | 0.000 |
Age group | - | - | - | - | - | - | ||
T (T3 + T4 vs. T1 + T2) | 1.777 | 0.831–3.802 | 0.138 | |||||
N (positive vs. negative) | 0.288 | 0.143–0.581 | 0.000 | |||||
G (G3 vs. G1 + G2) | 0.659 | 0.320–1.357 | 0.258 | |||||
G3 tumor grade | Carrier of T allele vs. non-carrier | 0.519 | 0.307–0.875 | 0.014 | 0.424 | 0.220–0.816 | 0.010 | |
Age group | 0.276–1.028 | 0.060 | 0.501 | 0.255–0.983 | 0.045 | |||
T (T3 + T4 vs. T1 + T2) | 2.094 | 0.976–4.496 | 0.058 | |||||
N (positive vs. negative) | 0.869 | 0.426–1.770 | 0.698 | |||||
G (G3 vs. G1 + G2) | - | - | - | - | - | - | ||
rs611953 | Older age at the time of diagnosis (>50 years old) | Carrier of G allele vs. non-carrier | - | - | - | 3.258 | 1.917–5.536 | 0.000 |
Age group | - | - | - | - | - | - | ||
T (T3 + T4 vs. T1 + T2) | 1.799 | 0.840–3.852 | 0.131 | |||||
N (positive vs. negative) | 0.242 | 0.117–0.501 | 0.000 | |||||
G (G3 vs. G1 + G2) | 0.581 | 0.276–1.223 | 0.153 | |||||
Disease progression | Carrier of G allele vs. non-carrier | 0.555 | 0.332–0.929 | 0.025 | 0.383 | 0.110–1.341 | 0.134 | |
Age group | 0.325–1.224 | 0.173 | 0.574 | 0.267–1.234 | 0.155 | |||
T (T3 + T4 vs. T1 + T2) | 7.587 | 3.367–17.092 | 0.000 | |||||
N (positive vs. negative) | 0.731 | 0.321–1.667 | 0.457 | |||||
G (G3 vs. G1 + G2) | 0.856 | 0.516–1.420 | 0.547 |
Variables | Univariate | Multivariate (Model No. 1) | Multivariate (Model No. 2) | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% Cl | p | HR | 95% Cl | p | HR | 95% Cl | p | |
rs3802814 A allele Age group T N G | 1.967 | 1.024–3.777 | 0.042 | 1.967 | 1.024–3.779 | 0.042 | 1.241 | 0.627–2.458 | 0.536 |
1.019 | 0.537–1.934 | 0.955 | 1.442 | 0.727–2.861 | 0.295 | ||||
7.897 | 3.383–18.433 | 0.000 | |||||||
1.667 0.685 | 0.793–3.502 0.336–1.393 | 0.177 0.296 | |||||||
rs8177374 T allele Age group T N G | 2.212 | 1.172–4.177 | 0.014 | 2.212 | 1.172–4.178 | 0.014 | 1.502 | 0.776–2.907 | 0.227 |
0.995 | 0.524–1.889 | 0.988 | 1.451 | 0.729–2.887 | 0.289 | ||||
7.743 | 3.327–18.025 | 0.000 | |||||||
1.639 | 0.776–3.460 | 0.195 | |||||||
0.681 | 0.335–1.386 | 0.289 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekampytė, J.; Savukaitytė, A.; Bartnykaitė, A.; Ugenskienė, R.; Žilienė, E.; Inčiūra, A.; Juozaitytė, E. TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis. Genes 2022, 13, 1365. https://doi.org/10.3390/genes13081365
Bekampytė J, Savukaitytė A, Bartnykaitė A, Ugenskienė R, Žilienė E, Inčiūra A, Juozaitytė E. TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis. Genes. 2022; 13(8):1365. https://doi.org/10.3390/genes13081365
Chicago/Turabian StyleBekampytė, Justina, Aistė Savukaitytė, Agnė Bartnykaitė, Rasa Ugenskienė, Eglė Žilienė, Arturas Inčiūra, and Elona Juozaitytė. 2022. "TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis" Genes 13, no. 8: 1365. https://doi.org/10.3390/genes13081365
APA StyleBekampytė, J., Savukaitytė, A., Bartnykaitė, A., Ugenskienė, R., Žilienė, E., Inčiūra, A., & Juozaitytė, E. (2022). TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis. Genes, 13(8), 1365. https://doi.org/10.3390/genes13081365