Identification and Profiling Analysis of microRNAs in Guava Fruit (Psidium guajava L.) and Their Role during Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Total RNA Extraction and Small RNA Library Construction
2.3. Bioinformatic Analysis of miRNA Libraries
2.4. Availability of Data and Materials
3. Results and Discussion
3.1. Profiling of miRNA Families Found in Guava Fruit
3.2. Evolutionary Divergence and Conservation Analysis of P. guajava microRNAs
3.3. MiRNA Families Expressed in Guava Fruit and Their Target Genes
3.4. Identification and Ontological Classification of Guava microRNA Target Genes
3.5. miRNAs Related to Ripening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolkar, D.; Bakshi, P.; Gupta, M.; Wali, V.K.; Kumar, R.; Hazarika, T.K.; Kher, D. Biochemical Changes in Guava (Psidium guajava) Fruits during Different Stages of Ripening. Indian J. Agric. Sci. 2017, 87, 257–260. [Google Scholar] [CrossRef]
- Onik, J.C.; Xiaojia, H.; Qiong, L.; Zhidong, W. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit. Molecules 2018, 23, 1908. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Tian, Y.; Tan, C.; Bai, S.; Hao, J.; Hasi, A. Genome-Wide Identification of MicroRNAs Involved in the Regulation of Fruit Ripening and Climacteric Stages in Melon (Cucumis melo). Hortic. Res. 2020, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Achkar, N.P.; Cambiagno, D.A.; Manavella, P.A. miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci. 2016, 21, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, M.; Nishihama, R.; Ishizaki, K.; Kurihara, Y.; Matsui, M.; Bowman, J.L.; Kohchi, T.; Hamada, T.; Watanabe, Y. Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. Plant Cell Physiol. 2016, 57, 359–372. [Google Scholar] [CrossRef]
- Millar, A.A.; Lohe, A.; Wong, G. Biology and Function of MiR159 in Plants. Plants 2019, 8, 255. [Google Scholar] [CrossRef]
- Dong, Q.; Hu, B.; Zhang, C. microRNAs and Their Roles in Plant Development. Front. Plant Sci. 2022, 13, 824240. [Google Scholar] [CrossRef]
- Marzec, M. MicroRNA: A new signal in plant-to-plant communication. Trends Plant Sci. 2022, 27, 418–419. [Google Scholar] [CrossRef]
- Sharma, R.; Upadhyay, S.; Bhattacharya, S.; Singh, A. Abiotic Stress-Responsive miRNA and Transcription Factor-Mediated Gene Regulatory Network in Oryza sativa: Construction and Structural Measure Study. Front. Genet. 2021, 12, 618089. [Google Scholar] [CrossRef]
- Lee, M.H.; Jeon, H.S.; Kim, H.G.; Park, O.K. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164. New Phytol. 2017, 214, 343–360. [Google Scholar] [CrossRef]
- Guo, D.L.; Li, Q.; Lv, W.-Q.; Zhang, G.-H.; Yu, Y.-H. MicroRNA Profiling Analysis of Developing Berries for ‘Kyoho’ and Its Early-Ripening Mutant during Berry Ripening. BMC Plant Biol. 2018, 18, 285. [Google Scholar] [CrossRef]
- Bi, F.; Meng, X.; Ma, C.; Yi, G. Identification of MiRNAs Involved in Fruit Ripening in Cavendish Bananas by Deep Sequencing. BMC Genom. 2015, 16, 776. [Google Scholar] [CrossRef] [PubMed]
- Bondada, B. Structural and Compositional Characterization of Suppression of Uniform Ripening in Grapevine: A Paradoxical Ripening Disorder of Grape Berries with No Known Causative Clues. J. Am. Soc. Hortic. Sci. 2014, 139, 567–581. [Google Scholar] [CrossRef]
- Hou, Y.; Zhai, L.; Li, X.; Xue, Y.; Wang, J.; Yang, P.; Cao, C.; Li, H.; Cui, Y.; Bian, S. Comparative Analysis of Fruit Ripening-Related MiRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing. Int. J. Mol. Sci. 2017, 18, 2767. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Bruno, L.; Perrotta, G.; Bitonti, M.B.; Muzzalupo, I.; Chiappetta, A. Identification of MiRNAs Involved in Fruit Ripening by Deep Sequencing of Olea europaea L. Transcriptome. PLoS ONE 2019, 14, e0221460. [Google Scholar] [CrossRef]
- López-Gómez, R.; Gómez-Lim, M.A. A Method for Extracting Intact RNA from Fruits Rich in Polysaccharides using Ripe Mango Mesocarp. HortScience 1992, 27, 440–442. [Google Scholar] [CrossRef]
- Bonnot, T.; Gillard, M.B.; Nagel, D.H. A Simple Protocol for Informative Visualization of Enriched Gene Ontology Terms. Bio-Protocol 2019, 101, 3429. [Google Scholar] [CrossRef]
- Kong, X.; He, M.; Guo, Z.; Zhou, Y.; Chen, Z.; Qu, H.; Zhu, H. MicroRNA regulation of fruit development, quality formation and stress response. Fruit Res. 2021, 1, 5. [Google Scholar] [CrossRef]
- Ma, L.; Shi, Y.-N.; Grierson, D.; Chen, K.-S. Research advance in regulation of fruit quality characteristics by microRNAs. Food Qual. Saf. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Reichel, M.; Li, Y.; Millar, A.A. The functional scope of plant microRNA-mediated silencing. Trends Plant Sci. 2014, 19, 750–756. [Google Scholar] [CrossRef]
- Csukasi, F.; Donaire, L.; Casañal, A.; Martínez-Priego, L.; Botella, M.A.; Medina-Escobar, N.; Llave, C.; Valpuesta, V. Two strawberry miR159 family isoforms display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB. New Phytol. 2012, 195, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.M.; Silva, G.F.F.; Bidoia, D.B.; da Silva Azevedo, M.; de Jesus, F.A.; Pino, L.E.; Peres, L.E.P.; Carrera, E.; López-Díaz, I.; Nogueira, F. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato. Plant J. 2017, 92, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jogaiah, S.; Zhang, W.; Abdelrahman, M.; Fang, J.G. Spatio-temporal expression of miRNA159 family isoforms and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. J. Exp. Bot. 2018, 69, 3639–3650. [Google Scholar] [CrossRef] [PubMed]
- Sessa, G.; Carabelli, M.; Possenti, M.; Morelli, G.; Ruberti, I. Multiple Links between HD-Zip Proteins and Hormone Networks. Int. J. Mol. Sci. 2018, 19, 4047. [Google Scholar] [CrossRef]
- Sharif, R.; Raza, A.; Chen, P.; Li, Y.; El-Ballat, E.M.; Rauf, A.; Hano, C.; El-Esawi, M.A. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes 2021, 12, 1256. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Teotia, S.; Wang, Z.; Shi, C.; Sun, H.; Gu, Y.; Zhang, Z.; Tang, G. The Interaction between MiR160 and MiR165/166 in the Control of Leaf Development and Drought Tolerance in Arabidopsis. Sci. Rep. 2019, 9, 2832. [Google Scholar] [CrossRef]
- Perotti, M.F.; Arce, A.L.; Chan, R.L. The underground life of homeodomain-leucine zipper transcription factors. J. Exp. Bot. 2021, 72, 4005–4021. [Google Scholar] [CrossRef]
- Inês, C.; Parra-Lobato, M.C.; Paredes, M.A.; Labrador, J.; Gallardo, M.; Saucedo-García, M.; Gavilanes-Ruiz, M.; Gomez-Jimenez, M.C. Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening. Front. Plant Sci. 2018, 9, 28. [Google Scholar] [CrossRef]
- Parra-Lobato, M.C.; Paredes, M.A.; Labrador, J.; Saucedo-García, M.; Gavilanes-Ruiz, M.; Gomez-Jimenez, M.G. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during M-Fruit Abscission in Olive. Front. Plant Sci. 2017, 8, 1138. [Google Scholar] [CrossRef]
- Pan, H.; Lyu, S.; Chen, Y.; Xu, S.; Ye, J.; Chen, G.; Wu, S.; Li, X.; Chen, J.; Pan, D. MicroRNAs and Transcripts Associated with an Early Ripening Mutant of Pomelo (Citrus grandis Osbeck). Int. J. Mol. Sci. 2021, 22, 9348. [Google Scholar] [CrossRef]
- Kong, X.; Zeng, J.; Yun, Z.; Hu, C.; Yang, B.; Qu, H.; Jiang, Y.; Zhu, H. Characterization of miRNA-mediated auxin signaling during banana (Musa spp.) fruit ripening. Postharvest Biol. Technol. 2022, 193, 112045. [Google Scholar] [CrossRef]
- Yao, X.; Chen, J.; Zhou, J.; Yu, H.; Ge, C.; Zhang, M.; Gao, X.; Dai, X.; Yang, Z.-N.; Zhao, Y. An Essential Role for miRNA167 in Maternal Control of Embryonic and Seed Development. Plant Physiol. 2019, 180, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tan, C.; Cheng, X.; Zhao, X.; Li, T.; Jiang, J. miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. BMC Plant Biol. 2021, 21, 84. [Google Scholar] [CrossRef]
- Cedillo-Jimenez, C.A.; Feregrino-Perez, A.A.; Guevara-González, R.G.; Cruz-Hernández, A. MicroRNA regulation during the tomato fruit development and ripening: A review. Sci. Hortic. 2020, 270, 109435. [Google Scholar] [CrossRef]
- Dalmadi, A.; Miloro, F.; Bálint, J.; Várallyay, E.; Havelda, Z. Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res. 2021, 49, 12912–12928. [Google Scholar] [CrossRef]
- Li, S.; Li, K.; Ju, Z.; Cao, D.; Fu, D.; Zhu, H.; Zhu, B.; Luo, Y. Genome-Wide Analysis of Tomato NF-Y Factors and Their Role in Fruit Ripening. BMC Genom. 2016, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Chang, H.; Zhou, J.; Luo, Y.; Zhang, K.; Zuo, J.; Wang, B. SRNAome and Transcriptome Analysis Provide Insight into Strawberry Fruit Ripening. Genomics 2020, 112, 2369–2378. [Google Scholar] [CrossRef]
- Han, H.; Zhou, Y. Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing. Int. J. Mol. Sci. 2022, 23, 2544. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.; Su, D.; Lu, W.; Li, Z. SlGRAS4 Accelerates Fruit Ripening by Regulating Ethylene Biosynthesis Genes and SlMADS1 in Tomato. Hortic. Res. 2021, 8, 3. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Lu, X.; Chen, L.; Liu, J.; Wu, H. Identification and Expression Analysis of GRAS Transcription Factors to Elucidate Candidate Genes Related to Stolons, Fruit Ripening and Abiotic Stresses in Woodland Strawberry (Fragaria Vesca). Int. J. Mol. Sci. 2019, 20, 4593. [Google Scholar] [CrossRef]
- Lopez-Ortiz, C.; Peña-Garcia, Y.; Bhandari, M.; Abburi, V.L.; Natarajan, P.; Stommel, J.; Nimmakayala, P.; Reddy, U.K. Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species. Int. J. Mol. Sci. 2021, 22, 4866. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zheng, Y.; Lu, W.; Li, J.; Duan, Y.; Zhang, S.; Wang, Y. Roles of MiR319-Regulated TCPs in Plant Development and Response to Abiotic Stress. Crop J. 2020, 9, 17–28. [Google Scholar] [CrossRef]
- Xie, Y.-G.; Ma, Y.-Y.; Bi, P.-P.; Wei, W.; Liu, J.; Hu, Y.; Gou, Y.-J.; Zhu, D.; Wen, Y.-Q.; Feng, J.-Y. Transcription Factor FvTCP9 Promotes Strawberry Fruit Ripening by Regulating the Biosynthesis of Abscisic Acid and Anthocyanins. Plant Physiol. Biochem. 2019, 146, 374–383. [Google Scholar] [CrossRef]
- Wei, J.; Wen, X.; Tang, L. Effect of methyl jasmonic acid on peach fruit ripening progress. Sci. Hortic. 2017, 220, 206–213. [Google Scholar] [CrossRef]
- Wilkinson, S.W.; Vivian-Smith, A.; Krokene, P.; Mageroy, M.H. The microRNA response associated with methyl jasmonate-induced resistance in Norway spruce bark. Plant Gene 2021, 27, 100301. [Google Scholar] [CrossRef]
- Zuo, J.; Grierson, D.; Courtney, L.T.; Wang, Y.; Gao, L.; Zhao, X.; Zhu, B.; Luo, Y.; Wang, Q.; Giovannoni, J.J. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. Plant J. 2020, 103, 980–994. [Google Scholar] [CrossRef]
- Carvalho, A., Jr.; Vicente, M.H.; Ferigolo, L.F.; Silva, E.M.; Levy, M.; Peres, L.E.; Sablowski, R.; Schommer, C.; Ori, N.; Nogueira, F.T. miR319-targeted TCP4/LANCEOLATE directly regulates OVATE and auxin responses to modulate tomato gynoecium patterning and fruit morphology. BioRxiv 2022, 484181. [Google Scholar] [CrossRef]
- Bai, B.; Bian, H.; Zeng, Z.; Hou, N.; Shi, B.; Wang, J.; Zhu, M.; Han, N. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. Plant Cell Physiol. 2017, 58, 426–439. [Google Scholar] [CrossRef]
- Zhang, B. MicroRNA: A new target for improving plant tolerance to abiotic stress. J. Exp. Bot. 2015, 66, 1749–1761. [Google Scholar] [CrossRef]
- Pattyn, J.; Vaughan-Hirsch, J.; Van de Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.F.; Liu, Y.F.; Wang, L.; Qiao, X.; Zhang, S.L. Identification of miRNAs involved in pear fruit development and quality. BMC Genom. 2014, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Zhu, B.; Fu, D.; Zhu, Y.; Ma, Y.; Chi, L.; Ju, Z.; Wang, Y.; Zhai, B.; Luo, Y. Sculpting the maturation, softening and ethylene pathway: The influences of microRNAs on tomato fruits. BMC Genom. 2012, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Koul, A.; Yogindran, S.; Sharma, D.; Kaul, S.; Rajam, M.V.; Dhar, M.K. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato. Plant Physiol. Biochem. 2016, 108, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, W.; Wang, M.; Zhang, H.Y.; Liu, J.H. The miR396b of Poncirus trifoliata Functions in Cold Tolerance by Regulating ACC Oxidase Gene Expression and Modulating Ethylene-Polyamine Homeostasis. Plant Cell Physiol. 2016, 57, 1865–1878. [Google Scholar] [CrossRef]
- Pegler, J.L.; Nguyen, D.Q.; Oultram, J.M.J.; Grof, C.P.L.; Eamens, A.L. Molecular Manipulation of the MiR396/GRF Expression Module Alters the Salt Stress Response of Arabidopsis thaliana. Agronomy 2021, 11, 1751. [Google Scholar] [CrossRef]
- Li, C.; Li, D.; Zhou, H.; Li, J.; Lu, S. Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza. Peer J. 2019, 7, e7605. [Google Scholar] [CrossRef]
- Dong, X.; Liu, C.; Wang, Y.; Dong, Q.; Gai, Y.; Ji, X. MicroRNA Profiling During Mulberry (Morus atropurpurea) Fruit Development and Regulatory Pathway of miR477 for Anthocyanin Accumulation. Front. Plant Sci. 2021, 12, 687364. [Google Scholar] [CrossRef]
- Kapoor, L.; Simkin, A.J.; Doss, P.; Siva, P.R. Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biol. 2022, 22, 27. [Google Scholar] [CrossRef]
- Leng, X.; Wang, P.; Zhu, X.; Li, X.; Zheng, T.; Shangguan, L.; Fang, J. Ectopic expression of CSD1 and CSD2 targeting genes of miR398 in grapevine is associated with oxidative stress tolerance. Funct. Integr. Genom. 2017, 17, 697–710. [Google Scholar] [CrossRef]
- Li, J.; Song, Q.; Zuo, Z.-F.; Liu, L. MicroRNA398: A Master Regulator of Plant Development and Stress Responses. Int. J. Mol. Sci. 2022, 23, 10803. [Google Scholar] [CrossRef]
- Kumar, V.; Irfan, M.; Ghosh, S.; Chakraborty, N.; Chakraborty, S.; Datta, A. Fruit Ripening Mutants Reveal Cell Metabolism and Redox State during Ripening. Protoplasma 2016, 253, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Schott-Verdugo, S.; Müller, L.; Classen, E.; Gohlke, H.; Groth, G. Structural model of the ETR1 ethylene receptor transmembrane sensor domain. Sci. Rep. 2019, 9, 8869. Available online: http://www.jstor.org/stable/2897729 (accessed on 25 October 2020). [CrossRef]
- Haile, Z.M.; Guzman, N.D.; Grace, E.; Moretto, M.; Sonego, P.; Engelen, K.; Zoli, L.; Moser, C.; Baraldi, E. Transcriptome Profiles of Strawberry (Fragaria vesca) Fruit Interacting with Botrytis cinerea at Different Ripening Stages. Front. Plant Sci. 2019, 10, 1131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Cui, J.; Shi, Y.; Yang, G.; Zhou, X.; Hou, X.; Meng, J.; Luan, Y. Tomato LncRNA23468 Functions as a Competing Endogenous RNA to Modulate NBS-LRR Genes by Decoying MiR482b in the Tomato-Phytophthora infestans Interaction. Hortic. Res. 2019, 6, 28. [Google Scholar] [CrossRef]
- Shi, F.; Zhou, X.; Yao, M.M.; Tan, Z.; Zhou, Q.; Zhang, L.; Ji, S.J. miRNAs play important roles in aroma weakening during the shelf life of ‘Nanguo’pear after cold storage. Food Res. Int. 2019, 116, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Ramírez, J.S. Caracterización morfológica de fruto de la colección ex situ de Psidium guajava L. Agro Product. 2016, 9, 4–18. [Google Scholar]
- Matrosova, A.; Bogireddi, H.; Mateo-Peñas, A.; Hashimoto-Sugimoto, M.; Iba, K.; Schroeder, J.I.; Israelsson-Nordström, M. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses. New Phytol. 2015, 208, 1126–1137. [Google Scholar] [CrossRef]
- Pei, H.; Ma, N.; Chen, J.; Zheng, Y.; Tian, J.; Li, J.; Zhang, S.; Fei, Z.; Gao, J. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS ONE 2013, 8, e64290. [Google Scholar] [CrossRef]
- Fang, Y.; Xie, K.; Xiong, L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot. 2014, 65, 2119–2135. [Google Scholar] [CrossRef]
- Rhoades, M.W.; Reinhart, B.J.; Lim, L.P.; Burge, C.B.; Bartel, B.; Bartel, D.P. Prediction of plant microRNA targets. Cell 2002, 110, 513–520. [Google Scholar] [CrossRef]
miRNA Family | VS/S Isoforms | Target Gene | R/M ** Fruit |
---|---|---|---|
MIR10219 | 1/1* | Unknown function | M |
MIR156 | 3/a, b, c | SQUAMOSA promoter (SPL) 5/8/10 | R/M |
MIR159 | 29/a, b, c | MYB33, MYB65 | R/M |
MIR160 | 1/c | ARFs 10/16/17 | R/M |
MIR162 | 1/1* | Dicer-like 1 | R/M |
MIR164 | 2/a, b | NAC TRANSCRIPTION FACTOR (OMTN1-6), CUP-SHAPED COTYLEDON1/2 (CUC1, CUC2) | R |
MIR165 | 5/a, b | ATHB-9, 14, 15, PHAVOLUTA (PHV), PHABULOSA (PHB) | R/M |
MIR166 | 43/a, b, c, d, e, f, h, i, k, m, p, u | ATHB-9, 14, 15, PHV, PHB | R/M |
MIR167 | 8/a, b, c, f | ARFs 6, 8, IAA-ALA RESISTANT3 (IAR3) | R/M |
MIR168 | 12/a, b | ARGONAUTE1 (AGO1) | R/M |
MIR169 | 2/a, g | NUCLEAR FACTOR YA3 and 5 (NF-YA3, NF-YA5) | R/M |
MIR171 | 1/f | SCLII-6 | M |
MIR2111 | 1/1* | F-box/kelch repeat protein (FBK) | R/M |
MIR319 | 14/a, b, c, q | TCP 2,3, 4, 10, 24 | R/M |
MIR393 | 6/a, b, c, d | TIR1/AFB2 | R/M |
MIR394 | 1/1* | Cyclin-like F-box | R |
MIR395 | 3/a, b | ATP-sulfurylases (SULTR2), WRKY26, APS1, 2 | R/M |
MIR396 | 6/b | 1-aminocyclopropane acid oxidase 2 (ACO2), β-1,4 endoglucanase (βE1,4), GROWTH-REGULATION FACTOR (GRF), ETHYLENE-INSENSITIVE 3 (EIN3) | R |
MIR397 | 5/a | Laccase (LAC), CBK3 (CK2) | M |
MIR398 | 3/a | Copper/zinc superoxide dismutase chaperone 1 (CCSD1), Copper/zinc superoxide dismutase 1 and 2 (CSD1 and CSD2) (cytosolic and chloroplastic) | M |
MIR399 | 1/e | PHO2 | R/M |
MIR482 | 13/a, b, c | Pectate Liase, ZETA CAROTENE DE-SATURASE (ZDS), binding site domains-leucine-rich receptor (NBS-LRR), SMG7 | R |
MIR5139 | 3/a | Expansin1, C3HC4/TPX2, Gypsy_Ty3-element, β-1,3-endoglucanase (βE1,3), Phosphatidylinositol 4-kinase γ 2, RRM/RBD/RNP, Cyclin-L1-1, SCL 7, subunit SNAP43, Pre-mRNA-splicing factor 38 | R/M |
MIR535 | 3/a, b, d | Serine/threonine kinase (HT1), LIPOXYGENASE2 (LOX2) | R/M |
MIR6300 | 2/1 | PERK2, BEE1, DAHP1, PHYB1, HMT, HSP70 | M |
MIR6478 | 2/1 | Unknown function | R/M |
MIR8155 | 1/1* | Unknown function | R/M |
MIR858 | 3/a | MYB11, MYB111, MYB12, MYB7, MYB48 | R |
miRNA | Type of Relationship with Ripening | Target Gene | Observations |
---|---|---|---|
159a/b/c | Indirect/Direct | MYB33, Fa-GAMYB, and MYB65 transcription factors | Firmness and fruit coloration, ABA and gibberellin production |
160c | Indirect | ARF10 | Auxin transport |
165a/b | Indirect | REV and PHB transcription factors | Auxin transport |
166a/b/c/d/e/f/h/i/k/m/p/u | Indirect/Direct | HD-Zip III protein family | Fruit firmness, auxin transport |
167a/b/c/f | Indirect | ARF6/8 and IAR3 transcription factors | Auxin transport |
168a/b | Direct | AGO1 | miRNA activity regulation |
169a/g | Direct | NF-YA and NF-YB transcription factors | Fruit coloration |
171f | Indirect/Direct | GRAS4, GRAS54, GRAS27, and HAM transcription factors | Gibberellin-mediated signaling, ethylene biosynthesis |
319a/b/c/q | Indirect/Direct | TCP9 and TCP4/LANCELOATE transcription factors | Fruit firmness, ABA and anthocyanin production |
393a/b/c/d | Indirect | TIR1/AFB | Auxin transport |
395a | Indirect | SULTR2:1 | Methionine and cysteine biosynthesis |
396b | Direct | βE1,4, ACO2, and EIN3-like | Signaling and biosynthesis of ethylene, fruit firmness |
397b | Direct | LAC11 | Fruit coloration, ripening time, anthocyanin biosynthesis |
398a | Indirect | CSD1, CSD2, and CCSD1 | Metallic-induced stress and ROS regulation |
482c | Direct | Pectate liase and ZDS | Carotenoid metabolism, fruit firmness, sugar degradation |
535a/b/d | Indirect | HT1 and Lipoxygenase2 LOX2 | ABA-signaling, ethylene biosynthesis, volatile compound generation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Mendoza, M.A.; Garcidueñas-Piña, C.; Barrera-Figueroa, B.E.; Morales-Domínguez, J.F. Identification and Profiling Analysis of microRNAs in Guava Fruit (Psidium guajava L.) and Their Role during Ripening. Genes 2023, 14, 2029. https://doi.org/10.3390/genes14112029
Mejía-Mendoza MA, Garcidueñas-Piña C, Barrera-Figueroa BE, Morales-Domínguez JF. Identification and Profiling Analysis of microRNAs in Guava Fruit (Psidium guajava L.) and Their Role during Ripening. Genes. 2023; 14(11):2029. https://doi.org/10.3390/genes14112029
Chicago/Turabian StyleMejía-Mendoza, Mario Alejandro, Cristina Garcidueñas-Piña, Blanca Estela Barrera-Figueroa, and José Francisco Morales-Domínguez. 2023. "Identification and Profiling Analysis of microRNAs in Guava Fruit (Psidium guajava L.) and Their Role during Ripening" Genes 14, no. 11: 2029. https://doi.org/10.3390/genes14112029
APA StyleMejía-Mendoza, M. A., Garcidueñas-Piña, C., Barrera-Figueroa, B. E., & Morales-Domínguez, J. F. (2023). Identification and Profiling Analysis of microRNAs in Guava Fruit (Psidium guajava L.) and Their Role during Ripening. Genes, 14(11), 2029. https://doi.org/10.3390/genes14112029