Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Participants
2.2. Evaluation of Perceived Worst Pain
2.3. Single-Nucleotide Polymorphism (SNP) Selection and Genotyping
2.4. Covariate Assessment
2.5. Statistical Analysis
2.6. Pain Location Data
3. Results
3.1. Participant Characteristics
3.2. Influence of Co-Occurring Symptoms
3.3. Polymorphisms Included in GRS for Determining Probability of Having Any Pain
3.4. Polymorphisms Included in the GRS for Determining Severity of Worst Pain
3.5. Post Hoc Reported Pain Location Differences at Significant Timepoints
4. Discussion
4.1. Implications for Nursing Science and Nursing Practice
4.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 2014, 106, dju055. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.D. Adjuvant Systemic Therapy for Postmenopausal, Hormone Receptor-Positive Early Breast Cancer. Hematol. /Oncol. Clin. 2023, 37, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group. Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet 2015, 386, 1341–1352. [Google Scholar] [CrossRef]
- Henry, N.L.; Azzouz, F.; Desta, Z.; Li, L.; Nguyen, A.T.; Lemler, S.; Hayden, J.; Tarpinian, K.; Yakim, E.; Flockhart, D.A.; et al. Predictors of aromatase inhibitor discontinuation as a result of treatment-emergent symptoms in early-stage breast cancer. J. Clin. Oncol. 2012, 30, 936–942. [Google Scholar] [CrossRef]
- Henry, N.L.; Unger, J.M.; Schott, A.F.; Fehrenbacher, L.; Flynn, P.J.; Prow, D.M.; Sharer, C.W.; Burton, G.V.; Kuzma, C.S.; Moseley, A.; et al. Randomized, Multicenter, Placebo-Controlled Clinical Trial of Duloxetine Versus Placebo for Aromatase Inhibitor-Associated Arthralgias in Early-Stage Breast Cancer: SWOG S1202. J. Clin. Oncol. 2018, 36, 326–332. [Google Scholar] [CrossRef]
- Borrie, A.E.; Rose, F.A.; Choi, Y.-H.; Perera, F.E.; Read, N.; Sexton, T.; Lock, M.; Vandenberg, T.A.; Hahn, K.; Younus, J.; et al. Genetic and clinical predictors of arthralgia during letrozole or anastrozole therapy in breast cancer patients. Breast Cancer Res. Treat. 2020, 183, 365–372. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, L.; Zhou, W.; Yang, Y.; Zhang, J.; Li, L.; Jiang, M.; Mi, Y.; Li, T.T.; Zhang, X.; et al. PARP-1-regulated TNF-α expression in the dorsal root ganglia and spinal dorsal horn contributes to the pathogenesis of neuropathic pain in rats. Brain Behav. Immun. 2020, 88, 482–496. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, L.; Garg, S.; Kaur, H.; Singh, N.; Bhatti, R. Involvement of Oxidative Stress and Nerve Growth Factor in Behavioral and Biochemical Deficits of Experimentally Induced Musculoskeletal Pain in Mice: Ameliorative Effects of Heraclin. J. Mol. Neurosci. 2021, 71, 347–357. [Google Scholar] [CrossRef]
- Curtis, C.D.; Thorngren, D.L.; Nardulli, A.M. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues. BMC Cancer 2010, 10, 9. [Google Scholar] [CrossRef]
- McCullough, L.E.; Eng, S.M.; Bradshaw, P.T.; Cleveland, R.J.; Steck, S.E.; Terry, M.B.; Shen, J.; Crew, K.D.; Rossner, P.; Ahn, J.; et al. Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer. Ann. Epidemiol. 2015, 25, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.; Furriol, J.; Bermejo, B.; Chaves, F.J.; Lluch, A.; Eroles, P. Identification of candidate polymorphisms on stress oxidative and DNA damage repair genes related with clinical outcome in breast cancer patients. Int. J. Mol. Sci. 2012, 13, 16500–16513. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Women’s Health 2017, 26, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Lawenda, B.D.; Kelly, K.M.; Ladas, E.J.; Sagar, S.M.; Vickers, A.; Blumberg, J.B. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J. Natl. Cancer Inst. 2008, 100, 773–783. [Google Scholar] [CrossRef]
- Weijl, N.I.; Cleton, F.J.; Osanto, S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat. Rev. 1997, 23, 209–240. [Google Scholar] [CrossRef]
- Panis, C.; Victorino, V.J.; Herrera, A.C.S.A.; Freitas, L.F.; De Rossi, T.; Campos, F.C.; Simão, A.N.C.; Barbosa, D.S.; Pinge-Filho, P.; Cecchini, R.; et al. Differential oxidative status and immune characterization of the early and advanced stages of human breast cancer. Breast Cancer Res. Treat. 2012, 133, 881–888. [Google Scholar] [CrossRef]
- Sangeetha, P.; Das, U.; Koratkar, R.; Suryaprabha, P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic. Biol. Med. 1990, 8, 15–19. [Google Scholar] [CrossRef]
- Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit. Rev. Oncol./Hematol. 2011, 80, 347–368. [Google Scholar] [CrossRef]
- Saintot, M.; Grenier, J.; Simony-Lafontaine, J.; Gerber, M.; Mathieu-Daude, H.; Astre, C. Oxidant-antioxidant status in relation to survival among breast cancer patients. Int. J. Cancer 2002, 97, 574–579. [Google Scholar] [CrossRef]
- Chang, V.C.; Cotterchio, M.; Bondy, S.J.; Kotsopoulos, J. Iron intake, oxidative stress-related genes and breast cancer risk. Int. J. Cancer 2020, 147, 1354–1373. [Google Scholar] [CrossRef]
- Herrera, A.C.S.; Victorino, V.J.; Campos, F.C.; Verenitach, B.D.; Lemos, L.T.; Aranome, A.M.; Oliveira, S.R.; Cecchini, A.L.; Simão, A.N.C.; Abdelhay, E.; et al. Impact of tumor removal on the systemic oxidative profile of patients with breast cancer discloses lipid peroxidation at diagnosis as a putative marker of disease recurrence. Clin. Breast Cancer 2014, 14, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; He, Y.; Zhou, C. Alterations of DNA damage repair in cancer: From mechanisms to applications. Ann. Transl. Med. 2020, 8, 1685. [Google Scholar] [CrossRef] [PubMed]
- Nadin, S.; Vargasroig, L.; Drago, G.; Ibarra, J.; Ciocca, D. DNA damage and repair in peripheral blood lymphocytes from healthy individuals and cancer patients: A pilot study on the implications in the clinical response to chemotherapy. Cancer Lett. 2006, 239, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Matta, J.; Morales, L.; Ortiz, C.; Adams, D.; Vargas, W.; Casbas, P.; Dutil, J.; Echenique, M.; Suarez, E. Estrogen Receptor Expression Is Associated with DNA Repair Capacity in Breast Cancer. PLoS ONE 2016, 11, e0152422. [Google Scholar] [CrossRef]
- Osti, M.F.; Nicosia, L.; Agolli, L.; Gentile, G.; Falco, T.; Bracci, S.; Di Nardo, F.; Minniti, G.; De Sanctis, V.; Valeriani, M.; et al. Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated with Preoperative Radiochemotherapy. Am. J. Clin. Oncol. 2017, 40, 535–542. [Google Scholar] [CrossRef]
- Rus, A.; Robles-Fernandez, I.; Martinez-Gonzalez, L.J.; Carmona, R.; Alvarez-Cubero, M.J. Influence of Oxidative Stress-Related Genes on Susceptibility to Fibromyalgia. Nurs. Res. 2021, 70, 44–50. [Google Scholar] [CrossRef]
- Taha, R.; Blaise, G.A. Update on the pathogenesis of complex regional pain syndrome: Role of oxidative stress. Can. J. Anesth./J. Can. D’anesthésie 2012, 59, 875–881. [Google Scholar] [CrossRef]
- Cheng, Y.-Y.; Kao, C.-L.; Ma, H.-I.; Hung, C.-H.; Wang, C.-T.; Liu, D.-H.; Chen, P.-Y.; Tsai, K.-L. SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J. Biochem. 2015, 158, 299–308. [Google Scholar] [CrossRef]
- Alcaraz, M.J.; Ferrándiz, M.L. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic. Biol. Med. 2020, 157, 83–93. [Google Scholar] [CrossRef]
- Bender, C.M.; Merriman, J.D.; Gentry, A.L.; Ahrendt, G.M.; Berga, S.L.; Brufsky, A.M.; Casillo, F.E.; Dailey, M.M.; Erickson, K.I.; Kratofil, F.M.; et al. Patterns of change in cognitive function with anastrozole therapy. Cancer 2015, 121, 2627–2636. [Google Scholar] [CrossRef]
- Koleck, T.A.; Bender, C.M.; Sereika, S.M.; Brufsky, A.M.; Lembersky, B.C.; McAuliffe, P.F.; Puhalla, S.L.; Rastogi, P.; Conley, Y.P. Polymorphisms in DNA repair and oxidative stress genes associated with pre-treatment cognitive function in breast cancer survivors: An exploratory study. Springerplus 2016, 5, 422. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Manual, 7th ed; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar] [PubMed]
- Atkinson, T.M.; Mendoza, T.R.; Sit, L.; Passik, S.; Scher, H.I.; Cleeland, C.; Basch, E. The Brief Pain Inventory and its “pain at its worst in the last 24 hours” item: Clinical trial endpoint considerations. Pain Med. 2010, 11, 337–346. [Google Scholar] [CrossRef] [PubMed]
- de Haan, J.B.; Bladier, C.; Griffiths, P.; Kelner, M.; O’Shea, R.D.; Cheung, N.S.; Bronson, R.T.; Silvestro, M.J.; Wild, S.; Zheng, S.S.; et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 1998, 273, 22528–22536. [Google Scholar] [CrossRef] [PubMed]
- Hamanishi, T.; Furuta, H.; Kato, H.; Doi, A.; Tamai, M.; Shimomura, H.; Sakagashira, S.; Nishi, M.; Sasaki, H.; Sanke, T.; et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in japanese type 2 diabetic patients. Diabetes 2004, 53, 2455–2460. [Google Scholar] [CrossRef]
- Hooker, S.; Bonilla, C.; Akereyeni, F.; Ahaghotu, C.; A Kittles, R. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis. 2008, 11, 349–356. [Google Scholar] [CrossRef]
- Islam, T.; McConnell, R.; Gauderman, W.J.; Avol, E.; Peters, J.M.; Gilliland, F.D. Ozone, oxidant defense genes, and risk of asthma during adolescence. Am. J. Respir. Crit. Care Med. 2008, 177, 388–395. [Google Scholar] [CrossRef]
- Jiang, Z.; Akey, J.M.; Shi, J.; Xiong, M.; Wang, Y.; Shen, Y.; Xu, X.; Chen, H.; Wu, H.; Xiao, J.; et al. A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum. Genet. 2001, 109, 95–98. [Google Scholar] [CrossRef]
- Lockett, K.L.; Hall, M.C.; Xu, J.; Zheng, S.L.; Berwick, M.; Chuang, S.-C.; Clark, P.E.; Cramer, S.D.; Lohman, K.; Hu, J.J. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res. 2004, 64, 6344–6348. [Google Scholar] [CrossRef]
- Méplan, C.; Crosley, L.K.; Nicol, F.; Beckett, G.J.; Howie, A.F.; Hill, K.E.; Horgan, G.; Mathers, J.C.; Arthur, J.R.; Hesketh, J.E. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). Faseb J. 2007, 21, 3063–3074. [Google Scholar] [CrossRef]
- Mizutani, H. Mechanism of DNA damage and apoptosis induced by anticancer drugs through generation of reactive oxygen species. Yakugaku Zasshi 2007, 127, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.M.; Bilardi, R.A.; Koch, T.H.; Post, G.C.; Nafie, J.W.; Kimura, K.-I.; Cutts, S.M.; Phillips, D.R. DNA repair in response to anthracycline-DNA adducts: A role for both homologous recombination and nucleotide excision repair. Mutat. Res. 2008, 638, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Conte, D.; Piperno, A.; Dongiovanni, P.; Fracanzani, A.L.; Fraquelli, M.; Vergani, A.; Gianni, C.; Carmagnola, L.; Fargion, S. The mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis. J. Med. Genet. 2004, 41, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Spindler, M.; Koch, K.; Borisov, E.; Özyurt, J.; Sörös, P.; Thiel, C.; Bantel, C. The Influence of Chronic Pain and Cognitive Function on Spatial-Numerical Processing. Front. Behav. Neurosci. 2018, 12, 165. [Google Scholar] [CrossRef]
- Majedi, H.; Mohammadi, M.; Tafakhori, A.; Khazaeipour, Z. The Influence of Chronic Pain on Number Sense and Numeric Rating Scale: A prospective Cohort Study. Anesthesiol. Pain Med. 2020, 10, e103532. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G. Beck Depression Inventory-II; The Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Lorr, M.; McNair, D. EdITS Manual for the Profile of Mood States; EdITS/Educational and Industrial Testing Service: San Diego, CA, USA, 1992. [Google Scholar]
- Gärtner, R.; Jensen, M.B.; Nielsen, J.; Ewertz, M.; Kroman, N.; Kehlet, H. Prevalence of and factors associated with persistent pain following breast cancer surgery. JAMA 2009, 302, 1985–1992. [Google Scholar] [CrossRef]
- Miaskowski, C.; Cooper, B.; Paul, S.M.; West, C.; Langford, D.; Levine, J.D.; Abrams, G.; Hamolsky, D.; Dunn, L.; Dodd, M.; et al. Identification of patient subgroups and risk factors for persistent breast pain following breast cancer surgery. J. Pain. 2012, 13, 1172–1187. [Google Scholar] [CrossRef]
- Tenti, S.; Correale, P.; Cheleschi, S.; Fioravanti, A.; Pirtoli, L. Aromatase Inhibitors-Induced Musculoskeletal Disorders: Current Knowledge on Clinical and Molecular Aspects. Int. J. Mol. Sci. 2020, 21, 5625. [Google Scholar] [CrossRef]
- Zhu, Y.; Loggia, M.L.; Edwards, R.R.; Flowers, K.M.; Muñoz-Vergara, D.W.; Partridge, A.H.; Schreiber, K.L. Increased Clinical Pain Locations and Pain Sensitivity in Women After Breast Cancer Surgery: Influence of Aromatase Inhibitor Therapy. Clin. J. Pain 2022, 38, 721–729. [Google Scholar] [CrossRef]
- Loftus, L.S.; Laronga, C. Evaluating patients with chronic pain after breast cancer surgery: The search for relief. JAMA 2009, 302, 2034–2035. [Google Scholar] [CrossRef]
- Henry, N.L.; Giles, J.T.; Ang, D.; Mohan, M.; Dadabhoy, D.; Robarge, J.; Hayden, J.; Lemler, S.; Shahverdi, K.; Powers, P.; et al. Prospective characterization of musculoskeletal symptoms in early stage breast cancer patients treated with aromatase inhibitors. Breast Cancer Res. Treat. 2008, 111, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Langford, D.J.; Paul, S.M.; West, C.; Levine, J.D.; Hamolsky, D.; Elboim, C.; Schmidt, B.L.; Cooper, B.A.; Abrams, G.; Aouizerat, B.E.; et al. Persistent breast pain following breast cancer surgery is associated with persistent sensory changes, pain interference, and functional impairments. J. Pain 2014, 15, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Romero-Parra, N.; Maestre-Cascales, C.; Marín-Jiménez, N.; Rael, B.; Alfaro-Magallanes, V.M.; Cupeiro, R.; Peinado, A.B. Exercise-Induced Muscle Damage in Postmenopausal Well-Trained Women. Sports Health 2021, 13, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Penberthy, J.K.; Stewart, A.L.; Centeno, C.F.; Penberthy, D.R. Psychological Aspects of Breast Cancer. Psychiatr. Clin. N. Am. 2023, 46, 551–570. [Google Scholar] [CrossRef]
- Bellanti, F.; Matteo, M.; Rollo, T.; De Rosario, F.; Greco, P.; Vendemiale, G.; Serviddio, G. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol. 2013, 1, 340–346. [Google Scholar] [CrossRef]
- Van Houten, B.; Santa-Gonzalez, G.A.; Camargo, M. DNA repair after oxidative stress: Current challenges. Curr. Opin. Toxicol. 2018, 7, 9–16. [Google Scholar] [CrossRef]
- Di Meglio, A.; Soldato, D.; Presti, D.; Vaz-Luis, I. Lifestyle and quality of life in patients with early-stage breast cancer receiving adjuvant endocrine therapy. Curr. Opin. Oncol. 2021, 33, 553–573. [Google Scholar] [CrossRef]
- Moore, H.C.F. Breast cancer survivorship. Semin. Oncol. 2020, 47, 222–228. [Google Scholar] [CrossRef]
- Sunilkumar, M.M.; Finni, C.G.; Lijimol, A.S.; Rajagopal, M.R. Health-Related Suffering and Palliative Care in Breast Cancer. Curr. Breast Cancer Rep. 2021, 13, 241–246. [Google Scholar] [CrossRef]
- Davis, T.; Koleck, T.; Conway, A.; Bender, C.; Conley, Y. Genetic variability of oxidative stress and DNA repair genes associated with pre-treatment cancer-related fatigue in women with breast cancer. Support. Care Cancer 2023, 31, 345. [Google Scholar] [CrossRef]
- Schwab, L.; Visovsky, C. Psychological distress and quality of life in breast cancer survivors with taxane-induced peripheral neuropathy: A scoping review. Front. Oncol. 2022, 12, 1005083. [Google Scholar] [CrossRef] [PubMed]
- Verhoeff-Jahja, R.; ter Kuile, M.M.; Weijl, N.I.; Oosterkamp, R.; Cloos, M.; Portielje, J.E.A.; Kroep, J.R.; Hinnen, C. Symptoms of anxiety but not depression before start of taxane-based chemotherapy are associated with peripheral neuropathy: A multicenter study in women with breast cancer. Support. Care Cancer 2022, 30, 6947–6953. [Google Scholar] [CrossRef]
- Friedberg, E.C. How nucleotide excision repair protects against cancer. Nat. Rev. Cancer 2001, 1, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Ensom, M.H. Post hoc power analysis: An idea whose time has passed? Pharmacotherapy 2001, 21, 405. [Google Scholar] [CrossRef] [PubMed]
DNA Repair Genes | Oxidative Stress Genes | ||
---|---|---|---|
Excision Repair Cross-Complementation Group 2 (ERCC2) | Excision Repair Cross-Complementation Group 5 (ERCC5) | Catalase (CAT) | Selenoprotein P, Plasma 1 (SEPP1) |
rs13181 | rs11069498 | rs1001179 a | rs230819 |
rs1799786 | rs2296147 | rs10488736 | rs28919892 |
rs1799787 | rs2296148 a | rs2179625 | rs3877899 a |
rs238406 | rs4150355 | rs511895 | |
rs238416 | rs4150360 | rs525938 | |
rs3916874 | rs4771436 | rs566979 | Superoxide Dismutase 1, Soluble (SOD1) |
rs50871 | rs751402 | rs769214 a | rs1041740 |
rs50872 | rs873601 | ||
Excision Repair Cross-Complementation Group 3 (ERCC3) | Poly (ADP-ribose) Polymerase 1 (PARP1) | Glutathione Peroxidase 1 (GPX1) | Superoxide Dismutase 2, Mitochondrial, (SOD2) |
rs2134794 | rs1136410 a | rs1050450 | rs4880 a |
rs4150402 | rs2271347 | rs5746136 | |
rs4150407 | rs3219058 | rs8031 | |
rs4150477 | rs3219090 |
Characteristic | AI Alone (n = 83) | AI + Chemotherapy (n = 55) | F or X2 Test Statistic p-Value |
---|---|---|---|
Age (mean years ± SD) | 62.47 ± 5.96 | 58.76 ± 5.47 | <0.001 * |
Education (mean years ± SD) | 14.95 ± 3.06 | 15.67 ± 2.78 | 0.162 |
Depression (BDI-II, mean score ± SD) | 4.60 ± 4.65 | 5.24 ± 4.61 | 0.428 |
Race | |||
White (count, %) | 81 (97.59) | 52 (94.55) | 0.387 |
Black (count, %) | 1 (1.20) | 3 (5.45) | - |
Native American (count, %) | 1 (1.20) | 0 | - |
Ethnicity, Non-Hispanic/Non-Latino | 83 (100) | 55 (100) | - |
Cancer Stage | |||
Stage 0 (count, %) | 1 (1.20) | 0 | - |
Stage I (count, %) | 68 (81.93) | 25 (45.45) | - |
Stage IIa (count, %) | 12 (14.46) | 19 (34.54) | - |
Stage IIb (count, %) | 2 (2.41) | 5 (9.09) | - |
Stage IIIa (count, %) | 0 | 6 (10.90) | - |
Anxiety (POMS tension-anxiety subscale, score ± SD) | 6.97 ± 4.65 | 9.61 ± 6.14 | 0.005 * |
Fatigue (POMS fatigue-inertia subscale, mean score ± SD) | 5.84 ± 6.35 | 5.11 ± 5.33 | 0.481 |
Married status (count (%)) | 54 (65.1) | 38 (69.1) | 0.759 |
Number of children (mean ± SD) | 2.05 ± 1.39 | 1.75 ± 1.22 | 0.191 |
6-Month Worst Pain (mean score ± SD) | 3.95 ± 3.32 | 4.18 ± 3.52 | 0.705 |
Average Marginal Effect on Probability Of Pain (95% CI) | p-Value | Gene-SNP Used in GRS Calculation | Minor Allele | Wildtype Reference Allele | Type of Effect |
---|---|---|---|---|---|
27.72 (9.24–46.21) | p = 0.003 | ERCC2-rs50872 | T | C | Main |
ERCC5-rs11069498 | G | A | Main |
CME (95% CI) | p-Value | Gene SNP Used in GRS Calculation | Minor Allele | Wildtype Reference Allele | Type of Effect |
---|---|---|---|---|---|
0.45 (0.29–0.60) | p < 0.001 | ERCC2-rs50872 | T | C | Main |
ERCC5-rs11069498 | G | A | Main | ||
ERCC5-rs4150360 | C | T | Interaction | ||
ERCC5-rs4771436 | G | T | Main | ||
PARP1-rs3219058 | A | G | Interaction | ||
SEPP1-rs230819 | A | C | Interaction |
Pain Location | Baseline | Six Months |
---|---|---|
Breast/axilla | 30 | 3 |
Distal pain | 14 | 13 |
No pain | 24 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.A.; Koleck, T.A.; Conway, A.; Bender, C.M.; Conley, Y.P. Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors. Genes 2023, 14, 2031. https://doi.org/10.3390/genes14112031
Wagner MA, Koleck TA, Conway A, Bender CM, Conley YP. Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors. Genes. 2023; 14(11):2031. https://doi.org/10.3390/genes14112031
Chicago/Turabian StyleWagner, Monica A., Theresa A. Koleck, Alex Conway, Catherine M. Bender, and Yvette P. Conley. 2023. "Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors" Genes 14, no. 11: 2031. https://doi.org/10.3390/genes14112031
APA StyleWagner, M. A., Koleck, T. A., Conway, A., Bender, C. M., & Conley, Y. P. (2023). Variability of DNA Repair and Oxidative Stress Genes Associated with Worst Pain in Breast Cancer Survivors on Aromatase Inhibitors. Genes, 14(11), 2031. https://doi.org/10.3390/genes14112031