The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Import in CiteSpace and Eligibility of References
2.3. Document Co-Citation Analysis
2.4. Country Analysis
2.5. Metrics of Interest in CiteSpace
3. Results
3.1. Structural Properties of the DCA Network
3.2. Impactful Documents
3.3. Most Active Countries
4. Discussion
4.1. Cluster #11: Single Gene Linkage to Mood Disorders
4.2. Cluster #6: Susceptibility Loci for Early-Onset Major Depression
4.3. Cluster #9: Dopamine Receptor Genes
4.4. Cluster #2: Methodological Refinement
4.5. Cluster #5: Serotonin Transporter Genes
4.6. Cluster #3: Mood Disorders and Schizophrenia
4.7. Cluster #10: Brain-Derived Neurotrophic Factor
4.8. Cluster #0: Gene–Environment Interaction
4.9. Cluster #8: Circadian Genes
4.10. Cluster #12: Mood Disorders and Other Psychiatric Conditions
4.11. Cluster #1: Genome-Wide Associations Study
4.12. Cluster #13: MicroRNAs
4.13. Cluster #4: Polygenic Risk
4.14. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GWAS | Genome-wide associations study |
DCA | Document Co-Citation Analysis |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
LLR | Log-Likelihood Ratio |
GCS | Global Citing Score |
BDNF | Brain-derived neurotrophic factor |
References
- Butcher, J.N.; Hooley, J.M.; Nock, M.K.; Mineka, S. Abnormal Psychology; Pearson: London, UK, 2020. [Google Scholar]
- Paykel, E.S. Basic concepts of depression. In Dialogues in Clinical Neuroscience; Taylor & Francis: Abingdon, UK, 2022. [Google Scholar]
- Grunze, A.; Born, C.; Fredskild, M.U.; Grunze, H. How Does Adding the DSM-5 Criterion Increased Energy/Activity for Mania Change the Bipolar Landscape? Front. Psychiatry 2021, 12, 638440. [Google Scholar] [CrossRef] [PubMed]
- Cassano, G.B.; Rucci, P.; Frank, E.; Fagiolini, A.; Dell’Osso, L.; Shear, M.K.; Kupfer, D.J. The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach. Am. J. Psychiatry 2004, 161, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- American Psychological Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Engel, G.L. The need for a new medical model: A challenge for biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef]
- Craddock, N.; Forty, L. Genetics of affective (mood) disorders. Eur. J. Hum. Genet. 2006, 14, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Forstner, A.J.; Hoffmann, P.; Nöthen, M.M.; Cichon, S. Insights into the genomics of affective disorders. Med. Genet. 2020, 32, 9–18. [Google Scholar] [CrossRef]
- Polderman, T.J.; Benyamin, B.; De Leeuw, C.A.; Sullivan, P.F.; Van Bochoven, A.; Visscher, P.M.; Posthuma, D. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 2015, 47, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.R.; Gaspar, H.A.; Bryois, J.; Byrne, E.M.; Forstner, A.J.; Holmans, P.A.; de Leeuw, C.A.; Mattheisen, M.; McQuillin, A.; Pavlides, J.M.W.; et al. The genetics of the mood disorder spectrum: Genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 2020, 88, 169–184. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019, 51, 793–803. [Google Scholar] [CrossRef]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Y.; Horowitz, M.; Hou, H.; Liu, Z.; Pellegrino, D. Towards an explanatory and computational theory of scientific discovery. J. Inf. 2009, 3, 191–209. [Google Scholar] [CrossRef]
- Nakagawa, S.; Samarasinghe, G.; Haddaway, N.R.; Westgate, M.J.; O’Dea, R.E.; Noble, D.W.; Lagisz, M. Research weaving: Visualizing the future of research synthesis. Trends Ecol. Evol. 2019, 34, 224–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Carollo, A.; Lim, M.; Aryadoust, V.; Esposito, G. Interpersonal synchrony in the context of caregiver-child interactions: A document co-citation analysis. Front. Psychol. 2021, 12, 701824. [Google Scholar] [CrossRef] [PubMed]
- Carollo, A.; Bonassi, A.; Lim, M.; Gabrieli, G.; Setoh, P.; Dimitriou, D.; Aryadoust, V.; Esposito, G. Developmental disabilities across the world: A scientometric review from 1936 to 2020. Res. Dev. Disabil. 2021, 117, 104031. [Google Scholar] [CrossRef]
- Lim, M.; Carollo, A.; Dimitriou, D.; Esposito, G. Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes 2022, 13, 1646. [Google Scholar] [CrossRef]
- Lim, M.; Carollo, A.; Neoh, M.J.Y.; Esposito, G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int. J. Mol. Sci. 2023, 24, 436. [Google Scholar] [CrossRef]
- Carollo, A.; Balagtas, J.P.M.; Neoh, M.J.Y.; Esposito, G. A scientometric approach to review the role of the medial preoptic area (MPOA) in parental behavior. Brain Sci. 2021, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Carollo, A.; Fong, S.; Gabrieli, G.; Mulatti, C.; Esposito, G. To wine or not to wine? A scientometric approach to 65+ years of wine preference and selection studies. Br. Food J. 2022, 124, 409–431. [Google Scholar] [CrossRef]
- Lim, M.; Carollo, A.; Neoh, M.J.Y.; Sacchiero, M.; Azhari, A.; Balboni, G.; Marschik, P.; Nordahl-Hansen, A.; Dimitriou, D.; Esposito, G. Developmental disabilities in Africa: A scientometric review. Res. Dev. Disabil. 2023, 133, 104395. [Google Scholar] [CrossRef]
- Cataldo, I.; Lieu, A.A.; Carollo, A.; Bornstein, M.H.; Gabrieli, G.; Lee, A.; Esposito, G. From the cradle to the web: The growth of “sharenting”—A scientometric perspective. Hum. Behav. Emerg. Technol. 2022, 2022, 5607422. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Carollo, A.; Cataldo, I.; Fong, S.; Corazza, O.; Esposito, G. Unfolding the real-time neural mechanisms in addiction: Functional near-infrared spectroscopy (fNIRS) as a resourceful tool for research and clinical practice. Addict. Neurosci. 2022, 4, 100048. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Gaggero, G.; Bonassi, A.; Dellantonio, S.; Pastore, L.; Aryadoust, V.; Esposito, G. A scientometric review of alexithymia: Mapping thematic and disciplinary shifts in half a century of research. Front. Psychiatry 2020, 11, 1405. [Google Scholar] [CrossRef]
- Hou, J.; Yang, X.; Chen, C. Emerging trends and new developments in information science: A document co-citation analysis (2009–2016). Scientometrics 2018, 115, 869–892. [Google Scholar] [CrossRef]
- Lim, M.; Carollo, A.; Chen, S.A.; Esposito, G. Surveying 80 years of psychodrama research: A scientometric review. Front. Psychiatry 2021, 12, 780542. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. h-Index: A review focused in its variants, computation and standardization for different scientific fields. J. Inf. 2009, 3, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Chen, C. The citespace manual. Coll. Comput. Inform. 2014, 1, 1–84. [Google Scholar]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Aryadoust, V.; Ang, B.H. Exploring the frontiers of eye tracking research in language studies: A novel co-citation scientometric review. Comput. Assist. Lang. Learn. 2021, 34, 898–933. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Newman, M.E. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Kleinberg, J. Bursty and hierarchical structure in streams. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 91–101. [Google Scholar]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef]
- Pantelis, C.; Papadimitriou, G.N.; Papiol, S.; Parkhomenko, E.; Pato, M.T.; Paunio, T.; Pejovic-Milovancevic, M.; Perkins, D.O.; Pietiläinen, O.; Price, A.; et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Stine, O.C.; Xu, J.; Koskela, R.; McMahon, F.J.; Gschwend, M.; Friddle, C.; Clark, C.D.; McInnis, M.G.; Simpson, S.G.; Breschel, T.S.; et al. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am. J. Hum. Genet. 1995, 57, 1384. [Google Scholar] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Berrettini, W.H.; Ferraro, T.N.; Goldin, L.R.; Weeks, D.E.; Detera-Wadleigh, S.; Nurnberger, J.I., Jr.; Gershon, E.S. Chromosome 18 DNA markers and manic-depressive illness: Evidence for a susceptibility gene. Proc. Natl. Acad. Sci. USA 1994, 91, 5918–5921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, R.E.; Lehner, T.; Luo, Y.; Loth, J.E.; Shao, W.; Sharpe, L.; Alexander, J.R.; Das, K.; Simon, R.; Fieve, R.R.; et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22. 3. Nat. Genet. 1994, 8, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Lesch, K.P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Müller, C.R.; Hamer, D.H.; Murphy, D.L. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996, 274, 1527–1531. [Google Scholar] [CrossRef]
- Sklar, P.; Gabriel, S.; McInnis, M.; Bennett, P.; Lim, Y.; Tsan, G.; Schaffner, S.; Kirov, G.; Jones, I.; Owen, M.; et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 2002, 7, 579–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.M.; Wilson, A.F.; Elston, R.C.; Winokur, G. Evidence for possible linkage between genetic markers and affective disorders. Biol. Psychiatry 1988, 24, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Le, F.; Mitchell, P.; Vivero, C.; Waters, B.; Donald, J.; Selbie, L.; Shine, J.; Schofield, P. Exclusion of close linkage of bipolar disorder to the Gs-α subunit gene in nine Australian pedigrees. J. Affect. Disord. 1994, 32, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Egeland, J.A.; Gerhard, D.S.; Pauls, D.L.; Sussex, J.N.; Kidd, K.K.; Alien, C.R.; Hostetter, A.M.; Housman, D.E. Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 1987, 325, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Risch, N.; Hamburger, R.; Mandel, B.; Kushner, S.; Newman, M.; Drumer, D.; Belmaker, R.H. Genetic linkage between X-chromosome markers and bipolar affective illness. Nature 1987, 326, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Neiswanger, K.; Slaugenhaupt, S.A.; Hughes, H.B.; Frank, E.; Frankel, D.R.; McCarty, M.J.; Chakravarti, A.; Zubenko, G.S.; Kupfer, D.J.; Kaplan, B.B. Evidence against close linkage of unipolar affective illness to human chromosome 11p markers HRAS1 and INS and chromosome Xq marker DXS52. Biol. Psychiatry 1990, 28, 63–72. [Google Scholar] [CrossRef]
- Cichon, S.; Nöthen, M.M.; Rietschel, M.; Körner, J.; Propping, P. Single-strand conformation analysis (SSCA) of the dopamine D1 receptor gene (DRD1) reveals no significant mutation in patients with schizophrenia and manic depression. Biol. Psychiatry 1994, 36, 850–853. [Google Scholar] [CrossRef]
- Nanko, S.; Fukuda, R.; Hattori, M.; Sasaki, T.; Dai, X.Y.; Kanba, S.; Kato, T.; Kazamatsuri, H. Linkage studies between affective disorder and dopamine D2, D3, and D4 receptor gene loci in four Japanese pedigrees. Psychiatry Res. 1994, 52, 149–157. [Google Scholar] [CrossRef]
- Zubenko, G.S.; Hughes, H.B.; Stiffler, J.S.; Zubenko, W.N.; Kaplan, B.B. Genome survey for susceptibility loci for recurrent, early-onset major depression: Results at 10cM resolution. Am. J. Med Genet. 2002, 114, 413–422. [Google Scholar] [CrossRef]
- Zubenko, G.S.; Hughes III, H.B.; Maher, B.S.; Stiffler, J.S.; Zubenko, W.N.; Marazita, M.L. Genetic linkage of region containing the CREB1 gene to depressive disorders in women from families with recurrent, early-onset, major depression. Am. J. Med Genet. 2002, 114, 980–987. [Google Scholar] [CrossRef]
- Zubenko, G.; Hughes III, H.; Stiffler, J.; Zubenko, W.; Kaplan, B. D2S2944 identifies a likely susceptibility locus for recurrent, early-onset, major depression in women. Mol. Psychiatry 2002, 7, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Seney, M.L.; Sibille, E. Sex differences in mood disorders: Perspectives from humans and rodent models. Biol. Sex Differ. 2014, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Sherrington, R.; Kalsi, G.; Mankoo, B.; Brynjolfsson, J.; Curtis, D.; Moloney, E.; Rifkin, L.; Petursson, H.; Gurling, H. A linkage study with the D5 dopamine receptor in Icelandic pedigrees with multiple cases of manic depression. Psychiatr. Genet. 1993, 3, 241–246. [Google Scholar] [CrossRef]
- Law, A.; Richard, C.W.; Cottingham, R.W.; Lathrop, G.M.; Cox, D.R.; Myers, R.M. Genetic linkage analysis of bipolar affective disorder in an Old Order Amish pedigree. Hum. Genet. 1992, 88, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, D.H.; He, L.; Morris, S.W.; McLean, A.; Whitton, C.; Thomson, M.; Walker, M.T.; Woodburn, K.; Sharp, C.M.; Wright, A.F.; et al. A locus for bipolar affective disorder on chromosome 4p. Nat. Genet. 1996, 12, 427–430. [Google Scholar] [CrossRef]
- Aschauer, H.N.; Fischer, G.; Isenberg, K.E.; Meszaros, K.; Willinger, U.; Todd, R.D.; Beran, H.; Strobl, R.; Lang, M.; Fuchs, K.; et al. No proof of linkage between schizophrenia-related disorders including schizophrenia and chromosome 2q21 region. Eur. Arch. Psychiatry Clin. Neurosci. 1993, 243, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Macciardi, F.; Di Bella, D.; Catalano, M.; Smeraldi, E. Self-esteem in remitted patients with mood disorders is not associated with the dopamine receptor D4 and the serotonin transporter genes. Psychiatry Res. 1998, 80, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Macciardi, F.; Cusin, C.; Lattuada, E.; Lilli, R.; Smeraldi, E. Dopamine receptor D4 gene is associated with delusional symptomatology in mood disorders. Psychiatry Res. 1998, 80, 129–136. [Google Scholar] [CrossRef]
- Turecki, G.; Alda, M.; Grof, P.; Grof, E.; Martin, R.; Cavazzoni, P.A.; Duffy, A.; Maciel, P.; Rouleau, G.A. No association between chromosome-18 markers and lithiumresponsive affective disorders. Psychiatry Res. 1996, 63, 17–23. [Google Scholar] [CrossRef]
- Manki, H.; Kanba, S.; Muramatsu, T.; Higuchi, S.; Suzuki, E.; Matsushita, S.; Ono, Y.; Chiba, H.; Shintani, F.; Nakamura, M.; et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J. Affect. Disord. 1996, 40, 7–13. [Google Scholar] [CrossRef]
- Serretti, A.; Macciardi, F.; Catalano, M.; Bellodi, L.; Smeraldi, E. Genetic variants of dopamine receptor D4 and psychopathology. Schizophr. Bull. 1999, 25, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Serretti, A.; Lilli, R.; Lorenzi, C.; Franchini, L.; Di Bella, D.; Catalano, M.; Smeraldi, E. Dopamine receptor D2 and D4 genes, GABAA alpha-1 subunit gene and response to lithium prophylaxis in mood disorders. Psychiatry Res. 1999, 87, 7–19. [Google Scholar] [CrossRef]
- Potash, J.B.; DePaulo, J.R., Jr. Searching high and low: A review of the genetics of bipolar disorder. Bipolar Disord. 2000, 2, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Jansson, M.; Linnér, L.; Yuan, Q.P.; Pedersen, N.L.; Blackwood, D.; Barden, N.; Kelsoe, J.; Schalling, M. Genetics of affective disorders. Eur. Neuropsychopharmacol. 2001, 11, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Oswald, P.; Souery, D.; Mendlewicz, J. Molecular genetics of affective disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Alda, M. Bipolar disorder: From families to genes. Can. J. Psychiatry 1997, 42, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Hasler, G.; Drevets, W.C.; Gould, T.D.; Gottesman, I.I.; Manji, H.K. Toward constructing an endophenotype strategy for bipolar disorders. Biol. Psychiatry 2006, 60, 93–105. [Google Scholar] [CrossRef]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Serretti, A.; Lilli, R.; Smeraldi, E. Pharmacogenetics in affective disorders. Eur. J. Pharmacol. 2002, 438, 117–128. [Google Scholar] [CrossRef]
- Anguelova, M.; Benkelfat, C.; Turecki, G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: II. Suicidal behavior. Mol. Psychiatry 2003, 8, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Serretti, A.; Zanardi, R.; Rossini, D.; Cusin, C.; Lilli, R.; Smeraldi, E. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol. Psychiatry 2001, 6, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Turecki, G. Suicidal behavior: Is there a genetic predisposition? Bipolar Disord. 2001, 3, 335–349. [Google Scholar] [CrossRef]
- Nellissery, M.; Feinn, R.S.; Covault, J.; Gelernter, J.; Anton, R.F.; Pettinati, H.; Moak, D.; Mueller, T.; Kranzler, H.R. Alleles of a functional serotonin transporter promoter polymorphism are associated with major depression in alcoholics. Alcohol. Clin. Exp. Res. 2003, 27, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Lesch, K.P.; Mössner, R. Genetically driven variation in serotonin uptake: Is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol. Psychiatry 1998, 44, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Potash, J.B. Carving chaos: Genetics and the classification of mood and psychotic syndromes. Harv. Rev. Psychiatry 2006, 14, 47–63. [Google Scholar] [CrossRef]
- Bogaert, A.V.D.; Del-Favero, J.; Broeckhoven, C.V. Major affective disorders and schizophrenia: A common molecular signature? Hum. Mutat. 2006, 27, 833–853. [Google Scholar] [CrossRef] [PubMed]
- Kato, T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin. Neurosci. 2007, 61, 3–19. [Google Scholar] [CrossRef]
- Venken, T.; Del-Favero, J. Chasing genes for mood disorders and schizophrenia in genetically isolated populations. Hum. Mutat. 2007, 28, 1156–1170. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Citrome, L. Schizoaffective Disorder. CNS Drugs 2011, 25, 317–331. [Google Scholar] [CrossRef]
- Kasanin, J. The acute schizoaffective psychoses. Am. J. Psychiatry 1933, 90, 97–126. [Google Scholar] [CrossRef]
- Fan, J.; Sklar, P. Genetics of bipolar disorder: Focus on BDNF Val66Met polymorphism. In Growth Factors and Psychiatric Disorders: Novartis Foundation Symposium; John Wiley & Sons, Ltd.: Chichester, UK, 2008; Volume 289, p. 60. [Google Scholar]
- Tsai, S.J.; Hong, C.J. Effect of Brain-Derived Neurotrophic Factor (BDNF) Gene Variants on the Therapeutic Response and the Risk for Mood Disorders. Curr. Pharmacogenom. Pers. Med. 2008, 6, 126–133. [Google Scholar] [CrossRef]
- Liu, L.; Foroud, T.; Xuei, X.; Berrettini, W.; Byerley, W.; Coryell, W.; El-Mallakh, R.; Gershon, E.S.; Kelsoe, J.R.; Lawson, W.B.; et al. Evidence of association between brain-derived neurotrophic factor (BDNF) gene and bipolar disorder. Psychiatr. Genet. 2008, 18, 267. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Reuter, M.; Newport, B.; Elger, C.; Weber, B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: Evidence from a genetic imaging study. Neuroimage 2008, 42, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Hünnerkopf, R.; Strobel, A.; Gutknecht, L.; Brocke, B.; Lesch, K.P. Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits. Neuropsychopharmacology 2007, 32, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Rybakowski, J.; Suwalska, A.; Skibinska, M.; Szczepankiewicz, A.; Leszczynska-Rodziewicz, A.; Permoda, A.; Czerski, P.; Hauser, J. Prophylactic lithium response and polymorphism of the brain-derived neurotrophic factor gene. Pharmacopsychiatry 2005, 38, 166–170. [Google Scholar] [CrossRef]
- Mann, J.J.; Currier, D. Effects of genes and stress on the neurobiology of depression. Int. Rev. Neurobiol. 2006, 73, 153–189. [Google Scholar]
- Booij, L.; Wang, D.; Lévesque, M.L.; Tremblay, R.E.; Szyf, M. Looking beyond the DNA sequence: The relevance of DNA methylation processes for the stress–diathesis model of depression. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariri, A.R.; Drabant, E.M.; Weinberger, D.R. Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol. Psychiatry 2006, 59, 888–897. [Google Scholar] [CrossRef]
- Hing, B.; Gardner, C.; Potash, J.B. Effects of negative stressors on DNA methylation in the brain: Implications for mood and anxiety disorders. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2014, 165, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Partonen, T. Clock gene variants in mood and anxiety disorders. J. Neural Transm. 2012, 119, 1133–1145. [Google Scholar] [CrossRef]
- Sjöholm, L.K.; Backlund, L.; Cheteh, E.H.; Ek, I.R.; Frisén, L.; Schalling, M.; Ösby, U.; Lavebratt, C.; Nikamo, P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS ONE 2010, 5, e12632. [Google Scholar] [CrossRef] [Green Version]
- Soria, V.; Martinez-Amoros, E.; Escaramís, G.; Valero, J.; Pérez-Egea, R.; García, C.; Gutiérrez-Zotes, A.; Puigdemont, D.; Bayés, M.; Crespo, J.M.; et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 2010, 35, 1279–1289. [Google Scholar] [CrossRef]
- Landgraf, D.; McCarthy, M.J.; Welsh, D.K. The role of the circadian clock in animal models of mood disorders. Behav. Neurosci. 2014, 128, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharinger, C.; Rabl, U.; Sitte, H.H.; Pezawas, L. Imaging genetics of mood disorders. Neuroimage 2010, 53, 810–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybakowski, J.K.; Dmitrzak-Weglarz, M.; Kliwicki, S.; Hauser, J. Polymorphism of circadian clock genes and prophylactic lithium response. Bipolar Disord. 2014, 16, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Gomez, L.; Wigg, K.; Feng, Y.; Kiss, E.; Kapornai, K.; Tamás, Z.; Mayer, L.; Baji, I.; Daróczi, G.; Benák, I.; et al. G72/G30 (DAOA) and juvenile-onset mood disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150, 1007–1012. [Google Scholar] [CrossRef]
- Green, E.K.; Grozeva, D.; Raybould, R.; Elvidge, G.; Macgregor, S.; Craig, I.; Farmer, A.; McGuffin, P.; Forty, L.; Jones, L.; et al. P2RX7: A bipolar and unipolar disorder candidate susceptibility gene? Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150, 1063–1069. [Google Scholar] [CrossRef]
- Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; Hsu, Y.H.; Shekhtman, T.; et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: A genome-wide association study. JAMA Psychiatry 2018, 75, 65–74. [Google Scholar]
- Schneider, M.; Debbané, M.; Bassett, A.S.; Chow, E.W.; Fung, W.L.A.; Van Den Bree, M.B.; Owen, M.; Murphy, K.C.; Niarchou, M.; Kates, W.R.; et al. Psychiatric disorders from childhood to adulthood in 22q11. 2 deletion syndrome: Results from the International Consortium on Brain and Behavior in 22q11. 2 Deletion Syndrome. Am. J. Psychiatry 2014, 171, 627–639. [Google Scholar] [CrossRef]
- Lichtenstein, P.; Yip, B.H.; Björk, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 2009, 373, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Domschke, K.; Reif, A. Behavioral genetics of affective and anxiety disorders. Behav. Neurogenet. 2011, 12, 463–502. [Google Scholar]
- Barnett, J.H.; Smoller, J.W. The genetics of bipolar disorder. Neuroscience 2009, 164, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, J.M.; Donald, J.A.; Mitchell, P.B.; Schofield, P.R. Two-dimensional genome scan identifies multiple genetic interactions in bipolar affective disorder. Biol. Psychiatry 2010, 67, 478–486. [Google Scholar] [CrossRef]
- Ciani, M.; Benussi, L.; Bonvicini, C.; Ghidoni, R. Genome wide association study and next generation sequencing: A glimmer of light toward new possible horizons in frontotemporal dementia research. Front. Neurosci. 2019, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Perlis, R.H.; Lee, P.H.; Rush, A.J.; Fava, M.; Sachs, G.S.; Lieberman, J.; Hamilton, S.P.; Sullivan, P.; Sklar, P.; et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am. J. Psychiatry 2010, 167, 1254–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shea, K.S.; McInnis, M.G. Neurodevelopmental origins of bipolar disorder: IPSC models. Mol. Cell. Neurosci. 2016, 73, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Luoni, A.; Riva, M.A. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol. Ther. 2016, 167, 13–27. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.M.; Gururajan, A.; Dinan, T.G.; Kenny, P.J.; Cryan, J.F. All roads lead to the miRNome: MiRNAs have a central role in the molecular pathophysiology of psychiatric disorders. Trends Pharmacol. Sci. 2016, 37, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.A.; Carter, B.S.; Meng, F.; Turner, D.L.; Dai, M.; Schatzberg, A.F.; Barchas, J.D.; Jones, E.G.; Bunney, W.E.; Myers, R.M.; et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J. Psychiatr. Res. 2016, 82, 58–67. [Google Scholar] [CrossRef] [Green Version]
- McMahon, A.; Lewis, E.; Buniello, A.; Cerezo, M.; Hall, P.; Sollis, E.; Parkinson, H.; Hindorff, L.A.; Harris, L.W.; MacArthur, J.A. Sequencing-based genome-wide association studies reporting standards. Cell Genom. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Boudreau, R.L.; Jiang, P.; Gilmore, B.L.; Spengler, R.M.; Tirabassi, R.; Nelson, J.A.; Ross, C.A.; Xing, Y.; Davidson, B.L. Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron 2014, 81, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, F.; Uchida, S.; Yamagata, H.; Abe-Higuchi, N.; Hobara, T.; Hara, K.; Kobayashi, A.; Shintaku, T.; Itoh, Y.; Suzuki, T.; et al. Hippocampal microRNA-124 enhances chronic stress resilience in mice. J. Neurosci. 2016, 36, 7253–7267. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Yuan, P.; Wang, Y.; Hunsberger, J.G.; Elkahloun, A.; Wei, Y.; Damschroder-Williams, P.; Du, J.; Chen, G.; Manji, H.K. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009, 34, 1395–1405. [Google Scholar] [CrossRef] [Green Version]
- Facal, F.; Flórez, G.; Blanco, V.; Rodríguez, J.; Pereiro, C.; Fernández, J.M.; Fariñas, E.; Estévez, V.; Gómez-Trigo, J.; Gurriarán, X.; et al. Genetic predisposition to alcohol dependence: The combined role of polygenic risk to general psychopathology and to high alcohol consumption. Drug Alcohol Depend. 2021, 221, 108556. [Google Scholar] [CrossRef] [PubMed]
- Tubbs, J.D.; Ding, J.; Baum, L.; Sham, P.C. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur. Neuropsychopharmacol. 2020, 39, 1–18. [Google Scholar] [CrossRef]
- Biere, S.; Kranz, T.M.; Matura, S.; Petrova, K.; Streit, F.; Chiocchetti, A.G.; Grimm, O.; Brum, M.; Brunkhorst-Kanaan, N.; Oertel, V.; et al. Risk Stratification for Bipolar Disorder Using Polygenic Risk Scores Among Young High-Risk Adults. Front. Psychiatry 2020, 11, 552532. [Google Scholar] [CrossRef] [PubMed]
- Kember, R.L.; Merikangas, A.K.; Verma, S.S.; Verma, A.; Judy, R.; Abecasis, G.; Baras, A.; Cantor, M.; Coppola, G.; Economides, A.; et al. Polygenic risk of psychiatric disorders exhibits cross-trait associations in electronic health record data from european ancestry individuals. Biol. Psychiatry 2021, 89, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.; Wouters, P.; Waltman, L.; De Rijcke, S.; Rafols, I. Bibliometrics: The Leiden Manifesto for research metrics. Nature 2015, 520, 429–431. [Google Scholar] [CrossRef]
Cluster ID | Size | Silhouette | Mean Year | LLR Label | Suggested Label |
---|---|---|---|---|---|
0 | 241 | 0.895 | 2010 | Bipolar disorder | Gene-Environment Interaction |
1 | 232 | 0.834 | 2015 | Genome-wide association study | Genome-wide association study |
2 | 173 | 0.907 | 1999 | Bipolar Affective disorder | Methodological refinement |
3 | 150 | 0.872 | 2005 | Chasing gene | Mood disorders and schizophrenia |
4 | 149 | 0.941 | 2020 | Polygenic risk score | Polygenic risk |
5 | 117 | 0.932 | 2001 | Serotonin transporter gene | Serotonin transporter genes |
6 | 85 | 0.979 | 1991 | Early-onset major Depression | Susceptibility loci for early-onset major depression |
8 | 73 | 0.943 | 2013 | Therapeutic approaches | Circadian genes |
9 | 68 | 0.973 | 1997 | Lithium-responsive Affective disorders | Dopamine receptor genes |
10 | 60 | 0.954 | 2006 | Brain-derived neurotrophic factor | Brain-derived neurotrophic factor |
11 | 56 | 0.987 | 1991 | Close linkage | Single gene linkage to mood disorders |
12 | 37 | 0.984 | 2013 | Juvenile-onset major Depression | Mood disorders and other psychiatric conditions |
13 | 28 | 0.989 | 2015 | Central role | MicroRNAs |
Reference | Citation Burstness | Publication Year | Burst Begin | Burst End | Duration (years) | Centrality | Sigma |
---|---|---|---|---|---|---|---|
Caspi et al. [45] | 41.14 | 2003 | 2004 | 2011 | 7 | 0.067 | 14.26 |
Pantelis et al. [46] | 29.67 | 2014 | 2015 | 2023 | 8 | 0.093 | 14.08 |
Barrett et al. [47] | 27.31 | 2005 | 2008 | 2013 | 5 | 0.006 | 1.16 |
Berrettini et al. [50] | 26.46 | 1994 | 1996 | 2002 | 6 | 0.007 | 1.21 |
Stine et al. [48] | 25.42 | 1995 | 1996 | 2003 | 7 | 0.013 | 1.38 |
Straub et al. [51] | 23.39 | 1994 | 1996 | 2002 | 6 | 0.035 | 2.22 |
Lesch et al. [52] | 22.87 | 1996 | 1998 | 2004 | 6 | 0.017 | 1.46 |
Sklar et al. [53] | 22.47 | 2002 | 2004 | 2009 | 5 | 0.006 | 1.13 |
The Wellcome Trust Case Control Consortium [54] | 22.26 | 2007 | 2008 | 2013 | 5 | 0.018 | 1.00 |
Purcell et al. [49] | 22.04 | 2007 | 2010 | 2015 | 5 | 0.094 | 7.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonacina, G.; Carollo, A.; Esposito, G. The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders. Genes 2023, 14, 352. https://doi.org/10.3390/genes14020352
Bonacina G, Carollo A, Esposito G. The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders. Genes. 2023; 14(2):352. https://doi.org/10.3390/genes14020352
Chicago/Turabian StyleBonacina, Giovanni, Alessandro Carollo, and Gianluca Esposito. 2023. "The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders" Genes 14, no. 2: 352. https://doi.org/10.3390/genes14020352
APA StyleBonacina, G., Carollo, A., & Esposito, G. (2023). The Genetic Side of the Mood: A Scientometric Review of the Genetic Basis of Mood Disorders. Genes, 14(2), 352. https://doi.org/10.3390/genes14020352