Evolutionary Trajectories of Primary and Metastatic Pancreatic Neuroendocrine Tumors Based on Genomic Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Acquisition
2.2. DNA Extraction and Sequencing
2.3. Quality Control and Single Nnucleotide Variant (SNV) Analysis
2.4. Structural Variant (SV) and Copy Number Analysis
2.5. Gene Set Enrichment Analysis
2.6. Phylogenetic Tree Reconstruction
2.7. Statistical Analysis
2.8. Data Availability
3. Results
3.1. Patient Demographic and Baseline Characteristics
3.2. Genomic Landscape of Primary Tumors and Metastases
3.3. Spreading Routes of PanNETs in One Special Patient
3.4. Clonal Cluster of PanNETs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Halfdanarson, T.R.; Rabe, K.G.; Rubin, J.; Petersen, G.M. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann. Oncol. 2008, 19, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Bonnavion, R.; Teinturier, R.; Jaafar, R.; Ripoche, D.; Leteurtre, E.; Chen, Y.J.; Rehfeld, J.F.; Lepinasse, F.; Hervieu, V.; Pattou, F.; et al. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors. Mol. Cell Biol. 2015, 35, 3274–3283. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Hruban, R.H.; Fishman, E.K. Pancreatic neuroendocrine tumor: Review of heterogeneous spectrum of CT appearance. Abdom. Radiol. 2018, 43, 3025–3034. [Google Scholar] [CrossRef]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71. [Google Scholar] [CrossRef]
- Genc, C.G.; Falconi, M.; Partelli, S.; Muffatti, F.; van Eeden, S.; Doglioni, C.; Klumpen, H.J.; van Eijck, C.H.J.; Nieveen van Dijkum, E.J.M. Recurrence of Pancreatic Neuroendocrine Tumors and Survival Predicted by Ki67. Ann. Surg. Oncol. 2018, 25, 2467–2474. [Google Scholar] [CrossRef]
- Siebenhuner, A.R.; Langheinrich, M.; Friemel, J.; Schafer, N.; Eshmuminov, D.; Lehmann, K. Orchestrating Treatment Modalities in Metastatic Pancreatic Neuroendocrine Tumors-Need for a Conductor. Cancers 2022, 14, 1478. [Google Scholar] [CrossRef]
- Hu, Z.; Ding, J.; Ma, Z.; Sun, R.; Seoane, J.A.; Scott Shaffer, J.; Suarez, C.J.; Berghoff, A.S.; Cremolini, C.; Falcone, A.; et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 2019, 51, 1113–1122. [Google Scholar] [CrossRef]
- Yates, L.R.; Knappskog, S.; Wedge, D.; Farmery, J.H.R.; Gonzalez, S.; Martincorena, I.; Alexandrov, L.B.; Van Loo, P.; Haugland, H.K.; Lilleng, P.K.; et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell 2017, 32, 169–184.e7. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Markovets, A.; Ahdesmaki, M.; Chapman, B.; Hofmann, O.; McEwen, R.; Johnson, J.; Dougherty, B.; Barrett, J.C.; Dry, J.R. VarDict: A novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016, 44, e108. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stutz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef]
- Malikic, S.; McPherson, A.W.; Donmez, N.; Sahinalp, C.S. Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 2015, 31, 1349–1356. [Google Scholar] [CrossRef]
- Mafficini, A.; Scarpa, A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr. Rev. 2019, 40, 506–536. [Google Scholar] [CrossRef]
- Marinovic, S.; Cigrovski Berkovic, M.; Zjacic-Rotkvic, V.; Kapitanovic, S. Analysis of polymorphisms in EGF, EGFR and HER2 genes in pancreatic neuroendocrine tumors (PNETs). Cancer Genet. 2022, 266–267, 44–50. [Google Scholar] [CrossRef]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef]
- Schoeberl, B.; Pace, E.A.; Fitzgerald, J.B.; Harms, B.D.; Xu, L.; Nie, L.; Linggi, B.; Kalra, A.; Paragas, V.; Bukhalid, R.; et al. Therapeutically targeting ErbB3: A key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2009, 2, ra31. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, J.; Ashworth, A. Assessing the Significance of BRCA1 and BRCA2 Mutations in Pancreatic Cancer. J. Clin. Oncol. 2015, 33, 3080–3081. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Ewald, A.J. A collective route to metastasis: Seeding by tumor cell clusters. Science 2016, 352, 167–169. [Google Scholar] [CrossRef]
- Ji, S.; Yang, W.; Liu, J.; Zhao, J.; Chen, L.; Ni, Q.; Long, J.; Yu, X. High throughput gene sequencing reveals altered landscape in DNA damage responses and chromatin remodeling in sporadic pancreatic neuroendocrine tumors. Pancreatology 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; LaFramboise, W.A.; Liu, T.C.; Cao, D.; Luvison, A.; Miller, C.; Lyons, M.A.; O’Sullivan, R.J.; Zureikat, A.H.; Hogg, M.E.; et al. Loss of Chromatin-Remodeling Proteins and/or CDKN2A Associates With Metastasis of Pancreatic Neuroendocrine Tumors and Reduced Patient Survival Times. Gastroenterology 2018, 154, 2060–2063.e8. [Google Scholar] [CrossRef]
- Cives, M.; Partelli, S.; Palmirotta, R.; Lovero, D.; Mandriani, B.; Quaresmini, D.; Pelle, E.; Andreasi, V.; Castelli, P.; Strosberg, J.; et al. DAXX mutations as potential genomic markers of malignant evolution in small nonfunctioning pancreatic neuroendocrine tumors. Sci. Rep. 2019, 9, 18614. [Google Scholar] [CrossRef]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef]
- Goding, C.R.; Arnheiter, H. MITF-the first 25 years. Genes Dev. 2019, 33, 983–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Sex | Age Years | Primary PanNET | Liver Metastases | Positive Lymph Nodes | Nerve Invasion | Lymphovascular Invasion | Outcome | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Size (cm) | Location | Grade | Ki67 | Size (cm) | Grade | Months | ||||||
1 | M | 42 | 5.1 × 4.0 × 3.0 | Head | G2 | 15% | 3.0 × 1.0 | G2 | 4/8 | + | − | PFS: 30 M |
2 | M | 53 | 8.0 × 7.0 × 4.5 | Tail | G2 | 5% | 2.0 × 1.8 × 1.8 | G2 | 0/3 | − | − | OS: 19 M |
3 | M | 60 | 9.0 × 4.5 × 2.8 | Tail | G2 | 4% | 4.0 × 2.5 × 3.0 | G2 | 3/8 | − | − | PFS: 35 M |
4 | M | 67 | 3.0 × 1.5 × 1.0 | Head | G1 | 2% | 0.6 × 1.0 × 1.0 | G1 | 6/18 | − | + | PFS: 37 M |
5 | F | 33 | 6.0 × 5.0 × 4.5 | Tail | G2 | 10% | 3.5 × 2.5 × 1.5 | G2 | 1/11 | − | + | PFS: 19 M |
6 | F | 44 | 4.0 × 2.7 × 2.5 | Tail | G2 | 5% | 1.5 × 1.2 × 1.0 | G2 | 0/10 | − | − | PFS: 48 M |
7 | F | 47 | 3.0 × 2.5 × 1.8 | Head | G1 | <2% | 2.0 × 1.5 × 2.0 | G1 | 3/7 | + | − | PFS: 49 M |
8 | F | 53 | 4.5 × 3.0 × 2.5 | Tail | G2 | 5% | 5.5 × 4.5 × 4.5 | G2 | 0/4 | − | + | PFS: 28 M |
9 | F | 59 | 5.5 × 4.4 × 2.5 | Tail | G2 | 4% | 3.5 × 1.0 | G2 | 2/2 | − | + | PFS: 23 M |
10 | F | 61 | 1.9 × 1.0 × 0.2 | Body | G2 | 4% | Multiple metastasis (Max: 1.0 × 0.8) | G2 | 0/3 | − | − | PFS: 24 M |
11 | F | 46 | 6.0 × 5.0 × 3.5 | Head | G2 | 10–20% | Bilateral: 4.0 × 3.0 (left) and 3.0 × 2.5 × 2.0 (right) | G3 | 0/29 | − | − | PFS: 24 M |
Gene No. | Mutated Genes | Mutations Nucleotide | Mutations Protein | Mutation Type | Mutations Tissue (Patient No.) | |
---|---|---|---|---|---|---|
Primary | Metastases | |||||
1 | APC | c.6973G>A | p.Gly2325Ser | missense_variant | - | 5 |
c.2098G>T | p.Asp700Tyr | missense_variant | 5 | - | ||
c.1412G>A | p.Gly471Glu | missense_variant | 7 | - | ||
c.3341G>A | p.Arg1114Gln | missense_variant | 7 | - | ||
c.6857C>T | p.Ala2286Val | missense_variant | 7 | - | ||
c.3949G>C | p.Glu1317Gln | missense_variant | 9 | 9 | ||
2 | ARID2 | c.4300G>T | p.Ala1434Ser | missense_variant | 10 | 10 |
c.1759A>G | p.Ser587Gly | missense_variant | 4 | 4 | ||
c.929G>A | p.Arg310His | missense_variant | 5 | - | ||
c.1368G>A | p.Met456Ile | missense_variant | 5 | - | ||
c.4300G>T | p.Ala1434Ser | missense_variant | 10 | 10 | ||
3 | ATM | c.821C>A | p.Ser274Tyr | missense_variant | - | 2 |
c.8120C>G | p.Ser2707Cys | missense_variant | 2 | 2 | ||
c.6115G>A | p.Glu2039Lys | missense_variant | - | 6 | ||
c.497-4delT | - | frameshift_variant | 3 | - | ||
c.2466+7A>G | - | frameshift_variant | 6 | 6 | ||
c.1339C>T | p.Arg447* | stop_gained | 7 | - | ||
4 | BRCA1 | c.5636T>C | p.Ile1879Thr | missense_variant | 7 | - |
c.3448C>T | p.Pro1150Ser | missense_variant | 4 | 4 | ||
c.1775G>A | p.Ser592Asn | missense_variant | - | 5 | ||
c.3167C>G | p.Ser1056Cys | missense_variant | 5 | - | ||
c.4046C>T | p.Thr1349Met | missense_variant | 6 | - | ||
c.2875A>G | p.Arg959Gly | missense_variant | - | 8 | ||
c.5314C>T | p.Arg1772* | stop_gained | 7 | - | ||
5 | BRCA2 | c.8187G>T | p.Lys2729Asn | missense_variant | 1 | 1 |
c.4585G>A | p.Gly1529Arg | missense_variant | 2 | - | ||
c.10234A>G | p.Ile3412Val | missense_variant | 3 | 3 | ||
c.1012G>A | p.Ala338Thr | missense_variant | 6 | - | ||
c.9836T>C | p.Leu3279Ser | missense_variant | 7 | - | ||
c.9139C>T | p.Gln3047* | stop_gained | - | 5 | ||
6 | DAXX | c.1111C>T | p.Arg371Trp | missense_variant | 2 | 2 |
c.207+1G>A | - | frameshift | 9 | 9 | ||
7 | MSH3 | c.181_189dupGCAGCGCCC | p.Ala61_Pro63dup | conservative_inframe_insertion | 10/4/6 | 10/4/6 |
c.2071G>A | p.Glu691Lys | missense_variant | - | 7 | ||
c.356C>T | p.Ser119Phe | missense_variant&splice_region_variant | 1 | 1 | ||
c.1764-1G>A | - | frameshift_variant | - | 7 | ||
8 | MSH6 | c.4068_4071dupGATT | p.Lys1358fs | frameshift_variant&stop_gained | 4 | 4 |
c.3557-4delT | - | frameshift_variant | 5/7 | 5 | ||
9 | PALB2 | c.925A>G | p.Ile309Val | missense_variant | 2 | 2 |
c.1571C>T | p.Ser524Leu | missense_variant | - | 5 | ||
10 | RAD50 | c.3697C>A | p.Pro1233Thr | missense_variant | 7 | - |
11 | RAD51 | c.88C>T | p.Gln30* | stop_gained&splice_region_variant | 5 | - |
12 | RB1 | c.2393G>A | p.Arg798Gln | missense_variant | - | 5 |
c.1597G>A | p.Glu533Lys | missense_variant | 5 | - | ||
c.2729G>A | p.Arg910Gln | missense_variant | - | 7 | ||
c.1422-9_1422-8delTT | - | frameshift_variant | 3/4/5 | 3/5 | ||
13 | SETD2 | c.3382delA | p.Thr1128fs | frameshift_variant | 3 | - |
c.578C>T | p.Pro193Leu | missense_variant | 3/6 | 3/6 | ||
c.4162G>T | p.Asp1388Tyr | missense_variant | 7 | - | ||
14 | SMARCA4 | c.113C>G | p.Ser38Cys | missense_variant | - | 5 |
c.2381C>T | p.Thr794Met | missense_variant | 5 | - | ||
c.2620C>T | p.Arg874Cys | missense_variant | 6 | - | ||
15 | TSC1 | c.3124_3129delAGCAGC | p.Ser1042_Ser1043del | conservative_inframe_deletion | - | 9 |
c.3114C>A | p.Ser1038Arg | missense_variant | 7 | - | ||
c.1438+6G>A | - | frameshift_variant | 5 | - | ||
16 | TSC2 | c.3385C>T | p.Arg1129Cys | missense_variant | 2 | 2 |
c.856A>G | p.Met286Val | missense_variant | 3 | 3 | ||
c.202G>A | p.Ala68Thr | missense_variant | 4 | - | ||
c.5251C>T | p.Arg1751Cys | missense_variant | - | 6 | ||
c.2962C>T | p.Arg988Cys | missense_variant | 7 | - | ||
c.3412C>T | p.Arg1138* | stop_gained | 9 | 9 |
Category | Primary | Metastases |
---|---|---|
KEGG Pathway | Pathways in cancer | Pathways in cancer |
Melanoma | EGFR tyrosine kinase inhibitor resistance | |
Transcriptional misregulation in cancer | ||
GO Biological Processes | peptidyl-tyrosine phosphorylation | positive regulation of transferase activity |
phosphatidylinositol-mediated signaling | transmembrane receptor protein tyrosine kinase signaling pathway | |
regulation of cellular response to stress | regulation of DNA metabolic process | |
regulation of DNA metabolic process | negative regulation of cell proliferation | |
negative regulation of cell proliferation | apoptotic signaling pathway | |
DNA repair | negative regulation of cell cycle | |
epithelial cell proliferation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Yan, J.; Hu, B.; Wu, C.; Gu, H.; Qi, Z.; Chen, T.; Yang, W.; Zheng, Y.; Dong, H.; et al. Evolutionary Trajectories of Primary and Metastatic Pancreatic Neuroendocrine Tumors Based on Genomic Variations. Genes 2022, 13, 1588. https://doi.org/10.3390/genes13091588
Xu M, Yan J, Hu B, Wu C, Gu H, Qi Z, Chen T, Yang W, Zheng Y, Dong H, et al. Evolutionary Trajectories of Primary and Metastatic Pancreatic Neuroendocrine Tumors Based on Genomic Variations. Genes. 2022; 13(9):1588. https://doi.org/10.3390/genes13091588
Chicago/Turabian StyleXu, Midie, Jiuliang Yan, Beiyuan Hu, Chuntao Wu, Haitao Gu, Zihao Qi, Tao Chen, Wenting Yang, Yan Zheng, Hanguang Dong, and et al. 2022. "Evolutionary Trajectories of Primary and Metastatic Pancreatic Neuroendocrine Tumors Based on Genomic Variations" Genes 13, no. 9: 1588. https://doi.org/10.3390/genes13091588
APA StyleXu, M., Yan, J., Hu, B., Wu, C., Gu, H., Qi, Z., Chen, T., Yang, W., Zheng, Y., Dong, H., Sheng, W., & Long, J. (2022). Evolutionary Trajectories of Primary and Metastatic Pancreatic Neuroendocrine Tumors Based on Genomic Variations. Genes, 13(9), 1588. https://doi.org/10.3390/genes13091588