Genetic Diagnosis for 64 Patients with Inherited Retinal Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Assessment
3.2. Molecular Findings
3.3. Genotype Phenotype Correlations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, T.; Friedman, D.S.; Bradley, C.; Massof, R. Estimates of incidence and prevalence of visual impairment, low vision, and blindness in the united states. JAMA Ophthalmol. 2018, 136, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Bessant, D.A.; Ali, R.R.; Bhattacharya, S.S. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr. Opin. Genet. Dev. 2001, 11, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Sohocki, M.M.; Daiger, S.P.; Bowne, S.J.; Rodriquez, J.A.; Northrup, H.; Heckenlively, J.R.; Birch, D.; Mintz-Hittner, H.; Ruiz, R.S.; Lewis, R.A.; et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum. Mutat. 2001, 17, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Fahim, A.T.; Daiger, S.P.; Weleber, R.G. Nonsyndromic retinitis pigmentosa overview. In Genereviews((r)); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Daiger, S.P.; Sullivan, L.S.; Bowne, S.J. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 2013, 84, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.L.; Pierce, E.A.; Laster, A.M.; Daiger, S.P.; Birch, D.G.; Ash, J.D.; Iannaccone, A.; Flannery, J.G.; Sahel, J.A.; Zack, D.J.; et al. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl. Vis. Sci. Technol. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Romero, I.; Gordo, G.; Iancu, I.F.; Del Pozo-Valero, M.; Almoguera, B.; Blanco-Kelly, F.; Carreño, E.; Jimenez-Rolando, B.; Lopez-Rodriguez, R.; Lorda-Sanchez, I.; et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci. Rep. 2021, 11, 1526. [Google Scholar] [CrossRef]
- Colombo, L.; Maltese, P.E.; Castori, M.; El Shamieh, S.; Zeitz, C.; Audo, I.; Zulian, A.; Marinelli, C.; Benedetti, S.; Costantini, A.; et al. Molecular Epidemiology in 591 Italian Probands with Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Investig. Opthalmol. Vis. Sci. 2021, 62, 13. [Google Scholar] [CrossRef]
- Motta, F.; Martin, R.P.; Filippelli-Silva, R.; Salles, M.V.; Sallum, J.M.F. Relative frequency of inherited retinal dystrophies in Brazil. Sci. Rep. 2018, 8, 15939. [Google Scholar] [CrossRef] [Green Version]
- Whelan, L.; Dockery, A.; Wynne, N.; Zhu, J.; Stephenson, K.; Silvestri, G.; Turner, J.; O’Byrne, J.J.; Carrigan, M.; Humphries, P.; et al. Findings from a Genotyping Study of over 1000 People with Inherited Retinal Disorders in Ireland. Genes 2020, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Sharon, D.; Ben-Yosef, T.; Cohen, N.G.; Pras, E.; Gradstein, L.; Soudry, S.; Mezer, E.; Zur, D.; Abbasi, A.H.; Zeitz, C.; et al. A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Hum. Mutat. 2020, 41, 140–149. [Google Scholar] [CrossRef]
- Jacobson, S.G. Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations. JAMA Ophthalmol. 2012, 130, 9–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, A.M.; High, K.A.; Auricchio, A.; Wright, J.F.; Pierce, E.A.; Testa, F.; Mingozzi, F.; Bennicelli, J.L.; Ying, G.S.; Rossi, S.; et al. Age-dependent effects of rpe65 gene therapy for leber’s congenital amaurosis: A phase 1 dose-escalation trial. Lancet 2009, 374, 1597–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, A.M.; Russell, S.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Drack, A.V.; Simonelli, F.; Leroy, B.P.; Reape, K.Z.; High, K.A.; et al. Durability of Voretigene Neparvovec for Biallelic RPE65-Mediated Inherited Retinal Disease. Ophthalmology 2021, 128, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, N.G.; Abboud, E.B.; Nowilaty, S.R.; Alkuraya, H.; Alhommadi, A.; Cai, H.; Hou, R.; Deng, W.-T.; Boye, S.L.; Almaghamsi, A.; et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: Results of a phase I trial. Hum. Genet. 2016, 135, 327–343. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; de la Camara, C.M.-F.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
- Parker, M.A.; Erker, L.R.; Audo, I.; Choi, D.; Mohand-Said, S.; Sestakauskas, K.; Benoit, P.; Appelqvist, T.; Krahmer, M.; Ségaut-Prévost, C.; et al. Three-Year Safety Results of SAR422459 (EIAV-ABCA4) Gene Therapy in Patients With ABCA4-Associated Stargardt Disease: An Open-Label Dose-Escalation Phase I/IIa Clinical Trial, Cohorts 1-5. Am. J. Ophthalmol. 2022, 240, 285–301. [Google Scholar] [CrossRef]
- Jiang, L.; Wheaton, D.; Bereta, G.; Zhang, K.; Palczewski, K.; Birch, D.G.; Baehr, W. A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vis. Res. 2008, 48, 2425–2432. [Google Scholar] [CrossRef] [Green Version]
- Wawrocka, A.; Skorczyk-Werner, A.; Wicher, K.; Niedziela, Z.; Ploski, R.; Rydzanicz, M.; Sykulski, M.; Kociecki, J.; Weisschuh, N.; Kohl, S.; et al. Novel variants identified with next-generation sequencing in Polish patients with cone-rod dystrophy. Mol. Vis. 2018, 24, 326–339. [Google Scholar]
- McLaughlin, M.E.; Sandberg, M.A.; Berson, E.L.; Dryja, T.P. Recessive mutations in the gene encoding the β–subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat. Genet. 1993, 4, 130–134. [Google Scholar] [CrossRef]
- Carss, K.J.; Arno, G.; Erwood, M.; Stephens, J.; Sanchis-Juan, A.; Hull, S.; Megy, K.; Grozeva, D.; Dewhurst, E.; Malka, S.; et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017, 100, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Mittal, R.; Bencie, N.; Parrish, J.M.; Liu, G.; Mittal, J.; Yan, D.; Liu, X.Z. An Update on Phosphodiesterase Mutations Underlying Genetic Etiology of Hearing Loss and Retinitis Pigmentosa. Front. Genet. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Duncan, J.L.; Maranhao, B.; Kozak, I.; Branham, K.; Gabriel, L.; Lin, J.H.; Barteselli, G.; Navani, M.; Suk, J.; et al. Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiol. Genom. 2017, 49, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Nash, B.; Symes, R.; Goel, H.; Dinger, M.E.; Bennetts, B.; Grigg, J.R.; Jamieson, R.V. NMNAT1 variants cause cone and cone-rod dystrophy. Eur. J. Hum. Genet. 2018, 26, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Eblimit, A.; Zaneveld, S.A.; Liu, W.; Thomas, K.; Wang, K.; Li, Y.; Mardon, G.; Chen, R. NMNAT1 E257K variant, associated with Leber Congenital Amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp. Eye Res. 2018, 173, 32–43. [Google Scholar] [CrossRef]
- Chiang, P.-W.; Wang, J.; Chen, Y.; Fu, Q.; Zhong, J.; Chen, Y.; Yi, X.; Wu, R.; Gan, H.; Shi, Y.; et al. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat. Genet. 2012, 44, 972–974. [Google Scholar] [CrossRef]
- Sears, J.E.; Aaberg, T.A.; Daiger, S.P.; Moshfeghi, D.M. Splice site mutation in the peripherin/RDS gene associated with pattern dystrophy of the retina. Am. J. Ophthalmol. 2001, 132, 693–699. [Google Scholar] [CrossRef]
- Sullivan, L.S.; Bowne, S.J.; Birch, D.G.; Hughbanks-Wheaton, D.; Heckenlively, J.R.; Lewis, R.A.; Garcia, C.A.; Ruiz, R.S.; Blanton, S.H.; Northrup, H.; et al. Prevalence of Disease-Causing Mutations in Families with Autosomal Dominant Retinitis Pigmentosa: A Screen of Known Genes in 200 Families. Investig. Opthalmol. Vis. Sci. 2006, 47, 3052–3064. [Google Scholar] [CrossRef]
- Zampaglione, E.; Kinde, B.; Place, E.M.; Navarro-Gomez, D.; Maher, M.; Jamshidi, F.; Nassiri, S.; Mazzone, J.A.; Finn, C.; Schlegel, D.; et al. Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations. Anesth. Analg. 2020, 22, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Shankar, S.P.; Birch, D.G.; Ruiz, R.S.; Hughbanks-Wheaton, D.K.; Sullivan, L.S.; Bowne, S.J.; Stone, E.M.; Daiger, S.P. Founder Effect of a c.828+3A>T Splice Site Mutation in Peripherin 2 (PRPH2) Causing Autosomal Dominant Retinal Dystrophies. JAMA Ophthalmol. 2015, 133, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.J.; Goetz, K.E.; Guan, B.; Ullah, E.; Blain, D.; Zein, W.M.; Tumminia, S.J.; Hufnagel, R.B. Genotype–phenotype associations in a large PRPH2 -related retinopathy cohort. Hum. Mutat. 2020, 41, 1528–1539. [Google Scholar] [CrossRef]
- Shankar, S.P.; Hughbanks-Wheaton, D.K.; Birch, D.G.; Sullivan, L.S.; Conneely, K.N.; Bowne, S.J.; Stone, E.M.; Daiger, S.P. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers. Investig. Opthalmol. Vis. Sci. 2016, 57, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Mauro-Herrera, M.; Chiang, J.; Radojevic, B.; Bennett, L. Functional Evaluation of Splicing for Variants of Uncertain Significance in Patients with Inherited Retinal Diseases. Genes 2021, 12, 993. [Google Scholar] [CrossRef] [PubMed]
- Radojevic, B.; Jones, K.; Klein, M.; Mauro-Herrera, M.; Kingsley, R.; Birch, D.G.; Bennett, L.D. Variable expressivity in patients with autosomal recessive retinitis pigmentosa associated with the gene CNGB1. Ophthalmic Genet. 2021, 42, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Schindler, E.I.; Nylen, E.L.; Ko, A.C.; Affatigato, L.M.; Heggen, A.C.; Wang, K.; Sheffield, V.C.; Stone, E.M. Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population. Hum. Mol. Genet. 2010, 19, 3693–3701. [Google Scholar] [CrossRef]
- Jayasundera, K.; Branham, K.; Othman, M.; Rhoades, W.R.; Karoukis, A.J.; Khanna, H.; Swaroop, A.; Heckenlively, J.R. RP2 Phenotype and Pathogenetic Correlations in X-Linked Retinitis Pigmentosa. JAMA Ophthalmol. 2010, 128, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuer, D.K.; Yashar, B.M.; Filippova, E.; Hiriyanna, S.; Lyons, R.H.; Mears, A.J.; Asaye, B.; Acar, C.; Vervoort, R.; Wright, A.F.; et al. A Comprehensive Mutation Analysis of RP2 and RPGR in a North American Cohort of Families with X-Linked Retinitis Pigmentosa. Am. J. Hum. Genet. 2002, 70, 1545–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renner, A.B.; Fiebig, B.S.; Weber, B.H.; Wissinger, B.; Andreasson, S.; Gal, A.; Cropp, E.; Kohl, S.; Kellner, U. Phenotypic Variability and Long-term Follow-up of Patients with Known and Novel PRPH2/RDS Gene Mutations. Am. J. Ophthalmol. 2009, 147, 518–530.e1. [Google Scholar] [CrossRef]
- Kohl, S.; Baumann, B.; Broghammer, M.; Jägle, H.; Sieving, P.; Kellner, U.; Spegal, R.; Anastasi, M.; Zrenner, E.; Sharpe, L.T.; et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 2000, 9, 2107–2116. [Google Scholar] [CrossRef]
- Eksandh, L.; Kohl, S.; Wissinger, B. Clinical features of achromatopsia in Swedish patients with defined genotypes. Ophthalmic Genet. 2002, 23, 109–120. [Google Scholar] [CrossRef]
- Johnson, S.; Michaelides, M.; Aligianis, I.A.; Ainsworth, J.R.; Mollon, J.D.; Maher, E.R.; Moore, A.T.; Hunt, D.M. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J. Med. Genet. 2004, 41, e20. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Varsanyi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jägle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2005, 13, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, K.M.; Sandberg, M.A.; Gorji, N.; Berson, E.L.; Dryja, T.P. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum. Mutat. 2005, 25, 248–258. [Google Scholar] [CrossRef]
- Wiszniewski, W.; Lewis, R.A.; Lupski, J.R. Achromatopsia: The CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Qual. Life Res. 2007, 121, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.K.; Van Cauwenbergh, C.; Rother, C.; Baumann, B.; Reuter, P.; De Baere, E.; Wissinger, B.; Kohl, S.; ACHM Study Group. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 2017, 38, 1579–1591. [Google Scholar] [CrossRef]
- Kinnick, T.R.; Mullins, R.F.; Dev, S.; Leys, M.; Mackey, D.A.; Kay, C.N.; Lam, B.L.; Fishman, G.; Traboulsi, E.; Iezzi, R.; et al. Autosomal recessive vitelliform macular dystrophy in a large cohort of vitelliform macular dystrophy patients. Retina 2011, 31, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Jespersgaard, C.; Fang, M.; Bertelsen, M.; Dang, X.; Jensen, H.; Chen, Y.; Bech, N.; Dai, L.; Rosenberg, T.; Zhang, J.; et al. Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy. Sci. Rep. 2019, 9, 1219. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, R.; Lennon, A.; Bird, A.C.; Tulloch, B.; Axton, R.; Miano, M.G.; Meindl, A.; Meitinger, T.; Ciccodicola, A.; Wright, A.F. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet. 2000, 25, 462–466. [Google Scholar] [CrossRef]
- Bader, I.; Brandau, O.; Achatz, H.; Apfelstedt-Sylla, E.; Hergersberg, M.; Lorenz, B.; Wissinger, B.; Wittwer, B.; Rudolph, G.; Meindl, A.; et al. X-linked Retinitis Pigmentosa: RPGR Mutations in Most Families with Definite X Linkage and Clustering of Mutations in a Short Sequence Stretch of Exon ORF15. Investig. Opthalmol. Vis. Sci. 2003, 44, 1458–1463. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.A.; Shroyer, N.F.; Singh, N.; Allikmets, R.; Hutchinson, A.; Li, Y.; Lupski, J.R.; Leppert, M.; Dean, M. Genotype/Phenotype Analysis of a Photoreceptor-Specific ATP-Binding Cassette Transporter Gene, ABCR, in Stargardt Disease. Am. J. Hum. Genet. 1999, 64, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Klevering, B.J.; Yzer, S.; Rohrschneider, K.; Zonneveld, M.; Allikmets, R.; Born, L.I.V.D.; Maugeri, A.; Hoyng, C.B.; Cremers, F.P. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone–rod dystrophy and retinitis pigmentosa. Eur. J. Hum. Genet. 2004, 12, 1024–1032. [Google Scholar] [CrossRef]
- Stone, E.M.; Andorf, J.L.; Whitmore, S.S.; DeLuca, A.P.; Giacalone, J.C.; Streb, L.M.; Braun, T.A.; Mullins, R.F.; Scheetz, T.E.; Sheffield, V.C.; et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017, 124, 1314–1331. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lee, W.; De Carvalho, J.R.L.; Chang, S.; Tsang, S.H.; Allikmets, R.; Sparrow, J.R. Multi-platform imaging in ABCA4-Associated Disease. Sci. Rep. 2019, 9, 6436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujinami, K.; Zernant, J.; Chana, R.K.; Wright, G.A.; Tsunoda, K.; Ozawa, Y.; Tsubota, K.; Webster, A.R.; Moore, A.T.; Allikmets, R.; et al. ABCA4 Gene Screening by Next-Generation Sequencing in a British Cohort. Investig. Opthalmol. Vis. Sci. 2013, 54, 6662–6674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenassi, E.; Vincent, A.; Li, Z.; Saihan, Z.; Coffey, A.J.; Steele-Stallard, H.B.; Moore, A.T.; Steel, K.P.; Luxon, L.M.; Héon, E.; et al. A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants. Eur. J. Hum. Genet. 2015, 23, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGee, T.L.; Seyedahmadi, B.J.; Sweeney, M.O.; Dryja, T.P.; Berson, E.L. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J. Med Genet. 2010, 47, 499–506. [Google Scholar] [CrossRef]
- Dreyer, B.; Tranebjærg, L.; Rosenberg, T.; Weston, M.D.; Kimberling, W.J.; Nilssen, O. Identification of novel USH2A mutations: Implications for the structure of USH2A protein. Eur. J. Hum. Genet. 2000, 8, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Failler, M.; Gee, H.Y.; Krug, P.; Joo, K.; Halbritter, J.; Belkacem, L.; Filhol, E.; Porath, J.D.; Braun, D.A.; Schueler, M.; et al. Mutations of CEP83 Cause Infantile Nephronophthisis and Intellectual Disability. Am. J. Hum. Genet. 2014, 94, 905–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldman, B.C.F.; Kuper, W.F.E.; Lilien, M.; Schuurs-Hoeijmakers, J.H.M.; Marcelis, C.; Phan, M.; Hettinga, Y.; Talsma, H.E.; van Hasselt, P.M.; Haijes, H.A. Beyond nephronophthisis: Retinal dystrophy in the absence of kidney dysfunction in childhood expands the clinical spectrum of cep83 deficiency. Am. J. Med. Genet. A. 2021, 185, 2204–2210. [Google Scholar] [CrossRef]
- Alapati, A.; Goetz, K.; Suk, J.; Navani, M.; Al-Tarouti, A.; Jayasundera, T.; Tumminia, S.J.; Lee, P.; Ayyagari, R. Molecular Diagnostic Testing by eyeGENE: Analysis of Patients with Hereditary Retinal Dystrophy Phenotypes Involving Central Vision Loss. Investig. Opthalmol. Vis. Sci. 2014, 55, 5510–5521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cella, W.; Greenstein, V.C.; Zernant-Rajang, J.; Smith, T.R.; Barile, G.; Allikmets, R.; Tsang, S.H. G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp. Eye Res. 2009, 89, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Garibaldi, D.C.; Kniazeva, M.; Albini, T.; Chiang, M.F.; Kerrigan, M.; Sunness, J.S.; Han, M.; Allikmets, R. A novel mutation in the ABCR gene in four patients with autosomal recessive Stargardt disease. Am. J. Ophthalmol. 1999, 128, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, F.; Wang, H.; Li, Y.; Alexander, S.; Wang, K.; Willoughby, C.; Zaneveld, J.E.; Jiang, L.; Soens, Z.T.; et al. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Qual. Life Res. 2015, 134, 217–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.J.; Nossek, C.A.; Greenberg, L.J.; Ramesar, R.S. Stargardt macular dystrophy: Common ABCA4 mutations in South Africa—establishment of a rapid genetic test and relating risk to patients. Mol. Vis. 2012, 18, 280–289. [Google Scholar] [PubMed]
- Hariri, A.H.; Gui, W.; O’Keefe, G.A.D.; Ip, M.S.; Sadda, S.R.; Gorin, M.B. Ultra-Widefield Fundus Autofluorescence Imaging of Patients with Retinitis Pigmentosa. Ophthalmol. Retin. 2018, 2, 735–745. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Tuan, H.-F.; Nguyen, D.H.; Sun, V.; Keser, V.; Bowne, S.J.; Sullivan, L.S.; Luo, H.; Zhao, L.; et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: Identification of a novel genotype-phenotype correlation and clinical refinements. Hum. Genet. 2014, 133, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Pierrache, L.H.; Hartel, B.P.; van Wijk, E.; Meester-Smoor, M.A.; Cremers, F.P.; de Baere, E.; de Zaeytijd, J.; van Schooneveld, M.J.; Cremers, C.W.; Dagnelie, G.; et al. Visual Prognosis in USH2A-Associated Retinitis Pigmentosa Is Worse for Patients with Usher Syndrome Type IIa Than for Those with Nonsyndromic Retinitis Pigmentosa. Ophthalmology 2016, 123, 1151–1160. [Google Scholar] [CrossRef]
- Xi, Q.; Li, L.; Traboulsi, E.I.; Wang, Q.K. Novel ABCA4 compound heterozygous mutations cause severe progressive autosomal recessive cone-rod dystrophy presenting as Stargardt disease. Mol. Vis. 2009, 15, 638–645. [Google Scholar]
- Downes, S.M.; Packham, E.; Cranston, T.; Clouston, P.; Seller, A.; Németh, A.H. Detection Rate of Pathogenic Mutations in ABCA4 Using Direct Sequencing: Clinical and Research Implications. Arch. Ophthalmol. 2012, 130, 1486–1490. [Google Scholar] [CrossRef] [Green Version]
- Braun, T.A.; Mullins, R.; Wagner, A.; Andorf, J.L.; Johnston, R.M.; Bakall, B.B.; DeLuca, A.; Fishman, G.A.; Lam, B.L.; Weleber, R.G.; et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 2013, 22, 5136–5145. [Google Scholar] [CrossRef]
- Jonsson, F.; Burstedt, M.S.; Sandgren, O.; Norberg, A.; Golovleva, I. Novel mutations in CRB1 and ABCA4 genes cause Leber congenital amaurosis and Stargardt disease in a Swedish family. Eur. J. Hum. Genet. 2013, 21, 1266–1271. [Google Scholar] [CrossRef]
- Schulz, H.L.; Grassmann, F.; Kellner, U.; Spital, G.; Rüther, K.; Jägle, H.; Hufendiek, K.; Rating, P.; Huchzermeyer, C.; Baier, M.J.; et al. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients from a Multicenter German Cohort—Impact of Selected Deep Intronic Variants and Common SNPs. Investig. Opthalmol. Vis. Sci. 2017, 58, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, R.; Fishman, G.A.; Collison, F.T.; Stone, E.M.; Zernant, J.; Allikmets, R. The value of retinal imaging with infrared scanning laser ophthalmoscopy in patients with stargardt disease. Retina 2014, 34, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Zernant, J.; Lee, W.; Nagasaki, T.; Collison, F.T.; Fishman, G.A.; Bertelsen, M.; Rosenberg, T.; Gouras, P.; Tsang, S.H.; Allikmets, R. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Mol. Case Stud. 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, S.G.; Aleman, T.S.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Windsor, E.A.M.; Schwartz, S.B.; Heon, E.; Stone, E.M. Defining the Residual Vision in Leber Congenital Amaurosis Caused by RPE65 Mutations. Investig. Opthalmol. Vis. Sci. 2009, 50, 2368–2375. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, L.S.; Koboldt, D.C.; Bowne, S.J.; Lang, S.; Blanton, S.H.; Cadena, E.; Avery, C.E.; Lewis, R.A.; Webb-Jones, K.; Wheaton, D.H.; et al. A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa. Investig. Opthalmol. Vis. Sci. 2014, 55, 7147–7158. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Y.; Zhang, B.; Zhao, L.; Lyubasyuk, V.; Wang, K.; Xu, M.; Li, Y.; Wu, F.; Wen, C.; et al. A Missense Mutation in HK1 Leads to Autosomal Dominant Retinitis Pigmentosa. Investig. Opthalmol. Vis. Sci. 2014, 55, 7159–7164. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Li, B.; Xu, M.; Chang, E.Y.; Li, H.; Yang, L.; Wu, S.; Soens, Z.T.; Li, Y.; Wong, L.-J.C.; et al. The phenotypic variability of HK1-associated retinal dystrophy. Sci. Rep. 2017, 7, 7051. [Google Scholar] [CrossRef] [Green Version]
- Eisenberger, T.; Neuhaus, C.; Khan, A.O.; Decker, C.; Preising, M.N.; Friedburg, C.; Bieg, A.; Gliem, M.; Issa, P.C.; Holz, F.G.; et al. Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies. PLoS ONE 2013, 8, e78496. [Google Scholar] [CrossRef] [Green Version]
- Bujakowska, K.M.; Fernandez-Godino, R.; Place, E.; Consugar, M.; Navarro-Gomez, D.; White, J.; Bedoukian, E.C.; Zhu, X.; Xie, H.M.; Gai, X.; et al. Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet. Med. 2017, 19, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Abu-Safieh, L.; Vithana, E.N.; Mantel, I.; Holder, G.E.; Pelosini, L.; Bird, A.C.; Bhattacharya, S.S. A large deletion in the adRP gene PRPF31: Evidence that haploinsufficiency is the cause of disease. Mol. Vis. 2006, 12, 384–388. [Google Scholar]
- Köhn, L.M.; Bowne, S.J.; Sullivan, L.S.; Daiger, S.P.; Burstedt, M.S.I.; Kadzhaev, K.; Sandgren, O.; Golovleva, I. Breakpoint characterization of a novel ∼59 kb genomic deletion on 19q13.42 in autosomal-dominant retinitis pigmentosa with incomplete penetrance. Eur. J. Hum. Genet. 2009, 17, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Cornelis, S.S.; De Pozo-Valero, M.L.; Whelan, L.; Runhart, E.H.; Mishra, K.; Bults, F.; AlSwaiti, Y.; AlTalbishi, A.; De Baere, E.; et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Anesth. Analg. 2020, 22, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Ecob, R.; Costello, H.; Sweeney, M.G.; Duncan, A.J.; Pearce, K.; Strachan, D.; Forge, A.; Davis, A.; Bitner-Glindzicz, M. Hearing in 44–45 year olds with m.1555A>G, a genetic mutation predisposing to aminoglycoside-induced deafness: A population based cohort study. BMJ Open 2012, 2, e000411. [Google Scholar] [CrossRef]
- Jing, W.; Zongjie, H.; Denggang, F.; Na, H.; Bin, Z.; Aifen, Z.; Xijiang, H.; Cong, Y.; Yunping, D.; Ring, H.Z.; et al. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis. J. Med. Genet. 2015, 52, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Estivill, X.; Govea, N.; Barceló, A.; Perelló, E.; Badenas, C.; Romero, E.; Moral, L.; Scozzari, R.; D’Urbano, L.; Zeviani, M.; et al. Familial Progressive Sensorineural Deafness Is Mainly Due to the mtDNA A1555G Mutation and Is Enhanced by Treatment with Aminoglycosides. Am. J. Hum. Genet. 1998, 62, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Parmeggiani, F.; Barbaro, V.; Migliorati, A.; Raffa, P.; Nespeca, P.; De Nadai, K.; DEL Vecchio, C.; Palù, G.; Parolin, C.; Di Iorio, E. Novel Variants of RPGR in X-Linked Retinitis Pigmentosa Families and Genotype-Phenotype Correlation. Eur. J. Ophthalmol. 2017, 27, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Miano, M.G.; Testa, F.; Filippini, F.; Trujillo, M.; Conte, I.; Lanzara, C.; Millán, J.M.; De Bernardo, C.; Grammatico, B.; Mangino, M.; et al. Identification of novel RP2 mutations in a subset of X-linked retinitis pigmentosa families and prediction of new domains. Hum. Mutat. 2001, 18, 109–119. [Google Scholar] [CrossRef]
- Kurata, K.; Hosono, K.; Hayashi, T.; Mizobuchi, K.; Katagiri, S.; Miyamichi, D.; Nishina, S.; Sato, M.; Azuma, N.; Nakano, T.; et al. X-linked Retinitis Pigmentosa in Japan: Clinical and Genetic Findings in Male Patients and Female Carriers. Int. J. Mol. Sci. 2019, 20, 1518. [Google Scholar] [CrossRef] [Green Version]
- Broadgate, S.; Yu, J.; Downes, S.M.; Halford, S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog. Retin. Eye Res. 2017, 59, 53–96. [Google Scholar] [CrossRef]
- Audo, I.; Bujakowska, K.M.; Léveillard, T.; Mohand-Saïd, S.; Lancelot, M.-E.; Germain, A.; Antonio, A.; Michiels, C.; Saraiva, J.-P.; Letexier, M.; et al. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet. J. Rare Dis. 2012, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Neveling, K.; Collin, R.W.; Gilissen, C.; van Huet, R.A.; Visser, L.; Kwint, M.P.; Gijsen, S.J.; Zonneveld, M.N.; Wieskamp, N.; de Ligt, J.; et al. Next-generation genetic testing for retinitis pigmentosa. Hum. Mutat. 2012, 33, 963–972. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.; Mullaney, B.G.; Bhaskar, S.S.; Dickerson, J.E.; Hall, G.; O’Grady, A.; Webster, A.; Ramsden, S.C.; Black, G.C. A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J. Med. Genet. 2012, 49, 322–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corton, M.; Nishiguchi, K.M.; Avila-Fernandez, A.; Nikopoulos, K.; Riveiro-Álvarez, R.; Tatu, S.D.; Ayuso, C.; Rivolta, C. Exome Sequencing of Index Patients with Retinal Dystrophies as a Tool for Molecular Diagnosis. PLoS ONE 2013, 8, e65574. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.-H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 2014, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sheck, L.H.N.; Esposti, S.D.; Mahroo, O.A.; Arno, G.; Pontikos, N.; Wright, G.; Webster, A.R.; Khan, K.N.; Michaelides, M. Panel-based genetic testing for inherited retinal disease screening 176 genes. Mol. Genet. Genom. Med. 2021, 9, e1663. [Google Scholar] [CrossRef]
- Cremers, F.P.; Lee, W.; Collin, R.W.; Allikmets, R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 2020, 79, 100861. [Google Scholar] [CrossRef]
- Del Pozo-Valero, M.; Riveiro-Alvarez, R.; Martin-Merida, I.; Blanco-Kelly, F.; Swafiri, S.; Lorda-Sanchez, I.; Trujillo-Tiebas, M.J.; Carreño, E.; Jimenez-Rolando, B.; Garcia-Sandoval, B.; et al. Impact of Next Generation Sequencing in Unraveling the Genetics of 1036 Spanish Families with Inherited Macular Dystrophies. Investig. Ophthalmol. Vis. Sci. 2022, 63, 11. [Google Scholar] [CrossRef]
- Roosing, S.; Thiadens, A.A.; Zekveld-Vroon, R.C.; Hoyng, C.B.; Hollander, A.I.d.; Cremers, F.P.; Klaver, C.C. Is there evidence for a digenic model in stargardt disease? Investig. Ophthalmol. Vis. Sci. 2011, 52, 5395. [Google Scholar]
- Zhou, R.; Mawatari, G.; Cai, X.-B.; Shen, R.-J.; Wang, Y.-H.; Guo, Y.-M.; Guo, F.-Y.; Yuan, J.; Pan, D.; Nao-I, N.; et al. CLEC3B is a novel causative gene for macular-retinal dystrophy. Genet. Med. 2022, 24, 1249–1260. [Google Scholar] [CrossRef]
- Bartolini, F.; Bhamidipati, A.; Thomas, S.; Schwahn, U.; Lewis, S.A.; Cowan, N.J. Functional Overlap between Retinitis Pigmentosa 2 Protein and the Tubulin-specific Chaperone Cofactor C. J. Biol. Chem. 2002, 277, 14629–14634. [Google Scholar] [CrossRef] [Green Version]
- Kühnel, K.; Veltel, S.; Schlichting, I.; Wittinghofer, A. Crystal Structure of the Human Retinitis Pigmentosa 2 Protein and Its Interaction with Arl3. Structure 2006, 14, 367–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, D.A.; Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017, 9, a028191. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.M.; Beales, P.L. Ciliopathies: An expanding disease spectrum. Pediatr. Nephrol. 2011, 26, 1039–1056. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Boutaud, L.; Reilly, M.L.; Benmerah, A. Cilia in hereditary cerebral anomalies. Biol. Cell 2019, 111, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesth. Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef]
Subject ID | Ethnicity (Gender) | Refraction OD; OS | BCVA OD; OS | LogMAR OD; OS | Age at Dx/GT | Dx | Gene 1 | Gene 2 | Variant |
---|---|---|---|---|---|---|---|---|---|
DM001 | WC (M) | ND | 20/320; CF | 1.2; | 3/56 | adCRD | GUCA1A | NA | c.428delinsACAC (p.Ile143delinsAsnThr) [18,19] |
DM002 | WC (M) | +2.50 + 1.00 × 090; +1.75 + 2.00 × 090 | 20/50; 20/63 | 0.4; 0.5 | 5/8 | arRP | PDE6B | PDE6B | c.892C>T (p.Gln298*) [20,21,22]/c.1954C>T Gln652*) [23] |
DM003 | WC (F) | −5.50 + 1.00 × 090; −5.00 + 1.25 × 090 | 20/100; 20/100 | 0.7; 0.7 | 13/16 | arMD | ABCA4 | ABCA4 | c.2588G>C (p.Gly863Ala) a/c.1622T>C (p.Leu541Pro) b & c.3113C>T (p.Ala1038Val) c |
DM004 | WC (M) | ND | 20/400; 20/125 | 1.3; 0.8 | 23/28/ | arCRD | NMNAT1 | NMNAT1 | c.769G>A (p.Glu257Lys) [24,25,26]/c.-71G>C |
DM005 | NA (M) | −1.75 + 1.75 × 040; −1.50 + 0.75 × 2.25 | 20/25; 20/32 | 0.1; 0.2 | 35/50 | adMD | PRPH2 | NA | c.828+3A>T (p.?) [3,27,28,29,30,31,32] |
GP001 | WC (F) | ND | 20/20; 20/20 | 0; 0 | 33/37 | MDdiso | negative | negative | |
GP002 | BA, NA (F) | ND | 20/50; 20/40 | 0.4; 0.3 | 49/51 | arRP | CNGB1 | CNGB1 | c.583+2T>C [33,34]/2305-34G>A [33,34] |
GP004 | WC (F) | −0.25 + 4.50 × 100; +1.25 + 1.00 × 077 | 20/32; 20/20 | 0.2; 0 | 35/36 | adMD | PRPH2 | NA | c.828+3A>T (p.?) [3,27,28,29,30,31,32] |
GP005 | WC (M) | ND | 20/50; 20/160 | 0.4; 0.9 | 25/46 | arMD | ABCA4 | ABCA4 | c.5882G>A (p.Gly1961Glu) a/c.3259G>A (p.Glu1087Lys) d & c.2042G>A (p.Arg681Gln) [35] |
GP005a | WC (F) | ND | 20/800; 20/640 | 1.6; 1.5 | 10/50 | arMD | ABCA4 | ABCA4 | c.5882G>A (p.Gly1961Glu) a/c.3259G>A (p.Glu1087Lys) d & c.2042G>A (p.Arg681Gln) [35] |
GP006 | WC, NA (M) | −3.75 + 1.75 × 100; −3.75 + 1.00 × 096 | 20/160; 20/125 | 0.9; 0.8 | 15/21 | XLRP | RP2 | NA | c.515dup(p.Ser172Argfs*2) [36,37] |
GP006a | WC, NA (F) | +0.25 − 1.25 × 045; −2.75 − 3.75 × 155 | 20/32; 20/500 | 0.2; 1.4 | 10/41 | XLRP | RP2 | NA | c.515dup(p.Ser172Argfs*2) [36,37] |
GP006b | NA (F) | 0.00 + 3.50 × 105; −3.00 + 4.75 × 080 | 20/32; 20/30 | 0.2; 0.2 | 35/64 | XLRP | RP2 | NA | c.515dup(p.Ser172Argfs*2) [36,37] |
GP008 | WC (F) | ND | 20/50; 20/50 | 0.4; 0.4 | 25/51 | arRP | ADGRV1 | ADGRV1 | c.17668_17669del (p.Met5890Valfs*10) l/c.4378G>A (p.Gly1460Ser) |
GP008a | WC (F) | ND | 20/50; 20/50 | 0.4; 0.4 | 30/55 | arRP | ADGRV1 | ADGRV1 | c.17668_17669del (p.Met5890Valfs*10) l/c.4378G>A (p.Gly1460Ser) |
GP009 | WC (M) | +0.75 + 0.50 × 170; +1.25 + 0.25 × 165 | 20/320; 20/200 | 1.2; 1 | 39/53 | adRP | negative | negative | |
GP012 | Asian (M) | ND | 20/250; 20/640 | 1.1; 1.5 | 31/42 | adCRD | PRPH2 | NA | c.367C>T (Arg123Trp) [38] |
GP013 | WC (F) | ND | 20/20; 20/20 | 0; 0 | 35/36 | adMD | PRPH2 | NA | c.828+3A>T (p.?) [3,27,28,29,30,31,32] |
GP013a | WC, BA (F) | −0.50 + 0.25 × 075; Plano | 20/15; 20/20 | −0.12; 0 | 20/21 | adMD | PRPH2 | NA | c.828+3A>T (p.?) [3,27,28,29,30,31,32] |
GP014 | WC (M) | −8.25 + 1.00 × 130; −9.75 + 1.25 × 055 | 20/640; 20/200 | 1.5; 1 | 60/71 | arCRD | CNGB3 | CNGB3 | c.1148del (p.Thr383Ilefs*13) [39,40,41,42,43,44]/c.(852+1_853-1)_(903+1_904-1)dup [45] |
GP015 | WC (F) | ND | 20/100; 20/200 | 0.7; 1 | 40/79 | Rpiso | negative | negative | |
GP016 | WC (M) | +0.50 + 1.00 × 080; 0.00 + 1.00 × 095 | 20/63; 20/80 | 0.5; 0.6 | 7/25 | XLRP | negative | negative | |
GP017 | NA (M) | +3.00 − 1.00 × 124; +3.50 − 0.75 × 076 | 20/200; 20/200 | 1; 1 | 20/48 | MDiso | BEST1 | BEST1 | c.286C>G(p.Gln96Glu) [46]/c.579_580insCATT (p.Lys194Hisfs*2) |
GP018 | NA (M) | ND | 20/200; 20/400 | 1; 1.3 | 20/56 | Rpiso | negative | negative | |
GP019 | UK (F) | +1.00 + 0.00 × 000; Plano | 20/320; 20/32 | 1.2; 0.2 | 69/70 | adMD | PRPH2 | NA | c.828+3A>T (p.?) [3,27,28,29,30,31,32] |
GP020 | WC (M) | −0.25 + 0.75 × 110; −0.25 + 0.50 × 050 | 20/25; 20/25 | 0.1; 0.1 | 22/23 | adRP | RHO | NA | c.68C>A (p.Pro23His) m |
GP021 | NA (M) | −7.50 + 2.75 × 080; −7.25 + 2.50 × 120 | 20/400; 20/320 | 1.3; 1.2 | 5/68 | arCRD | ABCA4 | ABCA4 | c.5381C>A (p.Ala1794Asp) e/c.5909T>G (p.Leu1970Arg) |
GP022 | NA (M) | 0.00 + 0.75 × 135; +0.25 + 0.00 × 000 | 20/25; 20/63 | 0.1; 0.5 | 48/49 | adRP | ABCA4 | ABCA4 | c.2701A>G (p.Thr901Ala) [47]/c.5603A>T (p.Asn1868Ile) f |
GP022a | NA (F) | −6.00 + 0.50 × 090; −6.25 + 1.00 × 105 | 20/20; 20/25 | 0; 0.1 | 27/36 | adRP | negative | negative | |
GP026 | WC (F) | −1.75 + 0.75 × 120; −3.00 + 1.25 × 085 | 20/125; 20/160 | 0.8; 0.9 | 41/41 | arMD | ABCA4 | ABCA4 | c.6079C>T (p.Leu2027Phe) g/c.5281_5289del (p.Pro1763del) |
GP028 | WC (F) | ND | HM; 20/125 | 0.8 | 25/84 | Rpiso | negative | negative | |
GP029 | WC (M) | ND | LP; LP | 80/81 | XLRP | RPGR | NA | c.2442_2445del (p.Gly817Lysfs*2) [37,48,49] | |
GP029a | WC (M) | ND | ND | ND | unknown | XLRP | RPGR | NA | c.2442_2445del (p.Gly817Lysfs*2) [37,48,49] |
GP031 | WC (F) | −2.75 + 00 × 000; −3.00 + 0.00 × 000 | 20/60; 20/160 | 0.48; 0.9 | 30/70 | arMD | ABCA4 | ABCA4 | c.71G>A (p.Arg24His) [50,51,52,53,54]/c.4469G>A (p.Cys1490Tyr) h |
GP032 | WC (M) | +0.25 + 0.75 × 010; −0.75 + 0.75 × 145 | 20/20; 20/20 | 0; 0 | 37/51 | arRP | USH2A | USH2A | c.10073G>A (p.Cys3358Tyr) [55,56,57]/c.10342G>A (p.Glu3448Lys) n |
GP034 | WC (M) | 0.00 + 0.75 × 025; NLP | 20/25; NLP | 0.1; | 35/59 | arRP | negative | negative | |
GP035 | NA (F) | −5.25 + 0.00 × 000; −5.75 + 2.00 × 090 | 20/40; 20/25 | 0.3; 0.1 | 39/41 | adMD | PRPH2 | NA | c.829-A_1041+?del |
GP036 | NA (F) | −2.25 + 1.50 × 126; −3.25 + 0.75 × 014 | CF; CF | 20/70 | adRP | negative | negative | ||
GP037 | WC (F) | +1.00 + 1.00 × 146; +0.50 + 1.25 × 012 | 20/63; 20/63 | 0.5; 0.5 | 30/55 | Rpiso | CEP83 | CEP83 | c.625C>T (p.Arg209*) [58,59]/c.712A>G (p.Lys238Glu) |
GP039 | WC (F) | −0.25 + 0.75 × 110; 0.00 + 0.75 × 070 | 20/32; 20/32 | 0.2; 0.2 | 27/40 | Rpiso | negative | negative | |
GP044 | WC (M) | −2.50 + 0.50 × 085; −1.00 + 1.00 × 082 | 20/50; 20/80 | 0.4; 0.6 | 40/65 | adRP | RP1 | NA | c.2321_2322ins? (p.Leu774fs) |
GP045 | WC (F) | ND | 20/20; 20/20 | 0; 0 | 34/53 | arRP | CNGB1 | CNGB1 | c.2492+1G>A (p. ?) [33,34]; c.2092T>C (p.Cys698Arg) [33,34] |
GP045a | WC (F) | −1.50 + 1.50 × 065; −1.25 + 1.00 × 090 | 20/40; 20/40 | 0.3; 0.3 | 36/42 | arRP | CNGB1 | CNGB1 | c.2492+1G>A (p. ?) [33,34]; c.2092T>C (p.Cys698Arg) [33,34] |
GP046 | WC (F) | +4.00 + 0.75 × 015; +1.25 + 0.75 × 117 | 20/32; 20/63 | 0.2; 0.5 | 23/24 | MDiso | ABCA4 | ABCA4 | c.5882G>A (p.Gly1961Glu) a/c.161G>A (p.Cys54Tyr) [50,60,61,62,63,64] |
GP047 | WC (F) | −4.00 − 2.25 × 010; −2.50 − 2.25 × 170 | 20/40; 20/40 | 0.3; 0.3 | 60/67 | arMD | ABCA4 | ABCA4 | c.161G>A (p.Cys54Tyr) [50,60,61,62,63,64]/c.6089G>A (p.Arg2003Gln) i |
GP047a | WC (M) | −2.50 + 1.75 × 112; −2.00 + 1.50 × 065 | 20/40; 20/50 | 0.3; 0.4 | 14/48 | arMD | ABCA4 | ABCA4 | c.161G>A (p.Cys54Tyr) [50,60,61,62,63,64]/c.1304G>T (p.Gly435Val) & c.5603A>T (p.Asn1868Ile) f |
GP048 | BA (M) | −2.00 + 0.00 × 000; −2.50 + 0.50 × 150 | 20/20; 20/20 | 0; 0 | 31/49 | MDiso | negative | negative | |
GP049 | NA (M) | −4.25 + 0.00 × 000; −4.25 + 0.50 × 175 | 20/50; 20/32 | 0.4; 0.2 | 40/49 | arRP | USH2A | USH2A | c.2299del (p.Glu767Serfs*21) k/c.4106C>T (p.Ser1369Leu) [65,66,67] |
GP050 | WC (M) | +2.75 + 0.75 × 150; +2.50 + 1.00 × 011 | 20/32; 20/25 | 0.2; 0.1 | 47/49 | arMD | ABCA4 | ABCA4 | c.655A>T (p.Arg219*) [54,68,69]/c.5603A>T (p.Asn1868Ile) f |
GP052 | WC (F) | −2.50 + 1.00 × 090; −2.50 + 1.25 × 090 | 20/160; 20/160 | 0.9; 0.9 | 13/26 | arMD | ABCA4 | ABCA4 | c.4773+3A>T (p.?) [70,71,72]/c.4139C>T (p.Pro1380Leu) j |
GP053 | WC (M) | −1.75 + 0.75 × 090; −2.25 + 1.00 × 090 | 20/15; 20/15 | −0.1; −0.1 | 31/34 | arMD | ABCA4 | ABCA4 | c.1726G>C (p.Asp576His) [54,73,74]/c.4577C>T (p.Thr1526Met) [50,75] |
GP054 | WC (F) | −1.00 + 0.00 × 000; −2.00 + 0.00 × 000 | 20/25; 20/25 | 0.1; 0.1 | 29/32 | adRP | HK1 | NA | c.2539G>A, (p.Glu847Lys) [76,77,78] |
GP058 | WC (F) | −0.25 + 1.75 × 180; −0.50 + 1.00 × 020 | 20/125; 20/40 | 0.8; 0.3 | 24/70 | adRP | PRPF31 | NA | c.(?_−396)_(*1_?)del [28,79,80,81,82] |
GP059 | BA (F) | −0.50 + 0.50 × 020; −0.75 + 0.50 × 165 | 20/20; 20/20 | 0; 0 | 46/47 | MDiso | ABCA4 | CNGA1 | c.1749G>C (p.Lys583Asn) [8,83]; c.1339dup (p.Thr447Asnfs*3) |
GP060 | WC (M) | −0.50 + 0.50 × 020; 0.00 + 0.50 × 150 | 20/80; 20/63 | 0.6; 0.5 | 53/67 | arMD | ABCA4 | ABCA4 | c.5882G>A (p.Gly1961Glu) a/c.4577C>T (p.Thr1526Met) [50,75] |
GP061 | WC (F) | ND | 20/200; 20/160 | 1; 0.9 | 21/28 | Rpiso | negative | negative | |
GP062 | WC (F) | unknown | 20/20; 20/20 | 0; 0 | 33/44 | MDiso | negative | negative | |
GP063 | WC (M) | +0.50 + 1.25 × 120; 0.00 + 1.25 × 060 | 20/320; 20/200 | 1.2; 1 | 16/35 | XLRP | RP2 | NA | c.413A>C, p.Glu138Ala |
GP063a | WC (F) | +0.75 + 0.00 × 000; Plano | 20/20; 20/40 | 0; 0.3 | 30/60 | XLRP | RP2 | NA | c.413A>C, p.Glu138Ala |
GP064 | WC (F) | +3.25 + 0.00 × 000; +3.00 + 1.00 × 160 | 20/20; 20/20 | 0; 0 | 35/39 | MDiso | negative | negative | |
GP065 | WC (M) | −1.75 + 1.50 × 155; −2.00 + 1.50 × 180 | 20/100; 20/125 | 0.7; 0.8 | 51/57 | CRDiso | negative | negative | |
GP066 | BA (F) | −3.25 + 0.75 × 175; −4.75 + 0.75 × 025 | 20/40; 20/15 | 0.3; −0.1 | 31/46 | arRP | MT-RNR1 | negative | m.1555A>G (homoplasmic) [84,85,86] |
GP067 | WC (F) | −1.75 + 0.50 × 174; −3.00 + 0.50 × 090 | 20/200; 20/200 | 1; 1 | 50/62 | adCRD | GUCA1A | NA | c.428delinsACAC (p.Ile143delinsAsnThr) [18,19] |
GP067a | WC (M) | −5.50 + 1.50 × 100; −4.00 + 1.00 × 171 | 20/40; 20/25 | 0.3; 0.1 | 38/35 | adCRD | GUCA1A | NA | c.428delinsACAC (p.Ile143delinsAsnThr) [18,19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynn, J.; Raney, A.; Britton, N.; Ramoin, J.; Yang, R.W.; Radojevic, B.; McClard, C.K.; Kingsley, R.; Coussa, R.G.; Bennett, L.D. Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes 2023, 14, 74. https://doi.org/10.3390/genes14010074
Lynn J, Raney A, Britton N, Ramoin J, Yang RW, Radojevic B, McClard CK, Kingsley R, Coussa RG, Bennett LD. Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes. 2023; 14(1):74. https://doi.org/10.3390/genes14010074
Chicago/Turabian StyleLynn, Jacob, Austin Raney, Nathaniel Britton, Josh Ramoin, Ryan W. Yang, Bojana Radojevic, Cynthia K. McClard, Ronald Kingsley, Razek Georges Coussa, and Lea D. Bennett. 2023. "Genetic Diagnosis for 64 Patients with Inherited Retinal Disease" Genes 14, no. 1: 74. https://doi.org/10.3390/genes14010074
APA StyleLynn, J., Raney, A., Britton, N., Ramoin, J., Yang, R. W., Radojevic, B., McClard, C. K., Kingsley, R., Coussa, R. G., & Bennett, L. D. (2023). Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes, 14(1), 74. https://doi.org/10.3390/genes14010074