Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review
Abstract
:1. Introduction
2. Main Text
2.1. Epigenetic Regulation of Retinal Development
2.2. Epigenetic Basis of Aging and Disease in RGCs
Glaucoma and Dysregulated Epigenetic Aging
2.3. Epigenetic Mechanisms in Neovascular Retinal Conditions
2.3.1. Epigenetic Basis of Age-Related Macular Degeneration
2.3.2. Epigenetic Regulation of VEGF Expression
2.3.3. Epigenetic Signals in Hyperglycemia and Diabetic Retinopathy
2.4. Epigenetic Signals in Photoreceptor Degeneration and Retinal Dystrophies
3. Conclusions and Future Directions
3.1. Conclusions
3.2. Current Trials in Genetic and Epigenetic Treatments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyun, K.; Jeon, J.; Park, K.; Kim, J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 2017, 49, e324. [Google Scholar] [CrossRef]
- Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B.D.; Sun, Z.W.; Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C.P.; Allis, C.D.; et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406, 593–599. [Google Scholar] [CrossRef]
- Jenuwein, T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001, 11, 266–273. [Google Scholar] [CrossRef]
- Pasyukova, E.G.; Symonenko, A.V.; Rybina, O.Y.; Vaiserman, A.M. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res. Rev. 2021, 67, 101312. [Google Scholar] [CrossRef]
- Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447, 425–432. [Google Scholar] [CrossRef]
- Reik, W.; Dean, W.; Walter, J. Epigenetic reprogramming in mammalian development. Science 2001, 293, 1089–1093. [Google Scholar] [CrossRef]
- Cepko, C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 2014, 15, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Raeisossadati, R.; Ferrari, M.F.R.; Kihara, A.H.; AlDiri, I.; Gross, J.M. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome. Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Lu, Y.; Brommer, B.; Tian, X.; Krishnan, A.; Meer, M.; Wang, C.; Vera, D.L.; Zeng, Q.; Yu, D.; Bonkowski, M.S.; et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020, 588, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, A.; Horvath, S.; Sridhar, A.; Chitsazan, A.; Reh, T.A. Synchrony and asynchrony between an epigenetic clock and developmental timing. Sci. Rep. 2019, 9, 3770. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Rydz, C.; Nguyen Huu, V.A.; Rocha, L.; Palomino La Torre, C.; Lee, I.; Cho, W.; Jabari, M.; Donello, J.; Lyon, D.C.; et al. Stress induced aging in mouse eye. Aging Cell 2022, 21, e13737. [Google Scholar] [CrossRef]
- Zorrilla-Zubilete, M.A.; Yeste, A.; Quintana, F.J.; Toiber, D.; Mostoslavsky, R.; Silberman, D.M. Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6. J. Neurochem. 2018, 144, 128–138. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E598–E608. [Google Scholar] [CrossRef] [PubMed]
- Mbefo, M.; Berger, A.; Schouwey, K.; Gerard, X.; Kostic, C.; Beryozkin, A.; Sharon, D.; Dolfuss, H.; Munier, F.; Tran, H.V.; et al. Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. Int. J. Mol. Sci. 2021, 22, 9331. [Google Scholar] [CrossRef]
- Popova, E.Y.; Imamura Kawasawa, Y.; Zhang, S.S.; Barnstable, C.J. Inhibition of Epigenetic Modifiers LSD1 and HDAC1 Blocks Rod Photoreceptor Death in Mouse Models of Retinitis Pigmentosa. J. Neurosci. 2021, 41, 6775–6792. [Google Scholar] [CrossRef]
- Daghsni, M.; Aldiri, I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front. Genet. 2021, 12, 775205. [Google Scholar] [CrossRef]
- Mellough, C.B.; Bauer, R.; Collin, J.; Dorgau, B.; Zerti, D.; Dolan, D.W.P.; Jones, C.M.; Izuogu, O.G.; Yu, M.; Hallam, D.; et al. An integrated transcriptional analysis of the developing human retina. Development 2019, 146, dev169474. [Google Scholar] [CrossRef]
- Rao, R.C.; Tchedre, K.T.; Malik, M.T.; Coleman, N.; Fang, Y.; Marquez, V.E.; Chen, D.F. Dynamic patterns of histone lysine methylation in the developing retina. Invest. Ophthalmol. Vis. Sci. 2010, 51, 6784–6792. [Google Scholar] [CrossRef]
- Ueno, K.; Iwagawa, T.; Kuribayashi, H.; Baba, Y.; Nakauchi, H.; Murakami, A.; Nagasaki, M.; Suzuki, Y.; Watanabe, S. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation. Sci. Rep. 2016, 6, 29264. [Google Scholar] [CrossRef] [Green Version]
- Aldiri, I.; Xu, B.; Wang, L.; Chen, X.; Hiler, D.; Griffiths, L.; Valentine, M.; Shirinifard, A.; Thiagarajan, S.; Sablauer, A.; et al. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis. Neuron 2017, 94, 550–568 e510. [Google Scholar] [CrossRef]
- Wang, X.; Sarver, A.L.; Han, Q.; Seiler, C.L.; Xie, C.; Lu, H.; Forster, C.L.; Tretyakova, N.Y.; Hallstrom, T.C. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development 2022, 149, dev195644. [Google Scholar] [CrossRef]
- Merbs, S.L.; Khan, M.A.; Hackler, L., Jr.; Oliver, V.F.; Wan, J.; Qian, J.; Zack, D.J. Cell-specific DNA methylation patterns of retina-specific genes. PLoS ONE 2012, 7, e32602. [Google Scholar] [CrossRef]
- Pennington, K.L.; DeAngelis, M.M. Epigenetic Mechanisms of the Aging Human Retina. J. Exp. Neurosci. 2015, 9, 51–79. [Google Scholar] [CrossRef]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, T.M.; Bonder, M.J.; Stark, A.K.; Krueger, F.; Team, B.I.A.C.; von Meyenn, F.; Stegle, O.; Reik, W. Multi-tissue DNA methylation age predictor in mouse. Genome. Biol. 2017, 18, 68. [Google Scholar] [CrossRef]
- Chen, Z.; Stanbouly, S.; Nishiyama, N.C.; Chen, X.; Delp, M.D.; Qiu, H.; Mao, X.W.; Wang, C. Spaceflight decelerates the epigenetic clock orchestrated with a global alteration in DNA methylome and transcriptome in the mouse retina. Precis. Clin. Med. 2021, 4, 93–108. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, L.; Urabe, G.; Fu, Y.; Guo, L.W. Epigenetic intervention with a BET inhibitor ameliorates acute retinal ganglion cell death in mice. Mol. Vis. 2017, 23, 149–159. [Google Scholar]
- Xiao, L.; Hou, C.; Cheng, L.; Zheng, S.; Zhao, L.; Yan, N. DZNep protects against retinal ganglion cell death in an NMDA-induced mouse model of retinal degeneration. Exp. Eye Res. 2021, 212, 108785. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Cheng, Y.; Zhou, S.; Wang, Q.; Monavarfeshani, A.; Gao, K.; Jiang, W.; Kawaguchi, R.; Wang, Q.; Tang, M.; et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 2022, 110, 2607–2624 e2608. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; Reynolds, R.; Shah, H.R.; Rosner, B. Smoking, dietary betaine, methionine, and vitamin D in monozygotic twins with discordant macular degeneration: Epigenetic implications. Ophthalmology 2011, 118, 1386–1394. [Google Scholar] [CrossRef]
- Oliver, V.F.; Jaffe, A.E.; Song, J.; Wang, G.; Zhang, P.; Branham, K.E.; Swaroop, A.; Eberhart, C.G.; Zack, D.J.; Qian, J.; et al. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2015, 10, 698–707. [Google Scholar] [CrossRef]
- Saptarshi, N.; Green, D.; Cree, A.; Lotery, A.; Paraoan, L.; Porter, L.F. Epigenetic Age Acceleration Is Not Associated with Age-Related Macular Degeneration. Int. J. Mol. Sci. 2021, 22, 3457. [Google Scholar] [CrossRef] [PubMed]
- Mallik, S.; Grodstein, F.; Bennett, D.A.; Vavvas, D.G.; Lemos, B. Novel Epigenetic Clock Biomarkers of Age-Related Macular Degeneration. Front. Med. 2022, 9, 856853. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Y.; Chu, F.; Liao, K.; Cui, Z.; Chen, J.; Tang, S. Integrated Analysis of DNA methylation and transcriptome profile to identify key features of age-related macular degeneration. Bioengineered 2021, 12, 7061–7078. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Cammalleri, M.; Dal Monte, M.; Locri, F.; Mola, M.G.; Nicchia, G.P.; Frigeri, A.; Bagnoli, P.; Svelto, M. Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: Beneficial effect of the absence of AQP4. J. Cell Mol. Med. 2018, 22, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Dahbash, M.; Sella, R.; Megiddo-Barnir, E.; Nisgav, Y.; Tarasenko, N.; Weinberger, D.; Rephaeli, A.; Livnat, T. The Histone Deacetylase Inhibitor AN7, Attenuates Choroidal Neovascularization in a Mouse Model. Int. J. Mol. Sci. 2019, 20, 714. [Google Scholar] [CrossRef] [PubMed]
- Helotera, H.; Kaarniranta, K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022, 11, 3453. [Google Scholar] [CrossRef] [PubMed]
- Swaroop, A.; Chew, E.Y.; Rickman, C.B.; Abecasis, G.R. Unraveling a multifactorial late-onset disease: From genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genomics. Hum. Genet. 2009, 10, 19–43. [Google Scholar] [CrossRef]
- Wei, L.; Liu, B.; Tuo, J.; Shen, D.; Chen, P.; Li, Z.; Liu, X.; Ni, J.; Dagur, P.; Sen, H.N.; et al. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep. 2012, 2, 1151–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Guo, X.; Cheng, W.; Seth, I.; Bulloch, G.; Chen, Y.; Shang, X.; Zhu, Z.; Huang, W.; Wang, W. Genome-wide DNA methylation analysis of extreme phenotypes in the identification of novel epigenetic modifications in diabetic retinopathy. Clin. Epigenetics 2022, 14, 137. [Google Scholar] [CrossRef]
- Zhong, Q.; Kowluru, R.A. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes 2013, 62, 2559–2568. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef]
- Hossain, R.A.; Dunham, N.R.; Enke, R.A.; Berndsen, C.E. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements. Mol. Vis. 2018, 24, 218–230. [Google Scholar] [PubMed]
- Song, J.; VanBuskirk, J.A.; Merbs, S.L. Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. Int. J. Mol. Sci. 2022, 23, 1408. [Google Scholar] [CrossRef]
- Farinelli, P.; Perera, A.; Arango-Gonzalez, B.; Trifunovic, D.; Wagner, M.; Carell, T.; Biel, M.; Zrenner, E.; Michalakis, S.; Paquet-Durand, F.; et al. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis. 2014, 5, e1558. [Google Scholar] [CrossRef]
- Wahlin, K.J.; Enke, R.A.; Fuller, J.A.; Kalesnykas, G.; Zack, D.J.; Merbs, S.L. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS ONE 2013, 8, e79140. [Google Scholar] [CrossRef]
- Dvoriantchikova, G.; Lypka, K.R.; Ivanov, D. The Potential Role of Epigenetic Mechanisms in the Development of Retinitis Pigmentosa and Related Photoreceptor Dystrophies. Front. Genet. 2022, 13, 827274. [Google Scholar] [CrossRef]
- Zhao, L.; Li, J.; Fu, Y.; Zhang, M.; Wang, B.; Ouellette, J.; Shahi, P.K.; Pattnaik, B.R.; Watters, J.J.; Wong, W.T.; et al. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. J. Neuroinflammation 2017, 14, 14. [Google Scholar] [CrossRef]
- Miller, A.L.; Fuller-Carter, P.I.; Masarini, K.; Samardzija, M.; Carter, K.W.; Rashwan, R.; Lim, X.R.; Brunet, A.A.; Chopra, A.; Ram, R.; et al. Increased H3K27 trimethylation contributes to cone survival in a mouse model of cone dystrophy. Cell Mol. Life Sci. 2022, 79, 409. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Hayano, M.; Griffin, P.T.; Amorim, J.A.; Bonkowski, M.S.; Apostolides, J.K.; Salfati, E.L.; Blanchette, M.; Munding, E.M.; Bhakta, M.; et al. Loss of epigenetic information as a cause of mammalian aging. Cell 2023, 186, 305–326.E27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dai, X.; Qi, Y.; He, Y.; Du, W.; Pang, J.J. Histone Deacetylases Inhibitors in the Treatment of Retinal Degenerative Diseases: Overview and Perspectives. J. Ophthalmol. 2015, 2015, 250812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publication | Model System | Experimental Manipulation | Major Results | Significance of Findings |
---|---|---|---|---|
Lu et al. Nature 2020 [10] PMID 33268865 | Mouse optic nerve crush and increased intraocular pressure glaucoma model | AAV2-packaged Klf4, Oct4, Sox2 (OSK) injection | OSK injection accelerates optic nerve axon regeneration, decreases DNA methylation age OSK improves visual function/decreases DNA methylation age in OSK-treated mouse eyes following IOP insult | Pluripotency-associated gene expression rewinds the epigenetic clock and protects against optic nerve injury and may restore aspects of visual function |
Hoshino et al. Sci Rep 2019. [11] PMID 30842553 | Human fetal retina and cultured fetal retinal explants, pluripotent stem-cell-derived retinal organoids | RNA-Seq, DNA methylation analysis | DNA methylation age of the fetal retina correlates with chronologic age The foveal epigenetic clock is more advanced than the peripheral retinaRetinal organoid gene expression recapitulates the fetal retina | Validation of epigenetic clock in human retina Foveal development accelerated versus the peripheral retina Advanced epigenetic age in trisomy 21 retina |
Xu et al. Aging Cell 2022 [12] PMID 36397653 | Young and old mouse retina, IOP elevation | RNA-Seq, ATAC-Seq, H3K27 ChIP-Seq | Aging associated with changes in chromatin accessibility in retina, increased sensitivity to IOP elevation DNA methylation clock accelerated by IOP elevation | Disease states such as glaucoma may represent accelerated forms of molecular aging (i.e., senescence) DNA methylation may represent a target of therapy for senescence-associated diseases |
Zorrilla-Zubilete et al. J Neurochem 2018 [13] PMID 29049850 | Non-obese diabetic (NOD) mice, experimental hyperglycemia | Sirt6 conditional knockout (KO), cultured Müller glia | Increased VEGF in NOD retina and in Sirt6 KO Sirt6 KO: increased H3K56/H3K9Ac levels Sirt6 overexpressing Müller glia: decreased VEGF in response to hyperglycemia | SIRT6 acts as histone deacetylase in mouse retina, may act as molecular sensor in response to hyperglycemic in regulating Vegf expression |
He et al. Am J Physiol Endocrinol Metab 2021. [14] PMID 33284093 | Rat streptozotocin-induced DR model, cultured endothelial cells | Transfection of Meg3 lncRNA | DR rat retina and hyperglycemia suppress Meg3 expression, endothelial-mesenchymal transitionDNA methylation of Meg3 promoter suppresses expression, promotes endothelial-mesenchymal transition | DR associated with endothelial-mesenchymal transition DNA methytransferase 1 acts as molecular sensor of hyperglycemia, causes methylation of long-noncoding RNAs Overexpression of lncRNA Meg3 may represent a therapeutic strategy for DR |
Mbefo et al. AInt J Mol Sci 2021 [15] PMID 34502238 | Mouse rd1 RP model | Ezh2 (histone methyltransferase) inhibitor | rd1 photoreceptor degeneration associated with increased H3K27me3 Ezh2 inhibition slows photoreceptor death, decreases H3K27me3 | Photoreceptor cell apoptosis in RP models may be mediated by increased H3K27me3, which could be delayed or prevented with histone methyltransferase inhibitor |
Popova et al. J Neurosci 2021 [16] PMID 34193554 | Mouse rd10 RP model | Lysine demethylase (LSD1) inhibitor, HDAC inhibitor | HDAC and LSD1 inhibitors decrease rod degeneration, increase expression of rod genes Decreased gliosis and activated microglia in rd10 retina treated with LSD1 or HDAC inhibitors | Rod photoreceptor degeneration may be mediated by histone lysine demethylation and histone deacetylation Treatment with HDAC or LSD1 inhibitor may slow rod photoreceptor degeneration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, S.M.; Christoforidis, J.B. Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes 2023, 14, 417. https://doi.org/10.3390/genes14020417
Moore SM, Christoforidis JB. Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes. 2023; 14(2):417. https://doi.org/10.3390/genes14020417
Chicago/Turabian StyleMoore, Spencer M., and John B. Christoforidis. 2023. "Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review" Genes 14, no. 2: 417. https://doi.org/10.3390/genes14020417
APA StyleMoore, S. M., & Christoforidis, J. B. (2023). Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes, 14(2), 417. https://doi.org/10.3390/genes14020417