Support Interval for Two-Sample Summary Data-Based Mendelian Randomization
(This article belongs to the Section Bioinformatics)
Abstract
:1. Introduction
- Relevance:
- It is associated with the exposure x (i.e., );
- Exclusion Restriction:
- It affects the outcome y only through its association with the exposure; and
- Exchangeability:
- It is not associated with any confounders of the exposure–outcome association, which implies .
2. Materials and Methods
2.1. One-Sample Individual-Level Data
2.2. Two Independent Samples with a Selected SNP
2.3. Support of Profile Likelihood
3. An Empirical Data Analysis
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GWAS | genome-wide association study |
IV | instrumental variable |
MR | Mendelian randomization |
SNP | single nucleotide polymorphism |
TSLS | two-stage least-squares |
References
- Hemani, G.; Tilling, K.; Smith, G.D. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017, 13, e1007081. [Google Scholar]
- Zhu, Z.; Zhang, F.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M.; et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481. [Google Scholar] [CrossRef]
- Morrison, J.; Knoblauch, N.; Marcus, J.H.; Stephens, M.; He, X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 2020, 52, 740–747. [Google Scholar] [CrossRef]
- Davey Smith, G.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Hemani, G.; Bowden, J.; Small, D.S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 2020, 48, 1742–1769. [Google Scholar] [CrossRef]
- Wang, K.; Han, S. Effect of selection bias on two sample summary data based Mendelian randomization. Sci. Rep. 2021, 11, 7585. [Google Scholar] [CrossRef]
- Ye, T.; Shao, J.; Kang, H. Debiased inverse-variance weighted estimator in two-sample summary-data Mendelian randomization. Ann. Stat. 2021, 49, 2079–2100. [Google Scholar] [CrossRef]
- Bigdeli, T.B.; Lee, D.; Webb, B.T.; Riley, B.P.; Vladimirov, V.I.; Fanous, A.H.; Kendler, K.S.; Bacanu, S.A. A simple yet accurate correction for winner’s curse can predict signals discovered in much larger genome scans. Bioinformatics 2016, 32, 2598–2603. [Google Scholar] [CrossRef]
- Jiang, T.; Gill, D.; Butterworth, A.S.; Burgess, S. An empirical investigation into the impact of winner’s curse on estimates from Mendelian randomization. medRxiv 2022. [Google Scholar] [CrossRef]
- Forde, A.; Hemani, G.; Ferguson, J. Review and further developments in statistical corrections for Winner’s Curse in genetic association studies. bioRxiv 2022. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Y.; Wang, J.; Small, D.S. Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization. Int. J. Epidemiol. 2019, 48, 1478–1492. [Google Scholar] [CrossRef]
- Jo, E.J.; Han, S.; Wang, K. Estimation of Causal Effect of Age at Menarche on Pubertal Height Growth Using Mendelian Randomization. Genes 2022, 13, 710. [Google Scholar] [CrossRef]
- Hannon, E.; Gorrie-Stone, T.J.; Smart, M.C.; Burrage, J.; Hughes, A.; Bao, Y.; Kumari, M.; Schalkwyk, L.C.; Mill, J. Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. Am. J. Hum. Genet. 2018, 103, 654–665. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Yao, X.; Shen, L. Integrative analysis of summary data from GWAS and eQTL studies implicates genes differentially expressed in Alzheimer’s disease. BMC Genom. 2022, 23, 414. [Google Scholar] [CrossRef]
- Porcu, E.; Rüeger, S.; Lepik, K.; Santoni, F.A.; Reymond, A.; Kutalik, Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 2019, 10, 3300. [Google Scholar] [CrossRef] [Green Version]
- Porcu, E.; Sadler, M.C.; Lepik, K.; Auwerx, C.; Wood, A.R.; Weihs, A.; Sleiman, M.S.B.; Ribeiro, D.M.; Bandinelli, S.; Tanaka, T.; et al. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nat. Commun. 2021, 12, 5647. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 2018, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Lee, B.; Shen, L.; Long, Q.; Alzheimer’s Disease Neuroimaging Initiative; Alzheimer’s Disease Metabolomics Consortium. Integrating multi-omics summary data using a Mendelian randomization framework. Brief. Bioinform. 2022, 23, bbac376. [Google Scholar] [CrossRef] [PubMed]
- Pustejovsky, J.E. 2SLS Standard Errors and the Delta-Method. 2017. Available online: https://www.jepusto.com/delta-method-and-2sls-ses/ (accessed on 11 November 2022).
- Greene, W.H. Econometric Analysis, 6th ed.; Pearson-Prentice Hall: New York, NY, USA, 2008. [Google Scholar]
- Zhao, Q.; Wang, J.; Spiller, W.; Bowden, J.; Small, D.S. Two-sample instrumental variable analyses using heterogeneous samples. Stat. Sci. 2019, 34, 317–333. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Dudbridge, F.; Thompson, S.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2016, 35, 1880–1906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Zou, F.; Wright, F.A. Estimating odds ratios in genome scans: An approximate conditional likelihood approach. Am. J. Hum. Genet. 2008, 82, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.W.F. Likelihood; CUP Archive: New York, NY, USA, 1984. [Google Scholar]
- Perry, J.R.; Day, F.; Elks, C.E.; Sulem, P.; Thompson, D.J.; Ferreira, T.; He, C.; Chasman, D.I.; Esko, T.; Thorleifsson, G.; et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014, 514, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Cousminer, D.L.; Berry, D.J.; Timpson, N.J.; Ang, W.; Thiering, E.; Byrne, E.M.; Taal, H.R.; Huikari, V.; Bradfield, J.P.; Kerkhof, M.; et al. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. Hum. Mol. Genet. 2013, 22, 2735–2747. [Google Scholar] [CrossRef]
- Staiger, D.O.; Stock, J.H. Instrumental Variables Regression with Weak Instruments; Cowles Foundation Discussion Papers: London, UK, 1994. [Google Scholar]
b | |||||
---|---|---|---|---|---|
Method | 0 | 0.5 | 1 | 1.5 | 2 |
Winner’s-curse-corrected | |||||
Mean of | 0.0073 | 1.8743 | 3.7414 | 5.6084 | 7.4755 |
Median of | 0.0022 | 0.6843 | 1.3091 | 1.9327 | 2.5700 |
Coverage of 2-unit support | 0.9587 | 0.9725 | 0.9803 | 0.9816 | 0.9811 |
Power of T for testing | 0.0471 | 0.5217 | 0.9807 | 1.0000 | 1.0000 |
SMR | |||||
Mean of | 0.0019 | 0.3424 | 0.6829 | 1.0234 | 1.3639 |
Median of | −0.3310 | 0.3405 | 0.6795 | 1.0199 | 1.3615 |
Coverage of 95% CI | 0.9648 | 0.8524 | 0.6511 | 0.4966 | 0.3958 |
Power for testing | 0.0353 | 0.4721 | 0.9726 | 1.0000 | 1.0000 |
Winner’s-Curse-Corrected Method | |||
---|---|---|---|
SNP | Gene Name | (5.9-Unit Support) | p-Value |
Total pubertal height growth | |||
rs7514705 | TNNI3K | 2.048 (0.889, 3.807) | |
rs7642134 | POU1F1 | 2.474 (1.264, 4.433) | |
Late pubertal height growth | |||
rs7514705 | TNNI3K | 1.822 (0.057, 5.091) | |
rs7759938 | LIN28B | 0.931 (0.335, 1.571) | |
SMR Method | |||
SNP | Gene Name | (99.94% CI) | p-Value |
Total pubertal height growth | |||
rs7514705 | TNNI3K | 2.042 (0.330, 3.754) | |
rs7642134 | POU1F1 | 2.466 (0.647, 4.284) | |
Late pubertal height growth | |||
rs7759938 | LIN28B | 0.931 (0.330, 1.533) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K. Support Interval for Two-Sample Summary Data-Based Mendelian Randomization. Genes 2023, 14, 211. https://doi.org/10.3390/genes14010211
Wang K. Support Interval for Two-Sample Summary Data-Based Mendelian Randomization. Genes. 2023; 14(1):211. https://doi.org/10.3390/genes14010211
Chicago/Turabian StyleWang, Kai. 2023. "Support Interval for Two-Sample Summary Data-Based Mendelian Randomization" Genes 14, no. 1: 211. https://doi.org/10.3390/genes14010211
APA StyleWang, K. (2023). Support Interval for Two-Sample Summary Data-Based Mendelian Randomization. Genes, 14(1), 211. https://doi.org/10.3390/genes14010211