Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene
Abstract
:1. Introduction
- (1)
- Describe the GJB2 gene pathogenic variant frequencies in a population of hearing-impaired children in northwestern Romania and compare these with other genetic findings in similar Romanian cohorts;
- (2)
- Report on the carrier status for more frequent variants in GJB2 in two Romanian cohorts to contribute to current knowledge needed for genetic diagnosis, counseling and strategy making for genetic screening and diagnosis of deafness.
2. Materials and Methods
2.1. Diagnostic Group
2.1.1. Patient Inclusion
2.1.2. Molecular Testing
2.1.3. Semi-Nested PCR-RFLP and ARMS-PCR
2.1.4. MLPA
2.1.5. Sanger Sequencing by Capillary Electrophoresis
2.2. Carrier Status Evaluation
Genotyping Data
3. Results
3.1. Diagnostic Group
- -
- targeted PCR for two common variants (c.35delG, c.71G>A) would be 25.35% (72/284);
- -
- MLPA P163 would be at best 33.67% (66/196);
- -
- sequencing for exon 2 of the GJB2 gene could reach up to 42.85% (84/196);
- -
- MLPA P163 in conjunction with sequencing for exon 2 of the GJB2 gene could reach up to 43.36% (85/196).
3.2. Carrier Status Evaluation
4. Discussion
4.1. Diagnosis Findings in Context
4.2. Carrier Findings in Context
4.3. Methods and Approaches for Testing GJB2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Who Estimates; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Yang, T.; Guo, L.; Wang, L.; Yu, X. Diagnosis, intervention, and prevention of genetic hearing loss. In Hearing Loss: Mechanisms, Prevention and Cure; Li, H., Chai, R., Eds.; Springer Singapore: Singapore, 2019; pp. 73–92. [Google Scholar]
- Kremer, H. Hereditary hearing loss; about the known and the unknown. Hear. Res. 2019, 376, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, A.M.; Smith, R.J.H. The epidemiology of deafness. Cold Spring Harb. Perspect. Med. 2019, 9, a033258. [Google Scholar] [CrossRef] [Green Version]
- Downie, L.; Halliday, J.; Burt, R.; Lunke, S.; Lynch, E.; Martyn, M.; Poulakis, Z.; Gaff, C.; Sung, V.; Wake, M. Exome sequencing in infants with congenital hearing impairment: A population-based cohort study. Eur. J. Hum. Genet. 2020, 28, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Sabag, A.D.; Dagan, O.; Avraham, K.B. Connexins in hearing loss: A comprehensive overview. J. Basic Clin. Physiol. Pharmacol. 2005, 16, 101–116. [Google Scholar] [CrossRef]
- Chan, D.K.; Chang, K.W. Gjb2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2014, 124, E34–E53. [Google Scholar] [CrossRef]
- Koohiyan, M.; Koohian, F.; Azadegan-Dehkordi, F. Gjb2-related hearing loss in central iran: Review of the spectrum and frequency of gene mutations. Ann. Hum. Genet. 2020, 84, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Ideura, M.; Nishio, S.-y.; Moteki, H.; Takumi, Y.; Miyagawa, M.; Sato, T.; Kobayashi, Y.; Ohyama, K.; Oda, K.; Matsui, T.; et al. Comprehensive analysis of syndromic hearing loss patients in japan. Sci. Rep. 2019, 9, 11976. [Google Scholar] [CrossRef] [Green Version]
- Bouzaher, M.H.; Worden, C.P.; Jeyakumar, A. Systematic review of pathogenic gjb2 variants in the latino population. Otol. Neurotol. 2020, 41, e182–e191. [Google Scholar] [CrossRef]
- Morell, R.J.; Kim, H.J.; Hood, L.J.; Goforth, L.; Friderici, K.; Fisher, R.; Van Camp, G.; Berlin, C.I.; Oddoux, C.; Ostrer, H.; et al. Mutations in the connexin 26 gene (gjb2) among ashkenazi jews with nonsyndromic recessive deafness. New Engl. J. Med. 1998, 339, 1500–1505. [Google Scholar] [CrossRef]
- Lebeko, K.; Bosch, J.; Noubiap, J.J.; Dandara, C.; Wonkam, A. Genetics of hearing loss in africans: Use of next generation sequencing is the best way forward. Pan Afr. Med. J. 2015, 20, 383. [Google Scholar] [CrossRef]
- Worden, C.P.; Jeyakumar, A. Systematic review of hearing loss genes in the african american population. Otol. Neurotol. 2019, 40, e488–e496. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, E.T.; Adadey, S.M.; Esoh, K.; Jonas, M.; de Kock, C.; Amenga-Etego, L.; Awandare, G.A.; Wonkam, A. Age estimate of gjb2-p.(arg143trp) founder variant in hearing impairment in ghana, suggests multiple independent origins across populations. Biology 2022, 11, 476. [Google Scholar] [CrossRef] [PubMed]
- Jagger, D.J.; Forge, A. Connexins and gap junctions in the inner ear--it’s not just about k⁺ recycling. Cell Tissue Res. 2015, 360, 633–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammano, F. Inner ear connexin channels: Roles in development and maintenance of cochlear function. Cold Spring Harb. Perspect. Med. 2019, 9, a033233. [Google Scholar] [CrossRef] [PubMed]
- Kelsell, D.P.; Dunlop, J.; Stevens, H.P.; Lench, N.J.; Liang, J.N.; Parry, G.; Mueller, R.F.; Leigh, I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997, 387, 80–83. [Google Scholar] [CrossRef]
- Qiu, Y.; Zheng, J.; Chen, S.; Sun, Y. Connexin mutations and hereditary diseases. Int. J. Mol. Sci. 2022, 23, 4255. [Google Scholar] [CrossRef]
- del Castillo, F.J.; del Castillo, I. Dfnb1 non-syndromic hearing impairment: Diversity of mutations and associated phenotypes. Front. Mol. Neurosci. 2017, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Mahdieh, N.; Rabbani, B. Statistical study of 35delg mutation of gjb2 gene: A meta-analysis of carrier frequency. Int. J. Audiol. 2009, 48, 363–370. [Google Scholar] [CrossRef]
- Koohiyan, M. Genetics of hereditary hearing loss in the middle east: A systematic review of the carrier frequency of the gjb2 mutation (35delg). Audiol. Neurotol. 2019, 24, 161–165. [Google Scholar] [CrossRef]
- Lucotte, G.; Diéterlen, F. The 35delg mutation in the connexin 26 gene (gjb2) associated with congenital deafness: European carrier frequencies and evidence for its origin in ancient greece. Genet. Test. 2005, 9, 20–25. [Google Scholar] [CrossRef]
- Shinagawa, J.; Moteki, H.; Nishio, S.Y.; Noguchi, Y.; Usami, S.I. Haplotype analysis of gjb2 mutations: Founder effect or mutational hot spot? Genes 2020, 11, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukada, K.; Nishio, S.Y.; Hattori, M.; Usami, S. Ethnic-specific spectrum of gjb2 and slc26a4 mutations: Their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015, 124 (Suppl. 1), 61s–76s. [Google Scholar] [CrossRef] [PubMed]
- Azadegan-Dehkordi, F.; Ahmadi, R.; Koohiyan, M.; Hashemzadeh-Chaleshtori, M. Update of spectrum c. 35delg and c.-23+ 1g> a mutations on the gjb2 gene in individuals with autosomal recessive nonsyndromic hearing loss. Ann. Hum. Genet. 2019, 83, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoeckx, R.L.; Huygen, P.L.M.; Feldmann, D.; Marlin, S.; Denoyelle, F.; Waligora, J.; Mueller-Malesinska, M.; Pollak, A.; PLoSki, R.; Murgia, A.; et al. GJB2 mutations and degree of hearing loss: A multicenter study. Am. J. Hum. Genet. 2005, 77, 945–957. [Google Scholar] [PubMed] [Green Version]
- Cryns, K.; Orzan, E.; Murgia, A.; Huygen, P.; Moreno, F.; Del Castillo, I.; Chamberlin, G.P.; Azaiez, H.; Prasad, S.; Cucci, R. A genotype-phenotype correlation for gjb2 (connexin 26) deafness. J. Med. Genet. 2004, 41, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kenna, M.A.; Feldman, H.A.; Neault, M.W.; Frangulov, A.; Wu, B.-L.; Fligor, B.; Rehm, H.L. Audiologic phenotype and progression in gjb2 (connexin 26) hearing loss. Arch. Otolaryngol. –Head Neck Surg. 2010, 136, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeman, P.; Bendova, O.; Rašková, D.; Malikova, M.; Groh, D.; Kabelka, Z. Double heterozygosity with mutations involving both the gjb2 and gjb6 genes is a possible, but very rare, cause of congenital deafness in the czech population. Ann. Hum. Genet. 2005, 69, 9–14. [Google Scholar] [CrossRef]
- Nishio, S.Y.; Usami, S.I. Outcomes of cochlear implantation for the patients with specific genetic etiologies: A systematic literature review. Acta Oto-Laryngol. 2017, 137, 730–742. [Google Scholar] [CrossRef]
- Abdurehim, Y.; Lehmann, A.; Zeitouni, A.G. Predictive value of gjb2 mutation status for hearing outcomes of pediatric cochlear implantation. Otolaryngol. –Head Neck Surg. 2017, 157, 16–24. [Google Scholar] [CrossRef]
- Lazăr, C.; Popp, R.; Trifa, A.; Mocanu, C.; Mihut, G.; Al-Khzouz, C.; Tomescu, E.; Figan, I.; Grigorescu-Sido, P. Prevalence of the c.35delg and p.W24x mutations in the gjb2 gene in patients with nonsyndromic hearing loss from north-west romania. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 351–355. [Google Scholar] [CrossRef]
- Wroblewska-Seniuk, K.; Greczka, G.; Dabrowski, P.; Szyfter-Harris, J.; Mazela, J. Hearing impairment in premature newborns—Analysis based on the national hearing screening database in poland. PLoS ONE 2017, 12, e0184359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-H.; Yang, C.-Y.; Lien, R.; Chu, S.-M.; Hsu, J.-F.; Fu, R.-H.; Chiang, M.-C. Prevalence and independent risk factors for hearing impairment among very low birth weight infants. Int. J. Pediatr. Otorhinolaryngol. 2017, 93, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Simsek, M.; Al-Wardy, N.; Al-Khabory, M. A polymerase chain reaction-restriction fragment length polymorphism (pcr-rflp) test to detect the common mutation (35delg) in the connexin-26 gene. SQU J. Sci. Res. -Med. Sci. 2001, 3, 9. [Google Scholar]
- Scott, D.; Kraft, M.; Carmi, R.; Ramesh, A.; Elbedour, K.; Yairi, Y.; Srisailapathy, C.S.; Rosengren, S.; Markham, A.; Mueller, R. Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum. Mutat. 1998, 11, 387–394. [Google Scholar] [CrossRef]
- Abe, S.; Usami, S.-i.; Shinkawa, H.; Kelley, P.M.; Kimberling, W.J. Prevalent connexin 26 gene (gjb2) mutations in japanese. J. Med. Genet. 2000, 37, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. Varsome: The human genomic variant search engine. Bioinformatics 2018, 35, 1978–1980. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Azaiez, H.; Booth, K.T.; Ephraim, S.S.; Crone, B.; Black-Ziegelbein, E.A.; Marini, R.J.; Shearer, A.E.; Sloan-Heggen, C.M.; Kolbe, D.; Casavant, T.; et al. Genomic landscape and mutational signatures of deafness-associated genes. Am. J. Hum. Genet. 2018, 103, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Hunt, S.E.; Moore, B.; Amode, R.M.; Armean, I.M.; Lemos, D.; Mushtaq, A.; Parton, A.; Schuilenburg, H.; Szpak, M.; Thormann, A. Annotating and prioritizing genomic variants using the ensembl variant effect predictor—A tutorial. Hum. Mutat. 2021, 43, 986–997. [Google Scholar] [CrossRef]
- Resmerita, I.; Cozma, R.S.; Popescu, R.; Radulescu, L.M.; Panzaru, M.C.; Butnariu, L.I.; Caba, L.; Ilie, O.D. Genetics of hearing impairment in north-eastern romania-a cost-effective improved diagnosis and literature review. Genes 2020, 11, 1506. [Google Scholar] [CrossRef]
- Dragomir, C.; Stan, A.; Stefanescu, D.T.; Sarafoleanu, C.; Severin, E.; Savu, L. Gjb2 gene testing, etiologic diagnosis and genetic counseling in romanian persons with prelingual hearing loss. Int. J. Clin. Pediatr. 2015, 4, 121–126. [Google Scholar] [CrossRef]
- Rădulescu, L.; Mârţu, C.; Birkenhäger, R.; Cozma, S.; Ungureanu, L.; Laszig, R. Prevalence of mutations located at the dfnb1 locus in a population of cochlear implanted children in eastern romania. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.; Mocanu, A.I.; Bonciu, A.; Coadă, G.; Mocanu, H. Prevalence of gjb2 gene mutations correlated to presence of clinical and environmental risk factors in the etiology of congenital sensorineural hearing loss of the romanian population. Exp. Ther. Med. 2021, 21, 612. [Google Scholar] [CrossRef] [PubMed]
- Safka Brozkova, D.; Uhrova Meszarosova, A.; Lassuthova, P.; Varga, L.; Staněk, D.; Borecká, S.; Laštůvková, J.; Čejnová, V.; Rašková, D.; Lhota, F. The cause of hereditary hearing loss in gjb2 heterozygotes—A comprehensive study of the gjb2/dfnb1 region. Genes 2021, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Wu, P.-C.; Tsai, C.-Y.; Lin, Y.-H.; Lo, M.-Y.; Hsu, S.-J.; Lin, P.-H.; Erdenechuluun, J.; Wu, H.-P.; Hsu, C.-J.; et al. Hearing impairment with monoallelic gjb2 variants: A gjb2 cause or non-gjb2 cause? J. Mol. Diagn. 2021, 23, 1279–1291. [Google Scholar] [CrossRef]
- Kecskeméti, N.; Szönyi, M.; Gáborján, A.; Küstel, M.; Milley, G.M.; Süveges, A.; Illés, A.; Kékesi, A.; Tamás, L.; Molnár, M.J.; et al. Analysis of gjb2 mutations and the clinical manifestation in a large hungarian cohort. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 2441–2448. [Google Scholar] [CrossRef]
- Minárik, G.; Ferák, V.; Feráková, E.; Ficek, A.; Poláková, H.; Kádasi, L. High frequency of gjb2 mutation w24x among slovak romany (gypsy) patients with non-syndromic hearing loss (nshl). Gen. Physiol. Biophys. 2003, 22, 549–556. [Google Scholar]
- Bouwer, S.; Angelicheva, D.; Chandler, D.; Seeman, P.; Tournev, I.; Kalaydjieva, L. Carrier rates of the ancestral indian w24x mutation in gjb2 in the general gypsy population and individual subisolates. Genet. Test. 2007, 11, 455–458. [Google Scholar] [CrossRef]
- Dragomir, C.; Stan, A.; Stefanescu, D.T.; Savu, L.; Severin, E. Prenatal screening for the 35delg gjb2, del (gjb6-d13s1830), and del (gjb6-d13s1854) mutations in the romanian population. Genet. Test. Mol. Biomark. 2011, 15, 749–753. [Google Scholar] [CrossRef]
- Smith, R.J.; Hone, S. Genetic screening for deafness. Pediatr. Clin. North Am. 2003, 50, 315–329. [Google Scholar] [CrossRef]
- Schimmenti, L.A.; Warman, B.; Schleiss, M.R.; Daly, K.A.; Ross, J.A.; McCann, M.; Jurek, A.M.; Berry, S.A. Evaluation of newborn screening bloodspot-based genetic testing as second tier screen for bedside newborn hearing screening. Genet. Med. 2011, 13, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Tsai, C.-H.; Hung, C.-C.; Lin, Y.-H.; Lin, Y.-H.; Huang, F.-L.; Tsao, P.-N.; Su, Y.-N.; Lee, Y.L.; Hsieh, W.-S.; et al. Newborn genetic screening for hearing impairment: A population-based longitudinal study. Genet. Med. 2017, 19, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Fu, D.; Ming, Y.; Yang, J.; Huang, Q.; Lin, W.; Zhang, H.; Zhang, B.; Zhou, A.; Hu, X. Large scale newborn deafness genetic screening of 142,417 neonates in wuhan, china. PLoS One 2018, 13, e0195740. [Google Scholar] [CrossRef]
- Han, G.; Xu, Z.; Li, Q.; Shen, H.; Zhang, W.; Liang, J. Detection of hereditary hearing loss gene by DNA microarray. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3538–3542. [Google Scholar]
- Adadey, S.M.; Manyisa, N.; Mnika, K.; de Kock, C.; Nembaware, V.; Quaye, O.; Amedofu, G.K.; Awandare, G.A.; Wonkam, A. Gjb2 and gjb6 mutations in non-syndromic childhood hearing impairment in ghana. Front. Genet. 2019, 10, 841. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, N.; Moteki, H.; Takahashi, M.; Nishio, S.-y.; Arai, Y.; Yamashita, Y.; Oridate, N.; Usami, S.-i. An effective screening strategy for deafness in combination with a next-generation sequencing platform: A consecutive analysis. J. Hum. Genet. 2016, 61, 253–261. [Google Scholar] [CrossRef]
- Cabanillas, R.; Diñeiro, M.; Cifuentes, G.A.; Castillo, D.; Pruneda, P.C.; Álvarez, R.; Sánchez-Durán, N.; Capín, R.; Plasencia, A.; Viejo-Díaz, M.; et al. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in spanish patients. BMC Med. Genom. 2018, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.; Biswas, S.; Li, M.H.; Jayaraman, V.; Slack, I.; Romasko, E.J.; Sasson, A.; Brunton, J.; Rajagopalan, R.; Sarmady, M.; et al. Utility and limitations of exome sequencing as a genetic diagnostic tool for children with hearing loss. Genet. Med. 2018, 20, 1663–1676. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-H.; Chang, P.-Y.; Chang, S.-C.; Lu, J.-J.; Wu, C.-M. Mutation screening in non-syndromic hearing loss patients with cochlear implantation by massive parallel sequencing in taiwan. PLoS ONE 2019, 14, e0211261. [Google Scholar] [CrossRef] [Green Version]
- Ołdak, M.; Lechowicz, U.; Pollak, A.; Oziębło, D.; Skarżyński, H. Overinterpretation of high throughput sequencing data in medical genetics: First evidence against tmprss3/gjb2 digenic inheritance of hearing loss. J. Transl. Med. 2019, 17, 269. [Google Scholar] [CrossRef]
- Truong, B.T.; Yarza, T.K.L.; Bootpetch Roberts, T.; Roberts, S.; Xu, J.; Steritz, M.J.; Tobias-Grasso, C.A.M.; Azamian, M.; Lalani, S.R.; Mohlke, K.L.; et al. Exome sequencing reveals novel variants and unique allelic spectrum for hearing impairment in filipino cochlear implantees. Clin. Genet. 2019, 95, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Koohiyan, M. Next generation sequencing and genetics of hereditary hearing loss in the iranian population: New insights from a systematic review. Int. J. Pediatr. Otorhinolaryngol. 2020, 129, 109756. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.; Halliday, J.; Lewis, S.; Lunke, S.; Lynch, E.; Martyn, M.; Gaff, C.; Jarmolowicz, A.; Amor, D.J. Exome sequencing in newborns with congenital deafness as a model for genomic newborn screening: The baby beyond hearing project. Genet. Med. 2020, 22, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Rentas, S.; Abou Tayoun, A. Utility of droplet digital pcr and ngs-based cnv clinical assays in hearing loss diagnostics: Current status and future prospects. Expert Rev. Mol. Diagn. 2021, 21, 213–221. [Google Scholar] [CrossRef]
- Sommen, M.; Wuyts, W.; Van Camp, G. Molecular diagnostics for hereditary hearing loss in children. Expert Rev. Mol. Diagn. 2017, 17, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.C.; Palumbos, J.C. Advances in the understanding of the genetic causes of hearing loss in children inform a rational approach to evaluation. Indian J. Pediatr. 2016, 83, 1150–1156. [Google Scholar] [CrossRef]
Targeted PCR for Common Variants GJB2 (c.35delG, c.71G>A) and Large Deletions on GJB6 | |
---|---|
Subjects evaluated (n) | 284 |
Definite diagnosis | 72 |
c.35delG/c.35delG | 62 |
c.71G>A/c.71G>A c.35delG/c.71G>A c.35delG/del GJB6-D13S183 | 5 4 1 |
Monoallelic cases | 34 |
c.35delG/? c.71G>A/? | 30 4 |
No diagnosis | 178 |
MLPA P163 and Sequencing Exon 2 GJB2 | |
---|---|
Subjects evaluated (n) | 124 |
Definite diagnosis | 12 |
c.35delG/c.551G>C c.35delG/c.101T>G c.35delG/c.269T>C c.35delG/c.370C>T c.35delG/c.314_329del c.35delG/exon 1 WFS1 c.71G>A/c.551G>C c.299_300delAT/c.314_329del | 5 1 1 1 1 1 1 1 |
Monoallelic cases * | 9 |
c.35delG/? c.71G>A/? | 7 2 |
No diagnosis | 103 |
Chr:Pos (GRCh37) | Identifier Rs NM | Nucleotide Change (DNA) | ClinVar | GSA v1 Cluj n = 416 (AF) | GSA v3 Craiova n = 472 (AF) | AF 1000 G EUR |
---|---|---|---|---|---|---|
13:20763395 | rs111033253 NM_004004.6: c.313_326del | CCCTT GATGA ACTTC>C | Pathogenic | 0 | 1/472 (0.0010) | - |
13:20763452 | rs80338945 NM_004004.6: c.269T>C (p.Leu90Pro) | A>G | Pathogenic | NA | 1/472 (0.0010) | - |
13:20763612 | rs72474224 NM_004004.6(GJB2): c.109G>T (p.Val37Phe) NM_004004.6(GJB2): c.109G>A (p.Val37Ile) | C>A C>T | Likely pathogenic Pathogenic | 0 3/416 (0.0036) | 0 1/472 (0.0010) | - 0 |
13:20763620 | rs35887622 NM_004004.6(GJB2): c.101T>G (p.Met34Arg) NM_004004.6(GJB2): c.101T>C (p.Met34Thr) | A>C A>G | Likely pathogenic Pathogenic | 0 5/416 (0.0060) | 0 5/472 (0.0053) | - 0.0209 |
13:20763686 | rs80338939 NM_004004.6(GJB2): c.35del (p.Gly12fs) NM_004004.6(GJB2): c.35dup (p.Val13fs) | CC>C CC>CCC | Pathogenic Uncertain | NA NA | 18/472 (0.0191) 0 | 0.0089 - |
13:20766921 | rs80338940 NM_004004.6: c.-23 + 1G>A | C>T | Pathogenic | 0 | 1/472 (0.0010) | - |
Cumulated risk allele presence | 27/472 (0.0284) |
Identifier Rs (dbSNP 154) GJB2-NM_004004.6 Protein Change | ACMG Score | Current Study | Resmeriță et al. [42] | Rădulescu et al. [44] | Dragomir et al. [43] | Neagu et al. [45] |
---|---|---|---|---|---|---|
Region in Romania * | Northwestern | Northeastern | Eastern | Southern | Southern | |
rs80338940 c.-23 + 1G>A | Pathogenic (PP5, PVS1, PM2) | - | 6 Het | - | 3 Hom | - |
rs80338939 c.35delG p.G12Vfs * 2 | Pathogenic (PS3, PVS1, PP5) | 62 Hom 15 C/H 20 Het | 57 Hom 30 C/H 26 Het | 12 Hom 5 C/H 3 Het | 46 Hom 6 C/H 5 Het | 10 Hom 2 C/H |
rs104894396 c.71G>A p.Trp24Ter | Pathogenic (PP5, PVS1, PM2) | 5 Hom 5 C/H 3 Het | 8 C/H 7 Het | 2 C/H | 3 Hom 6 C/H 2 Het | 2 Hom 2 C/H 1 Het |
rs564084861 c.100A>T p.Met34Leu | Pathogenic (PM1, PM5, PM2, PP2) | - | 3 Het | - | - | NA |
rs35887622 c.101T>C p.Met34Thr | Pathogenic (PS3, PM1, PM5, PP5, PP2) | 1 C/H 2 Het | 10 C/H 9 Het | - | - | NA |
rs72474224 c.109G>A p.Val37Ile | Pathogenic (PP5, PM1, PM5, PS1, PP2) | - | 3 Het | - | - | NA |
rs80338945 c.269T>C p.Leu90Pro | Pathogenic (PP5, PM1, PM2, PP2, PP3) | 1 C/H 1 Het | 3 Het | - | - | NA |
rs111033204 c.299_300delAT p.His100ArgfsTer14 | Pathogenic (PP5, PVS1, PM2) | 1 C/H | 1 C/H | - | NA | |
rs111033253 c.313_326del p.Lys105GlyfsTer5 | Pathogenic (PVS1, PP5, PM2) | - | 6 C/H 2 Het | 2 C/H | - | NA |
rs797045596 c.314_329del p.Lys105ArgfsTer2 | Pathogenic (PVS1, PM2, PP5) | 1 C/H | - | - | NA | |
rs80338947 c.358_360delGAG p.Glu120del | Pathogenic (PP5, PM1, PM2, PM4, PP3) | - | - | 1 Het | - | NA |
rs397516874 c.370C>T p.Gln124Ter | Pathogenic (PVS1, PP5, PM2) | 1 C/H | - | - | - | NA |
rs80338950 c.551G>C p.Arg184Pro | Pathogenic (PM1, PM2, PM5, PP5, PP2, PP3) | 6 C/H 1 Het | 2 C/H 2 Het | 2 C/H | - | NA |
in-del | 1 del WFS1 exon 1 | 3 del GJB2 exon 1 4 del WFS exons 1-8 | NA | NA | NA | |
Cases included, testing strategy | n = 284 ** targeted c.35delG, c.71G>A; out of which n = 126 followed with capillary sequencing and MLPA | n = 291 capillary sequencing and MLPA | n = 45 capillary sequencing | n = 125 targeted c.35delG; out of which n = 79 capillary sequencing | n = 34 targeted c.35delG c.71G>A | |
Definite etio-pathogenic diagnosis ** | * 72/284 (25.35%) | 92/291 (31.61%) | 18/45 (40%) | 52/125 (44%) | 12/34 (41.17%) | |
Monoallelic cases *** | * 34/284 (11.97%) | 61/291 (20.96%) | 4/45 (8.89%) | 7/125 (5.6%) | 1/34 (2.94%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riza, A.-L.; Alkhzouz, C.; Farcaș, M.; Pîrvu, A.; Miclea, D.; Mihuț, G.; Pleșea, R.-M.; Ștefan, D.; Drodar, M.; Lazăr, C.; et al. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes 2023, 14, 69. https://doi.org/10.3390/genes14010069
Riza A-L, Alkhzouz C, Farcaș M, Pîrvu A, Miclea D, Mihuț G, Pleșea R-M, Ștefan D, Drodar M, Lazăr C, et al. Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes. 2023; 14(1):69. https://doi.org/10.3390/genes14010069
Chicago/Turabian StyleRiza, Anca-Lelia, Camelia Alkhzouz, Marius Farcaș, Andrei Pîrvu, Diana Miclea, Gheorghe Mihuț, Răzvan-Mihail Pleșea, Delia Ștefan, Mihaela Drodar, Călin Lazăr, and et al. 2023. "Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene" Genes 14, no. 1: 69. https://doi.org/10.3390/genes14010069
APA StyleRiza, A. -L., Alkhzouz, C., Farcaș, M., Pîrvu, A., Miclea, D., Mihuț, G., Pleșea, R. -M., Ștefan, D., Drodar, M., Lazăr, C., on behalf of the HINT Study, on behalf of the FUSE Study, Ioana, M., & Popp, R. (2023). Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes, 14(1), 69. https://doi.org/10.3390/genes14010069