Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Engineering of the HΔCT Allele
2.2. Tissue-Specific Expression Using the Gal4/UAS-System
2.3. Phenotypic Analyses
2.3.1. Adult Phenotypes
2.3.2. Clonal Analysis
2.4. Yeast Two-Hybrid Experiments
2.5. Protein Co-Precipitation Using the Myc-Trap System
2.5.1. Cloning of Various NTCTmyc Constructs and of Asf1-HA in pMAL Vector
2.5.2. Protein Expression
2.5.3. Myc-Trap Binding Assay
2.6. In Vivo Protein Analysis
2.7. Isothermal Titration Calorimetry
3. Results
3.1. Gene Engineering to Generate the HΔCT Allele, Specifically Lacking the CT Domain Only
3.2. The HΔCT Allele Displays H Gain of Function Phenotypes
3.3. The HΔCT Allele Attenuates Cell Fating Defects
3.4. Complex Genetic Interactions between Asf1 and Hairless
3.5. Mapping the H-Asf1 Interaction Domain by Yeast Two-Hybrid Assays
3.6. Interaction Assays Using Tagged Hairless and Asf1 Proteins
3.7. Thermodynamic Analysis of the Hairless and Asf1 Interaction
3.8. The Asf1-Induced Small Eye Phenotype Is Enhanced in HΔCT Background
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Biol. 2006, 7, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Kopan, R.; Ilagan, M.X. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hori, K.; Sen, A.; Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci. 2013, 126, 21352140. [Google Scholar] [CrossRef] [Green Version]
- Bray, S.J. Notch signalling in context. Nat. Rev. Mol. Biol. 2016, 17, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Kovall, R.A.; Blacklow, S.C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 2010, 92, 31–71. [Google Scholar] [CrossRef]
- Bray, S.; Furriols, M. Notch pathway: Making sense of Suppressor of Hairless. Curr. Biol. 2001, 11, R217–R221. [Google Scholar] [CrossRef] [Green Version]
- Maier, D. Hairless, the ignored antagonist of the Notch signalling pathway. Hereditas 2006, 143, 212–221. [Google Scholar] [CrossRef]
- Borggrefe, T.; Oswald, F. The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 2009, 66, 1631–1646. [Google Scholar] [CrossRef] [Green Version]
- Oswald, F.; Kovall, R.A. CSL-Associated corepressor and coactivator complexes. Adv. Exp. Med. Biol. 2018, 1066, 279–295. [Google Scholar] [CrossRef]
- Giaimo, B.D.; Gagliani, E.K.; Kovall, R.A.; Borggrefe, T. Transcription factor RBPJ as a molecular switch in regulating the Notch response. Adv. Exp. Med. Biol. 2021, 1287, 9–30. [Google Scholar] [CrossRef]
- Brou, C.; Logeat, F.; Lecourtois, M.; Vandekerckhove, J.; Kourilsky, P.; Schweisguth, F.; Israël, A. Inhibition of the DNA-binding activity of Drosophila Suppressor of Hairless and of its human homolog, KBF2/RBP-J kappa, by direct protein-protein interaction with Drosophila Hairless. Genes Dev. 1994, 8, 2491–2503. [Google Scholar] [CrossRef] [Green Version]
- Morel, V.; Lecourtois, M.; Massiani, O.; Maier, D.; Preiss, A.; Schweisguth, F. Transcriptional repression by Suppressor of Hairless involves the binding of a Hairless-dCtBP complex in Drosophila. Curr. Biol. 2001, 11, 789–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barolo, S.; Stone, T.; Bang, A.G.; Posakony, J.W. Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev. 2002, 16, 1964–1976. [Google Scholar] [CrossRef] [Green Version]
- Nagel, A.C.; Krejci, A.; Tenin, G.; Bravo-Patiño, A.; Bray, S.; Maier, D.; Preiss, A. Hairless-mediated repression of Notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol. Cell. Biol. 2005, 25, 10433–10441. [Google Scholar] [CrossRef] [Green Version]
- Courey, A.J.; Jia, S. Transcriptional repression: The long and the short of it. Genes Dev. 2001, 15, 2786–2796. [Google Scholar] [CrossRef]
- Berger, S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Maier, D.; Stumm, D.; Kuhn, K.; Preiss, A. Hairless, a Drosophila gene involved in neural development, encodes a novel, serine rich protein. Mech. Dev. 1992, 38, 143–156. [Google Scholar] [CrossRef]
- Bang, A.G.; Posakony, J.W. The Drosophila gene Hairless encodes a novel basic protein that controls alternative cell fates in adult sensory organ development. Genes Dev. 1992, 6, 1752–1769. [Google Scholar] [CrossRef] [Green Version]
- Maier, D.; Kurth, P.; Schulz, A.; Russell, A.; Yuan, Z.; Gruber, K.; Kovall, R.A.; Preiss, A. Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Mol. Cell. Biol. 2011, 22, 3242–3252. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Praxenthaler, H.; Tabaja, N.; Torella, R.; Preiss, A.; Maier, D.; Kovall, R.A. Structure and function of the Su(H)-Hairless repressor complex, the major antagonist of Notch signalling in Drosophila melanogaster. PLoS Biol. 2016, 14, e1002509. [Google Scholar] [CrossRef]
- Borggrefe, T.; Oswald, F. Setting the Stage for Notch: The Drosophila Su(H)-Hairless repressor Complex. PLoS Biol. 2016, 14, e1002524. [Google Scholar] [CrossRef] [Green Version]
- Wolf, D.; Smylla, T.K.; Reichmuth, J.; Hoffmeister, P.; Kober, L.; Zimmermann, M.; Turkiewicz, A.; Borggrefe, T.; Nagel, A.C.; Oswald, F.; et al. Nucleo-cytoplasmic shuttling of Drosophila Hairless/Su(H) heterodimer as a means of regulating Notch dependent transcription. Biochim. Biophys. Acta-Mol. Cell Res. 2019, 1866, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Maier, D.; Chen, A.X.; Preiss, A.; Ketelhut, M. The tiny Hairless protein from Apis mellifera: A potent antagonist of Notch signaling in Drosophila melanogaster. BMC Evol. Biol. 2008, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Zehender, A.; Bayer, M.; Bauer, M.; Zeis, B.; Preiss, A.; Maier, D. Conservation of the Notch antagonist Hairless in arthropods: Functional analysis of the crustacean Daphnia pulex Hairless gene. Dev. Genes Evol. 2017, 227, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Nagel, A.C.; Szawinski, J.; Zimmermann, M.; Preiss, A. Drosophila Cyclin G is a regulator of the Notch signalling pathway during wing development. PLoS ONE 2016, 11, e0151477. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Nagel, A.C.; Maier, D.; Preiss, A. A molecular link between Hairless and Pros26.4, a member of the AAA-ATPase subunits of the proteasome 19S regulatory particle in Drosophila. J. Cell Sci. 2006, 119, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walrad, P.B.; Hang, S.; Gergen, J.P. Hairless is a cofactor for Runt-dependent transcriptional regulation. Mol. Biol. Cell. 2011, 22, 1364–1374. [Google Scholar] [CrossRef]
- Goodfellow, H.; Krejcí, A.; Moshkin, Y.; Verrijzer, C.P.; Karch, F.; Bray, S.J. Gene-specific targeting of the histone chaperone asf1 to mediate silencing. Dev. Cell 2007, 13, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Nagel, A.C.; Fischer, P.; Szawinski, J.; La Rosa, M.K.; Preiss, A. Cyclin G is involved in meiotic recombination repair in Drosophila melanogaster. J. Cell Sci. 2012, 125, 5555–5563. [Google Scholar] [CrossRef] [Green Version]
- Fischer, P.; La Rosa, M.K.; Schulz, A.; Preiss, A.; Nagel, A.C. Cyclin G functions as a positive regulator of growth and metabolism in Drosophila. PLoS Genet. 2015, 11, e1005440. [Google Scholar] [CrossRef]
- Faradji, F.; Bloyer, S.; Dardalhon-Cuménal, D.; Randsholt, N.B.; Peronnet, F. Drosophila melanogaster Cyclin G coordinates cell growth and cell proliferation. Cell Cycle 2011, 10, 805–818, Correction in Cell Cycle 2014, 13, 2480. [Google Scholar] [CrossRef] [Green Version]
- Fechner, J.; Ketelhut, M.; Maier, D.; Preiss, A.; Nagel, A.C. The binding of CSL proteins to either co-activators or co-tepressors protects from proteasomal degradation induced by MAPK-dependent phosphorylation. Int. J. Mol. Sci. 2022, 23, 12336. [Google Scholar] [CrossRef]
- Moshkin, Y.M.; Kan, T.W.; Goodfellow, H.; Bezstarosti, K.; Maeda, R.K.; Pilyugin, M.; Karch, F.; Bray, S.J.; Demmers, J.A.; Verrijzer, C.P. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol. Cell 2009, 35, 782–793, Erratum in Mol. Cell 2013, 51, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Krejčí, A.; Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 2007, 21, 1322–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castel, D.; Mourikis, P.; Bartels, S.J.; Brinkman, A.B.; Tajbakhsh, S.; Stunnenberg, H.G. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 2013, 27, 1059–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zang, C.; Taing, L.; Arnett, K.L.; Wong, Y.J.; Pear, W.S.; Blacklow, S.C.; Liu, X.S.; Aster, J.C. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc. Natl. Acad. Sci. USA 2014, 111, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.K.K.; Cerda-Moya, G.; Stojnic, R.; Millen, K.; Fischer, B.; Fexova, S.; Skalska, L.; Gomez-Lamarca, M.; Pillidge, Z.; Russell, S.; et al. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet. 2017, 13, e1007096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Lamarca, M.J.; Falo-Sanjuan, J.; Stojnic, R.; Abdul Rehman, S.; Muresan, L.; Jones, M.L.; Pillidge, Z.; Cerda-Moya, G.; Yuan, Z.; Baloul, S.; et al. Activation of the Notch signaling pathway in vivo elicits changes in CSL nuclear dynamics. Dev. Cell 2018, 44, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Falo-Sanjuan, J.; Bray, S.J. Decoding the Notch signal. Dev. Growth Differ. 2020, 62, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Kaul, A.; Schuster, E.; Jennings, B.H. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet. 2014, 10, e1004595. [Google Scholar] [CrossRef]
- Giaimo, B.D.; Oswald, F.; Borggrefe, T. Dynamic chromatin regulation at Notch target genes. Transcription 2017, 8, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousson, F.; Ochsenbein, F.; Mann, C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 2007, 116, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Praxenthaler, H.; Smylla, T.K.; Nagel, A.C.; Preiss, A.; Maier, D. Generation of new Hairless alleles by genomic engineering at the Hairless locus in Drosophila melanogaster. PLoS ONE 2015, 10, e0140007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhou, W.; Dong, W.; Watson, A.M.; Hong, Y. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. USA 2009, 106, 8284–8289. [Google Scholar] [CrossRef] [Green Version]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Bischof, J.; Maeda, R.K.; Hediger, M.; Karch, F.; Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 2007, 104, 3312–3317. [Google Scholar] [CrossRef] [Green Version]
- Moshkin, Y.M.; Armstrong, J.A.; Maeda, R.J.; Tamkun, J.W.; Verijzer, P.; Kennison, J.A.; Karch, F. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 2002, 16, 2621–2626. [Google Scholar] [CrossRef] [Green Version]
- Abed, M.; Barry, K.C.; Kenyagin, D.; Koltun, B.; Phippen, T.M.; Delrow, J.J.; Parkhurst, S.M.; Orian, A. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO J. 2011, 30, 1289–1301. [Google Scholar] [CrossRef] [Green Version]
- Apidianakis, Y.; Grbavec, D.; Stifani, S.; Delidakis, C. Groucho mediates a Ci-independent mechanism of hedgehog repression in the anterior wing pouch. Development 2001, 128, 4361–4370. [Google Scholar] [CrossRef]
- Shiga, Y.; Tanaka-Matakatsu, M.; Hayashi, S. A nuclear GFP/ beta-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 1996, 38, 99–106. [Google Scholar] [CrossRef]
- Dietzl, G.; Chen, D.; Schnorrer, F.; Su, K.C.; Barinova, Y.; Fellner, M.; Gasser, B.; Kinsey, K.; Oppel, S.; Scheiblauer, S.; et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007, 448, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Nagel, A.C.; Maier, D.; Preiss, A. Green fluorescent protein as a convenient and versatile marker for studies on functional genomics in Drosophila. Dev. Genes Evol. 2002, 212, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hazelett, D.; Bourouis, M.; Walldorf, U.; Treisman, J.E. Decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 1998, 125, 3741–3751. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 1996, 87, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.Y.; Sun, Y.H. Use of mini-white as a reporter gene to screen for GAL4 insertions with spatially restricted expression pattern in the developing eye in Drosophila. Genesis 2002, 34, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Azpiazu, N.; Morata, G. Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 2000, 127, 2685–2693. [Google Scholar] [CrossRef]
- Lees, A.D.; Waddington, C.H. Development of bristle mutants. Drosoph. Inf. Serv. 1942, 16, 70–70a. [Google Scholar]
- Bang, A.G.; Hartenstein, V.; Posakony, J.W. Hairless is required for the development of adult sensory organ precursor cells in Drosophila. Development 1991, 111, 89–104. [Google Scholar] [CrossRef]
- Usui, K.; Kimura, K.I. Sequential emergence of the evenly spaced microchaetes on the notum of Drosophila. Rouxs Arch. Dev. Biol. 1993, 203, 151–158. [Google Scholar] [CrossRef]
- Maier, D. Membrane-anchored Hairless protein restrains Notch signaling activity. Genes 2020, 11, 1315. [Google Scholar] [CrossRef]
- Xu, T.; Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993, 117, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Praxenthaler, H.; Nagel, A.C.; Schulz, A.; Zimmermann, M.; Meier, M.; Schmid, H.; Preiss, A.; Maier, D. Hairless-binding deficient Suppressor of Hairless alleles reveal Su(H) protein levels are dependent on complex formation with Hairless. PLoS Genet. 2017, 13, e1006774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahr, B.M.; Brändle, F.; Zimmermann, M.; Nagel, A.C. An RBPJ-Drosophila model reveals the dependence of RBPJ protein stability on the formation of transcription-regulator complexes. Cells 2019, 8, 1252. [Google Scholar] [CrossRef] [Green Version]
- Fields, S.; Song, O. A novel genetic system to detect protein–protein interactions. Nature 1989, 340, 245–246. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, K.; Go, M.J.; Sun, X.; Eastman, D.S.; Artavanis-Tsakonas, S. Suppressor of Hairless-independent events in Notch signaling imply novel pathway elements. Development 1997, 124, 4265–4273. [Google Scholar] [CrossRef] [PubMed]
- Golemis, E.A.; Brent, R. Searching for interacting proteins with the two-hybrid system III. In The Yeast Two-Hybrid System; Bartel, P.L., Fields, S., Eds.; Oxford University Press: Oxford, UK, 1997; pp. 43–72. [Google Scholar]
- Gyuris, J.; Golemis, E.; Chertkov, H.; Brent, R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 1993, 75, 791–803. [Google Scholar] [CrossRef]
- Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 1983, 101, 181–191. [Google Scholar] [CrossRef]
- Smith, D.B.; Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S–transferase. Gene 1988, 67, 31–40. [Google Scholar] [CrossRef]
- Young, C.L.; Britton, Z.T.; Robinson, A.S. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol. J. 2012, 7, 620–634. [Google Scholar] [CrossRef]
- Stolz, B.; Huber, M.; Marković-Housley, Z.; Erni, B. The mannose transporter of Escherichia coli. Structure and function of the IIABMan subunit. J. Biol. Chem. 1993, 268, 27094–27099. [Google Scholar] [CrossRef]
- Kimple, M.E.; Brill, A.L.; Pasker, R.L. Overview of affinity tags for protein purification. Curr. Protoc. Protein Sci. 2013, 73, 9.9.1–9.9.23. [Google Scholar] [CrossRef]
- Riggs, P. Expression and Purification of Maltose-Binding Protein Fusions. Curr. Protoc. Mol. Biol. 2001, 16, 16.6.1–16.6.14. [Google Scholar] [CrossRef]
- Harper, S.; Speicher, D.W. Expression and purification of GST fusion proteins. Curr. Protoc. Protein Sci. 2008, 52, 6.6.1–6.6.26. [Google Scholar] [CrossRef]
- Maier, D.; Nagel, A.C.; Johannes, B.; Preiss, A. Subcellular localization of Hairless protein shows major focus of activity within the nucleus. Mech. Dev. 1999, 89, 195–199. [Google Scholar] [CrossRef]
- Friedmann, D.R.; Kovall, R.A. Thermodynamic and structural insights into CSL-DNA complexes. Protein Sci. 2010, 19, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Maier, D.; Marquart, J.; Thompson-Fontaine, A.; Beck, I.; Wurmbach, E.; Preiss, A. In vivo structure-function analysis of Drosophila Hairless. Mech. Dev. 1997, 67, 97–106. [Google Scholar] [CrossRef]
- Nagel, A.C.; Preiss, A. Fine tuning of Notch signaling by differential co-repressor recruitment during eye development of Drosophila. Hereditas 2011, 148, 77–84. [Google Scholar] [CrossRef]
- Nagel, A.C.; Preiss, A. Mutation of potential MAPK phosphorylation sites in the Notch antagonist Hairless. Hereditas 2014, 151, 102–108. [Google Scholar] [CrossRef]
- Smylla, T.K.; Preiss, A.; Maier, D. In vivo analysis of internal ribosome entry at the Hairless locus by genome engineering in Drosophila. Sci. Rep. 2016, 6, 34881. [Google Scholar] [CrossRef] [Green Version]
- Gowen, J.W. Constitutional Effects of the Hairless Gene in Diploid and Triploid Drosophila. Am. Nat. 1933, 67, 178–180. Available online: https://www.jstor.org/stable/2456741 (accessed on 27 October 2022). [CrossRef]
- Lindsley, D.L.; Zimm, G.G. The Genome of Drosophila Melanogaster; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Maier, D.; Nagel, A.C.; Preiss, A. Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation. Proc. Natl. Acad. Sci. USA 2002, 99, 15480–15485. [Google Scholar] [CrossRef] [PubMed]
- Stern, C. Two or three bristles. Am. Sci. 1954, 42, 212–247. Available online: https://www.jstor.org/stable/27826541 (accessed on 15 December 2017).
- Simpson, P.; Woehl, R.; Usui, K. The development and evolution of bristle patterns in Diptera. Development 1999, 126, 1349–1364. [Google Scholar] [CrossRef]
- Plunkett, C.R. The interaction of genetic and environmental factors in development. J. Exp. Zool. 1926, 46, 181–244. [Google Scholar] [CrossRef]
- Corson, F.; Couturier, L.; Rouault, H.; Mazouni, K.; Schweisguth, F. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 2017, 356, eaai7407. [Google Scholar] [CrossRef] [Green Version]
- Couturier, L.; Mazouni, K.; Corson, F.; Schweisguth, F. Regulation of Notch output dynamics via specific E(spl)-HLH factors during bristle patterning in Drosophila. Nat. Commun. 2019, 10, 3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, A.C.; Maier, D.; Preiss, A. Su(H)-independent activity of Hairless during mechano-sensory organ formation in Drosophila. Mech. Dev. 2000, 94, 3–12. [Google Scholar] [CrossRef]
- Schweisguth, F.; Posakony, J.W. Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis. Development 1994, 120, 1433–1441. [Google Scholar] [CrossRef]
- Schweisguth, F. Asymmetric cell division in the Drosophila bristle lineage: From the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 299–309. [Google Scholar] [CrossRef] [PubMed]
- de Celis, J.F. Positioning and differentiation of veins in the Drosophila wing. Int. J. Dev. Biol. 1998, 42, 335–344. [Google Scholar] [CrossRef]
- Blair, S.S. Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu. Rev. Cell Dev. Biol. 2007, 23, 293–319. [Google Scholar] [CrossRef]
- Johannes, B.; Preiss, A. Wing vein formation in Drosophila melanogaster: Hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech. Dev. 2002, 115, 3–14. [Google Scholar] [CrossRef]
- Babaoğlan, A.B.; Housden, B.E.; Furriols, M.; Bray, S.J. Deadpan contributes to the robustness of the Notch response. PLoS ONE 2013, 8, e75632. [Google Scholar] [CrossRef] [Green Version]
- Posakony, J.W. Nature versus nurture: Asymmetric cell divisions in Drosophila bristle development. Cell 1994, 76, 415–418. [Google Scholar] [CrossRef]
- Go, M.J.; Eastman, D.S.; Artavanis-Tsakonas, S. Cell proliferation control by Notch signaling in Drosophila development. Development 1998, 125, 2031–2040. [Google Scholar] [CrossRef]
- Estella, C.; Baonza, A. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS Genet. 2015, 2, 70–96. [Google Scholar] [CrossRef]
- Slaninova, V.; Krafcikova, M.; Perez-Gomez, R.; Steffal, P.; Trantirek, L.; Bray, S.J.; Krejci, A. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle. Open Biol. 2016, 6, 150155. [Google Scholar] [CrossRef]
- Protzer, C.E.; Wech, I.; Nagel, A.C. Hairless induces cell death by downregulation of EGFR signalling activity. J. Cell Sci. 2008, 121, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Moffat, K.G.; Gould, J.H.; Smith, H.K.; O’Kane, C.J. Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. Development 1992, 114, 681–687. [Google Scholar] [CrossRef]
- Nagel, A.C.; Yu, Y.; Preiss, A. Enhancer of split [E(spl)D] is a gro-independent, hypermorphic mutation in Drosophila. Dev. Genet. 1999, 25, 168–179. [Google Scholar] [CrossRef]
- Marquart, J.; Alexief-Damianof, C.; Preiss, A.; Maier, D. Rapid divergence in the course of Drosophila evolution reveals structural important domains of the Notch antagonist Hairless. Dev. Genes Evol. 1999, 209, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Natsume, R.; Eitoku, M.; Akai, Y.; Sano, N.; Horikoshi, M.; Senda, T. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 2007, 446, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Daganzo, S.M.; Erzberger, J.P.; Lam, W.M.; Skordalakes, E.; Zhang, R.; Franco, A.A.; Brill, S.J.; Adams, P.D.; Berger, J.M.; Kaufman, P.D. Structure and function of the conserved core of histone deposition protein Asf1. Curr. Biol. 2003, 13, 2148–2158. [Google Scholar] [CrossRef] [PubMed]
- Meir, E.; von Dassow, G.; Munro, E.; Odell, G.M. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 2002, 12, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafar-Nejad, H.; Acar, M.; Nolo, R.; Lacin, H.; Pan, H.; Parkhurst, S.M.; Bellen, H.J. Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev. 2003, 17, 2966–2978. [Google Scholar] [CrossRef] [Green Version]
- Troost, T.; Schneider, M.; Klein, T. A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet. 2015, 11, e1004911. [Google Scholar] [CrossRef] [Green Version]
- Bang, A.G.; Bailey, A.M.; Posakony, J.W. Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway. Dev. Biol. 1995, 172, 479–494. [Google Scholar] [CrossRef] [Green Version]
- de Celis, J.F.; Bray, S.; Garcia-Bellido, A. Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 1997, 124, 1919–1928. [Google Scholar] [CrossRef]
- Castro, B.; Barolo, S.; Bailey, A.M.; Posakony, J.W. Lateral inhibition in proneural clusters: Cis-regulatory logic and default repression by Suppressor of Hairless. Development 2005, 132, 3333–3344. [Google Scholar] [CrossRef] [Green Version]
- Siren, M.; Portin, P. Interaction of Hairless, Delta, Enhancer of split and Notch genes of Drosophila melanogaster as expressed in adult morphology. Genet. Res. 1989, 54, 23–26. [Google Scholar] [CrossRef]
- Preiss, A.; Nagel, A.C.; Praxenthaler, H.; Maier, D. Complex genetic interactions of novel Suppressor of Hairless alleles deficient in co-repressor binding. PLoS ONE 2018, 13, e0193956. [Google Scholar] [CrossRef] [Green Version]
- Mackay, T.F. The nature of quantitative genetic variation revisited: Lessons from Drosophila bristles. Bioessays 1996, 18, 113–121. [Google Scholar] [CrossRef]
- Lyman, R.F.; Mackay, T.F. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: The Delta-Hairless gene region. Genetics 1998, 149, 983–998. [Google Scholar] [CrossRef]
- Aerts, S.; Quan, X.J.; Claeys, A.; Naval Sanchez, M.; Tate, P.; Yan, J.; Hassan, B.A. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. PLoS Biol. 2010, 8, e1000435. [Google Scholar] [CrossRef] [Green Version]
- Gho, M.; Bellaïche, Y.; Schweisguth, F. Revisiting the Drosophila microchaete lineage: A novel intrinsically asymmetric cell division generates a glial cell. Development 1999, 126, 3573–3584. [Google Scholar] [CrossRef]
- Barolo, S.; Walker, R.G.; Polyanovsky, A.D.; Freschi, G.; Keil, R.; Posakony, J.W. A Notch-independent activity of Suppressor of Hairless is required for normal mechanoreceptor physiology. Cell 2000, 103, 957–969. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.W.; Avidor-Reiss, T.; Polyanovsky, A.; Posakony, J.W. Complex interplay of three transcription factors in controlling the tormogen differentiation program of Drosophila mechanoreceptors. Dev. Biol. 2009, 329, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Porollo, A.; Meller, J. POLYVIEW-MM: Web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res. 2010, 38, W662–W666. [Google Scholar] [CrossRef]
- Zhou, S.; Fujimuro, M.; Hsieh, J.J.; Chen, L.; Miyamoto, A.; Weinmaster, G.; Hayward, S.D. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol. Cell Biol. 2000, 20, 2400–2410. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Fujimuro, M.; Hsieh, J.J.; Chen, L.; Miyamoto, A.; Hayward, S.D. A Role for SKIP in EBNA2 Activation of CBF1-repressed promoters. J. Virol. 2000, 74, 1939–1947. [Google Scholar] [CrossRef]
H | ASF1 | K (M−1) | Kd (µM) | ΔG° (kcal/mol) | ΔH° (kcal/mol) | −TΔS° (kcal/mol) |
---|---|---|---|---|---|---|
232–358 | 1–154 | 2.5 ± 0.6 × 105 | 4.2 | −7.4 ± 0.1 | −8.6 ± 0.3 | 1.2 ± 0.4 |
315–358 | 1–154 | 6.8 ± 2.6 × 105 | 1.7 | −7.9 ± 0.3 | −8.7 ± 0.2 | 0.8 ± 2.2 |
232–338 | 1–154 | NBD | --- | --- | --- | --- |
339–358 | 1–154 | NBD | --- | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, D.; Bauer, M.; Boger, M.; Sanchez Jimenez, A.; Yuan, Z.; Fechner, J.; Scharpf, J.; Kovall, R.A.; Preiss, A.; Nagel, A.C. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes 2023, 14, 205. https://doi.org/10.3390/genes14010205
Maier D, Bauer M, Boger M, Sanchez Jimenez A, Yuan Z, Fechner J, Scharpf J, Kovall RA, Preiss A, Nagel AC. Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes. 2023; 14(1):205. https://doi.org/10.3390/genes14010205
Chicago/Turabian StyleMaier, Dieter, Milena Bauer, Mike Boger, Anna Sanchez Jimenez, Zhenyu Yuan, Johannes Fechner, Janika Scharpf, Rhett A. Kovall, Anette Preiss, and Anja C. Nagel. 2023. "Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster" Genes 14, no. 1: 205. https://doi.org/10.3390/genes14010205
APA StyleMaier, D., Bauer, M., Boger, M., Sanchez Jimenez, A., Yuan, Z., Fechner, J., Scharpf, J., Kovall, R. A., Preiss, A., & Nagel, A. C. (2023). Genetic and Molecular Interactions between HΔCT, a Novel Allele of the Notch Antagonist Hairless, and the Histone Chaperone Asf1 in Drosophila melanogaster. Genes, 14(1), 205. https://doi.org/10.3390/genes14010205