Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Searching for Tandem Repeats Displaying FISH Bands
3.2. Differences between Subspecies
3.3. Correspondence between Molecular and Cytological Parameters
3.4. Analysis of the CPP-CPE Contact Zone Using two TR Markers
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fry, K.; Salser, W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents. Cell 1977, 12, 1069–1084. [Google Scholar] [CrossRef]
- Smith, G.P. Evolution of Repeated DNA Sequences by Unequal Crossover: DNA whose sequence is not maintained by selection will develop periodicities as a result of random crossover. Science 1976, 191, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruano, F.J.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016, 6, 28333. [Google Scholar] [CrossRef]
- Camacho, J.P.M.; Cabrero, J.; López-León, M.D.; Martín-Peciña, M.; Perfectti, F.; Garrido-Ramos, M.A.; Ruiz-Ruano, F.J. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol. 2022, 20, 36. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Milani, D.; Song, H.; Marti, D.A.; López-León, M.D.; Ruiz-Ruano, F.J.; Camacho, J.P.M.; Cabral-de-Mello, D.C. Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol. Evol. 2020, 12, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.M.; Ruiz-Ruano, F.J.; Martín-Blázquez, R.; López-León, M.D.; Cabrero, J.; Lorite, P.; Cabral-de-Mello, D.C.; Bakkali, M. A step to the gigantic genome of the desert locust: Chromosome sizes and repeated DNAs. Chromosoma 2015, 124, 263–275. [Google Scholar] [CrossRef]
- Gosálvez, J.; López-Fernández, C.; Bella, L.J.; Butlin, R.K.; Hewitt, G.M. A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): Chromosomal differentiation. Genome 1988, 30, 656–663. [Google Scholar] [CrossRef]
- Serrano, L.; Garcia de la Vega, C.; Bella, J.; López-Fernández, C.; Hewitt, G.; Gosálvez, J. A hybrid zone between two subspecies of Chorthippus parallelus. X-chromosome variation through a contact zone. J. Evol. Biol. 1996, 9, 173–184. [Google Scholar] [CrossRef]
- Bella, J.L.; Serrano, L.; Orellana, J.; Mason, P.L. The origin of the Chorthippus parallelus hybrid zone: Chromosomal evidence of multiple refugia for Iberian populations. J. Evol. Biol. 2007, 20, 568–576. [Google Scholar] [CrossRef]
- Thakur, J.; Packiaraj, J.; Henikoff, S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021, 22, 4309. [Google Scholar] [CrossRef]
- Salvany, L.; Aldaz, S.; Corsetti, E.; Azpiazu, N. A new role for hth in the early pre-blastodermic divisions in Drosophila. Cell Cycle 2009, 8, 2748–2755. [Google Scholar] [CrossRef]
- Bella, J.L.; Serrano, L.; Hewitt, G.M.; Gosálvez, J. Heterochromatin heterogeneity and rapid divergence of the sex chromosomes in Chorthippus parallelus parallelus and C. p. erythropus (Orthoptera). Genome 1993, 36, 542–547. [Google Scholar] [CrossRef]
- Butlin, R.; Hewitt, G. A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): Morphological and electrophoretic characters. Biol. J. Linn. Soc. 1985, 26, 269–285. [Google Scholar] [CrossRef]
- Butlin, R.; Hewitt, G. A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): Behavioural characters. Biol. J. Linn. Soc. 1985, 26, 287–299. [Google Scholar] [CrossRef]
- Hewitt, G.M.; Harrison, R.G. After the ice: Parallelus meets erythropus in the Pyrenees. In Hybrid Zones and the Evolutionary Process; Oxford University Press: Oxford, UK, 1993; pp. 140–164. [Google Scholar]
- Virdee, S.R.; Hewitt, G.M. Clines for hybrid dysfunction in a grasshopper hybrid zone. Evolution 1994, 48, 392–407. [Google Scholar] [CrossRef]
- Cooper, S.J.B.; Ibrahim, K.M.; Hewitt, G.M. Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol. Ecol. 1995, 4, 49–60. [Google Scholar] [CrossRef]
- Butlin, R.K. What do hybrid zones in general, and the Chorthippus parallelus zone in particular, tell us about speciation. In Endless Forms: Species and Speciation; Oxford Univ. Press: New York, NY, USA, 1998; pp. 367–378. [Google Scholar]
- Martínez-Rodríguez, P.; Bella, J.L. Chorthippus parallelus and Wolbachia: Overlapping Orthopteroid and Bacterial Hybrid Zones. Front. Genet. 2018, 9, 604. [Google Scholar] [CrossRef]
- Pereira, R.J.; Ruiz-Ruano, F.J.; Thomas, C.J.E.; Pérez-Ruiz, M.; Jiménez-Bartolomé, M.; Liu, S.; de la Torre, J.; Bella, J.L. Mind the numt: Finding informative mitochondrial markers in a giant grasshopper genome. J. Zool. Syst. Evol. Res. 2021, 59, 635–645. [Google Scholar] [CrossRef]
- Hagberg, L.; Celemín, E.; Irisarri, I.; Hawlitschek, O.; Bella, J.L.; Mott, T.; Pereira, R.J. Extensive introgression at late stages of species formation: Insights from grasshopper hybrid zones. Mol. Ecol. 2022, 31, 2384–2399. [Google Scholar] [CrossRef]
- Meštrović, N.; Mravinac, B.; Pavlek, M.; Vojvoda-Zeljko, T.; Šatović, E.; Plohl, M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res. 2015, 23, 583–596. [Google Scholar] [CrossRef]
- Kawakami, T.; Butlin, R.K. Hybrid zones. eLS 2001, 2, 1–6. [Google Scholar] [CrossRef]
- Harrison, R.G.; Larson, E.L. Hybridization, introgression, and the nature of species boundaries. J. Hered. 2014, 105, 795–809. [Google Scholar] [CrossRef]
- Ferris, C.; Rubio, J.M.; Serrano, L.; Gosalvez, J.; Hewitt, G.M. One way introgression of a subspecific sex chromosome marker in a hybrid zone. Heredity 1993, 71, 119–129. [Google Scholar] [CrossRef]
- Shuker, D.; King, T.; Bella, J.L.; Butlin, R.K. The genetic basis of speciation in a grasshopper hybrid zone. In Insect Evolutionary Biology; MDE Fellowes, Holloway, G.J., Rolff, J., Eds.; CABI Publishing, Oxford University Press: Oxford, UK, 2005; pp. 427–454. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. 2013. Available online: http://www.repeatmasker.org (accessed on 31 January 2014).
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 2015, 6, 11. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Cabrero, J.; Perfectti, F.; Gómez, R.; Camacho, J.P.M.; López-León, M.D. Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosome Res. 2003, 11, 375–381. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef]
- Gardner, M.J.; Altman, D.G. Confidence intervals rather than P values: Estimation rather than hypothesis testing. Br. Med. J. (Clin. Res. Ed) 1986, 292, 746–750. [Google Scholar] [CrossRef]
- Abercrombie, L.G.; Anderson, C.M.; Baldwin, B.G.; Bang, I.C.; Beldade, R.; Bernardi, G.; Boubou, A.; Branca, A.; Bretagnolle, F.; Bruford, M.W.; et al. Permanent genetic resources added to molecular ecology resources database 1 January 2009–30 April 2009. Mol. Ecol. Resour. 2009, 9, 1375–1379. [Google Scholar]
- Rafferty, J.A.; Fletcher, H.L. Sequence analysis of a family of highly repeated DNA units in Stauroderus scalaris (Orthoptera). Int. J. Genome Res. 1992, 1, 1–16. [Google Scholar]
- Ruiz-Ruano, F.J.; Castillo-Martínez, J.; Cabrero, J.; Gómez, R.; Camacho, J.P.M.; López-León, M.D. High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats. Chromosoma 2018, 127, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Cabrero, J.; Camacho, J.P.M. Location and expression of ribosomal RNA genes in grasshoppers: Abundance of silent and cryptic loci. Chromosome Res. 2008, 16, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Hewitt, G.M. Speciation, hybrid zones and phylogeography—Or seeing genes in space and time. Mol. Ecol. 2001, 10, 537–549. [Google Scholar] [CrossRef]
- Suntronpong, A.; Singchat, W.; Kruasuwan, W.; Prakhongcheep, O.; Sillapaprayoon, S.; Muangmai, N.; Somyong, S.; Indananda, C.; Kraichak, E.; Peyachoknagul, S.; et al. Characterization of centromeric satellite DNAs (MALREP) in the Asian swamp eel (Monopterus albus) suggests the possible origin of repeats from transposable elements. Genomics 2020, 112, 3097–3107. [Google Scholar] [CrossRef]
- Belyayev, A.; Josefiová, J.; Jandová, M.; Mahelka, V.; Krak, K.; Mandák, B. Transposons and satellite DNA: On the origin of the major satellite DNA family in the Chenopodium genome. Mobile DNA 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Lower, S.E.; Dion-Côté, A.-M.; Clark, A.G.; Barbash, D.A. Special Issue: Repetitive DNA Sequences. Genes 2019, 10, 896. [Google Scholar] [CrossRef]
- Schwarzacher, T.; Heslop-Harrison, P. Practical In Situ Hybridization; BIOS Scientific Publishers Ltd.: Oxford, UK, 2000. [Google Scholar]
- Butlin, R.K.; Hewitt, G.M. Genetic divergence in the Chorthippus parallelus species group (Orthoptera: Acrididae). Biol. J. Linn. Soc. 1987, 31, 301–310. [Google Scholar] [CrossRef]
- Butlin, R.K.; Ritchie, M.G.; Hewitt, G.M. Comparisons among morphological characters and between localities in the Chorthippus parallelus hybrid zone (Orthoptera: Acrididae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 1991, 334, 297–308. [Google Scholar] [CrossRef]
- Lunt, D.H.; Ibrahim, K.M.; Hewitt, G.M. mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 1998, 80, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mank, J.E.; Ban, L. Grasshopper genome reveals long-term conservation of the X chromosome and temporal variation in X chromosome evolution. bioRXiv 2022. [Google Scholar] [CrossRef]
- Nolen, Z.J.; Yildirim, B.; Irisarri, I.; Liu, S.; Groot Crego, C.; Amby, D.B.; Mayer, F.; Gilbert, M.T.P.; Pereira, R.J. Historical isolation facilitates species radiation by sexual selection: Insights from Chorthippus grasshoppers. Mol. Ecol. 2020, 29, 4985–5002. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.; George Jr, M.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Hewitt, G.M.; Butlin, R.K.; East, T.M. Testicular dysfunction in hybrids between parapatric subspecies of the grasshopper Chorthippus parallelus. Biol. J. Linn. Soc. 1987, 31, 25–34. [Google Scholar] [CrossRef]
- Bella, J.L.; Hewitt, G.M.; Gosálvez, J. Meiotic imbalance in laboratory-produced hybrid males of Chorthippus parallelus parallelus and Chorthippus parallelus erythropus. Genet Res. 1990, 56, 43–48. [Google Scholar] [CrossRef] [Green Version]
Country | Site | Latitude | Longitude | Altitude (m) | N |
---|---|---|---|---|---|
France | Arudy (ARU) | 43°06′01″ N | 0°26′38″ W | 400 | 41 |
Gabas (GAB) | 42°53′60″ N | 0°25′60″ W | 1020 | 7 | |
L’Hermine (HER) | 42°51′46.8″ N | 0°23′30.4″ W | 1209 | 7 | |
Portalet (POR) | 42° 48′03″ N | 0°24′54″ W | 1708 | 12 | |
Spain | Corral de Mulas (CM) | 42°47′09.4″ N | 0°23′34.4” W | 1569 | 8 |
Camino Pazino (PAZ) | 42°45′57.5″ N | 0°20′33.9″ W | 1343 | 10 | |
Escarrilla (ESC) | 42°43′54.1″ N | 0°18′39.3″ W | 1130 | 42 |
CPP Chromosomes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TR_Name | Pattern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | X | Chrom |
CpaTR004-335 | B | d | d | d | d | d | 5 | ||||
CpaTR006-11 | B | id | id | id | id | d | d | d | d * | id | 9 |
CpaTR007-21 | B | id | d | d | id | d | d | d | d | d | 9 |
CpaTR008-331 | B | d * | d * | 2 | |||||||
CpaTR009-172 | B | i | 1 | ||||||||
CpaTR010-275 | DB | i | 1 | ||||||||
CpaTR011-213 | B | p | p * | p | p | p | p | p | 7 | ||
CpaTR012-247 | B | d | d | d | d | d | d | d | d | 8 | |
CpaTR013-55 | B | i | 1 | ||||||||
CpaTR016-7 | B | d | d | d | d | 4 | |||||
CpaTR017-289 | B | p | d | d | 3 | ||||||
CpaTR020-246 | B | pi | 1 | ||||||||
CpaTR024-210 | B | pi | p * | p * | 3 | ||||||
CpaTR025-248 | B | d * | d * | 2 | |||||||
CpaTR026-239 | B | i | i | 2 | |||||||
CpaTR028-148 | B | p | p | 2 | |||||||
CpaTR030-79 | B | p | p * | p | 3 | ||||||
CpaTR032-20 | B | d | d | d | 3 | ||||||
CpaTR033-222 | NS | 0 | |||||||||
CpaTR034-61 | NS | 0 | |||||||||
CpaTR036-168 | B | p | p | p | p | p | p | p * | p | 8 | |
CpaTR039-139 | B | iii | i | 2 | |||||||
CpaTR040-161 | B | p *i *d * | i | i | p *i *d * | i * | i | 6 | |||
CpaTR044-205 | B | i | 1 | ||||||||
CpaTR046-157 | B | p | p * | d * | 3 | ||||||
CpaTR047-287 | NS | 0 | |||||||||
CpaTR048-15 | B | id | 1 | ||||||||
CpaTR049-215 | B | i | 1 | ||||||||
CpaTR050-288 | NS | 0 | |||||||||
CpaTR053-405 | B | i | 1 | ||||||||
CpaTR057-102 | NS | 0 | |||||||||
CpaTR058-196 | B | i | 1 | ||||||||
CpaTR061-27 | B | i | 1 | ||||||||
CpaTR062-56 | B | p | 1 | ||||||||
CpaTR063-92 | B | p | 1 | ||||||||
CpaTR065-379 | B | d | 1 | ||||||||
CpaTR068-155 | B | i | i | 2 | |||||||
CpaTR069-89 | B | i | 1 | ||||||||
CpaTR074-186 | B | d | 1 | ||||||||
CpaTR075-45 | B | d * | 1 | ||||||||
CpaTR076-168 | NS | 0 | |||||||||
CpaTR077-16 | B | id | 1 | ||||||||
CpaTR091-49 | B | d | 1 | ||||||||
CpaTR094-170 | NS | 0 | |||||||||
CpaTR097-108 | NS | 0 | |||||||||
CpaTR100-295 | NS | 0 | |||||||||
CpaTR103-33 | NS | 0 | |||||||||
CpaTR104-269 | B | d | 1 | ||||||||
CpaTR107-237 | NS | 0 | |||||||||
CpaTR110-159 | B | p * | 1 |
CPE Chromosomes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TR_Name | Pattern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | X | Chrom |
CpaTR004-335 | B | d | d | d | 3 | ||||||
CpaTR006-11 | B | d | id | id | d | d | d | d | i | 8 | |
CpaTR007-21 | B | d | d * | d | id | d | d | d | d | id | 9 |
CpaTR008-331 | B | pd * | 1 | ||||||||
CpaTR009-172 | B | i | 1 | ||||||||
CpaTR010-275 | DB | i | 1 | ||||||||
CpaTR011-213 | B | p | p | p | p | p | p | p | p | p | 9 |
CpaTR012-247 | B | d | d | d | d | d | d | d | d | ii | 9 |
CpaTR013-55 | NS | 0 | |||||||||
CpaTR016-7 | B | d | d | d | 3 | ||||||
CpaTR017-289 | B | p | d | 2 | |||||||
CpaTR020-246 | B | p | 1 | ||||||||
CpaTR024-210 | B | pi | p | 2 | |||||||
CpaTR025-248 | NS | 0 | |||||||||
CpaTR026-239 | B | i | i | i * | 3 | ||||||
CpaTR028-148 | B | p | p | 2 | |||||||
CpaTR030-79 | B | p | p | p | 3 | ||||||
CpaTR032-20 | B | d | 1 | ||||||||
CpaTR033-222 | B | d | 1 | ||||||||
CpaTR034-61 | B | i | 1 | ||||||||
CpaTR036-168 | B | p | p * | p | p * | i * | 5 | ||||
CpaTR039-139 | B | iii | i | 2 | |||||||
CpaTR040-161 | B | i | p *i * | 2 | |||||||
CpaTR044-205 | B | i | 1 | ||||||||
CpaTR046-157 | B | p | 1 | ||||||||
CpaTR047-287 | B | p * | p * | i | 3 | ||||||
CpaTR048-15 | B | id | 1 | ||||||||
CpaTR049-215 | B | i | 1 | ||||||||
CpaTR050-288 | B | p | 1 | ||||||||
CpaTR053-405 | NS | 0 | |||||||||
CpaTR057-102 | B | p | 1 | ||||||||
CpaTR058-196 | NS | 0 | |||||||||
CpaTR061-27 | B | i | 1 | ||||||||
CpaTR062-56 | B | p | 1 | ||||||||
CpaTR063-92 | B | p | 1 | ||||||||
CpaTR065-379 | B | d | 1 | ||||||||
CpaTR068-155 | B | i * | i | 2 | |||||||
CpaTR069-89 | B | i | 1 | ||||||||
CpaTR074-186 | B | d | 1 | ||||||||
CpaTR075-45 | B | d | d | 2 | |||||||
CpaTR076-168 | B | d | 1 | ||||||||
CpaTR077-16 | B | id | i * | 2 | |||||||
CpaTR091-49 | B | d | 1 | ||||||||
CpaTR094-170 | B | i | 1 | ||||||||
CpaTR097-108 | B | i | 1 | ||||||||
CpaTR100-295 | B | p | 1 | ||||||||
CpaTR103-33 | B | d * | 1 | ||||||||
CpaTR104-269 | B | ii * | id * | i * | i | 4 | |||||
CpaTR107-237 | B | p | 1 | ||||||||
CpaTR110-159 | B | p | 1 |
CpaTR100-295 (Autosomal) | CpaTR104-269 (Sex-Linked) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes | Chromosomes | Allele Frequency | X Chromosomes | Allele Frequency | |||||||||
Population | NN | NB | BB | Total | N | B | p (N) | q (B) | N | B | Total | p (N) | q (B) |
ARU (Arudy) | 13 | 0 | 0 | 13 | 26 | 0 | 1 | 0 | 8 | 0 | 8 | 1 | 0 |
GAB (Gabas) | 7 | 0 | 0 | 7 | 14 | 0 | 1 | 0 | 8 | 0 | 8 | 1 | 0 |
HER (L’Hermine) | 6 | 1 | 0 | 7 | 13 | 1 | 0.93 | 0.07 | 8 | 0 | 8 | 1 | 0 |
POR (Portalet) | 10 | 1 | 1 | 12 | 21 | 3 | 0.88 | 0.13 | 9 | 0 | 9 | 1 | 0 |
CM (Corral de Mulas) | 4 | 3 | 1 | 8 | 11 | 5 | 0.69 | 0.31 | 6 | 4 | 10 | 0.60 | 0.40 |
PAZ (Camino Pazino) | 0 | 0 | 10 | 10 | 0 | 20 | 0 | 1 | 0 | 9 | 9 | 0 | 1 |
ESC (Escarrilla) | 0 | 0 | 14 | 14 | 0 | 28 | 0 | 1 | 2 | 7 | 9 | 0.22 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Domínguez, B.; Cabrero, J.; López-León, M.D.; Ruiz-Ruano, F.J.; Pita, M.; Bella, J.L.; Camacho, J.P.M. Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus. Genes 2023, 14, 397. https://doi.org/10.3390/genes14020397
Navarro-Domínguez B, Cabrero J, López-León MD, Ruiz-Ruano FJ, Pita M, Bella JL, Camacho JPM. Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus. Genes. 2023; 14(2):397. https://doi.org/10.3390/genes14020397
Chicago/Turabian StyleNavarro-Domínguez, Beatriz, Josefa Cabrero, María Dolores López-León, Francisco J. Ruiz-Ruano, Miguel Pita, José L. Bella, and Juan Pedro M. Camacho. 2023. "Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus" Genes 14, no. 2: 397. https://doi.org/10.3390/genes14020397
APA StyleNavarro-Domínguez, B., Cabrero, J., López-León, M. D., Ruiz-Ruano, F. J., Pita, M., Bella, J. L., & Camacho, J. P. M. (2023). Tandem Repeat DNA Provides Many Cytological Markers for Hybrid Zone Analysis in Two Subspecies of the Grasshopper Chorthippus parallelus. Genes, 14(2), 397. https://doi.org/10.3390/genes14020397