Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Study Cohort Characteristics
3.2. TFAM and POLG Genotype and Allele Frequencies
3.3. Association Analyses
3.4. Survival Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The Molecular Landscape of Head and Neck Cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Beasley, N. Aetiology and Risk Factors for Head and Neck Cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S9–S12. [Google Scholar] [CrossRef] [PubMed]
- Sturgis, E.M.; Cinciripini, P.M. Trends in Head and Neck Cancer Incidence in Relation to Smoking Prevalence. Cancer 2007, 110, 1429–1435. [Google Scholar] [CrossRef]
- Hashibe, M.; Brennan, P.; Benhamou, S.; Castellsague, X.; Chen, C.; Curado, M.P.; Maso, L.D.; Daudt, A.W.; Fabianova, E.; Wünsch-Filho, V.; et al. Alcohol Drinking in Never Users of Tobacco, Cigarette Smoking in Never Drinkers, and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. JNCI J. Natl. Cancer Inst. 2007, 99, 777–789. [Google Scholar] [CrossRef]
- Mourad, M.; Jetmore, T.; Jategaonkar, A.A.; Moubayed, S.; Moshier, E.; Urken, M.L. Epidemiological Trends of Head and Neck Cancer in the United States: A SEER Population Study. J. Oral Maxillofac. Surg. 2017, 75, 2562–2572. [Google Scholar] [CrossRef]
- Argiris, A.; Karamouzis, M.V.; Raben, D.; Ferris, R.L. Head and Neck Cancer. Lancet 2008, 371, 1695–1709. [Google Scholar] [CrossRef]
- Licitra, L.; Perrone, F.; Bossi, P.; Suardi, S.; Mariani, L.; Artusi, R.; Oggionni, M.; Rossini, C.; Cantù, G.; Squadrelli, M.; et al. High-Risk Human Papillomavirus Affects Prognosis in Patients with Surgically Treated Oropharyngeal Squamous Cell Carcinoma. J. Clin. Oncol. 2006, 24, 5630–5636. [Google Scholar] [CrossRef]
- Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L.; et al. Global Burden of Disease Cancer Collaboration Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.; Young, R.J.; Rischin, D. Head and Neck Squamous Cell Carcinoma: Genomics and Emerging Biomarkers for Immunomodulatory Cancer Treatments. Semin. Cancer Biol. 2018, 52, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Kusampudi, S.; Konduru, N. General Introduction to Head and Neck Cancer: Etiology, Symptoms, Diagnosis, Staging, Prevention, and Treatment. In Early Detection and Treatment of Head & Neck Cancers: Theoretical Background and Newly Emerging Research; El Assal, R., Gaudilliere, D., Connelly, S.T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–50. ISBN 978-3-030-69852-2. [Google Scholar]
- Van Gisbergen, M.W.; Voets, A.M.; Starmans, M.H.W.; de Coo, I.F.M.; Yadak, R.; Hoffmann, R.F.; Boutros, P.C.; Smeets, H.J.M.; Dubois, L.; Lambin, P. How Do Changes in the MtDNA and Mitochondrial Dysfunction Influence Cancer and Cancer Therapy? Challenges, Opportunities and Models. Mutat. Res. Rev. Mutat. Res. 2015, 764, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Garesse, R.; Vallejo, C.G. Animal Mitochondrial Biogenesis and Function: A Regulatory Cross-Talk between Two Genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]
- Taanman, J.-W. The Mitochondrial Genome: Structure, Transcription, Translation and Replication. Biochim. Biophys. Acta-Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Kang, D.; Kim, S.H.; Hamasaki, N. Mitochondrial Transcription Factor A (TFAM): Roles in Maintenance of MtDNA and Cellular Functions. Mitochondrion 2007, 7, 39–44. [Google Scholar] [CrossRef]
- Hallberg, B.M.; Larsson, N.-G. TFAM Forces MtDNA to Make a U-Turn. Nat. Struct. Mol. Biol. 2011, 18, 1179–1181. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Clayton, D.A.; Shadel, G.S. Initiation and Beyond: Multiple Functions of the Human Mitochondrial Transcription Machinery. Mol. Cell 2006, 24, 813–825. [Google Scholar] [CrossRef]
- Garstka, H.L.; Schmitt, W.E.; Schultz, J.; Sogl, B.; Silakowski, B.; Pérez-Martos, A.; Montoya, J.; Wiesner, R.J. Import of Mitochondrial Transcription Factor A (TFAM) into Rat Liver Mitochondria Stimulates Transcription of Mitochondrial DNA. Nucleic Acids Res. 2003, 31, 5039–5047. [Google Scholar] [CrossRef]
- The Mitochondrial Transcription Factor TFAM Coordinates the Assembly of Multiple DNA Molecules into Nucleoid-like Structures | Molecular Biology of the Cell. Available online: https://www.molbiolcell.org/doi/full/10.1091/mbc.e07-05-0404 (accessed on 4 October 2022).
- Alterations to the Expression Level of Mitochondrial Transcription Factor A, TFAM, Modify the Mode of Mitochondrial DNA Replication in Cultured Human Cells | Nucleic Acids Research | Oxford Academic. Available online: https://academic.oup.com/nar/article/34/20/5815/3100463 (accessed on 4 October 2022).
- Golubickaite, I.; Ugenskiene, R.; Korobeinikova, E.; Gudaitiene, J.; Vaitiekus, D.; Poskiene, L.; Juozaityte, E. The Impact of Mitochondria-Related POLG and TFAM Variants on Breast Cancer Pathomorphological Characteristics and Patient Outcomes. Biomarkers 2021, 26, 343–353. [Google Scholar] [CrossRef]
- Granados, J.B.; Méndez, J.P.; Feria-Bernal, G.; García-García, E.; Tejeda, M.E.; Rojano-Mejía, D.; Tapia, A.; Canto, P. Association of a TFAM Haplotype with Aggressive Prostate Cancer in Overweight or Obese Mexican Mestizo Men. Urol. Oncol. 2017, 35, e9–e111. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zheng, L.; Liu, W.; Wang, X.; Wang, Z.; Wang, Z.; French, A.J.; Kang, D.; Chen, L.; Thibodeau, S.N.; et al. Frequent Truncating Mutation of TFAM Induces Mitochondrial DNA Depletion and Apoptotic Resistance in Microsatellite-Unstable Colorectal Cancer. Cancer Res. 2011, 71, 2978–2987. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Ma, S.-L.; Liu, L.-L.; Zhu, Y.-H.; Zeng, T.-T.; Li, Y.; Guan, X.-Y. Impact of Mitochondrial Transcription Factor A Expression on the Outcomes of Ovarian, Endometrial and Cervical Cancers. Am. J. Transl. Res. 2020, 12, 5343–5361. [Google Scholar] [PubMed]
- Golubickaite, I.; Ugenskiene, R.; Cepaite, J.; Ziliene, E.; Inciura, A.; Poskiene, L.; Juozaityte, E. Mitochondria-Related TFAM Gene Variants and Their Effects on Patients with Cervical Cancer. Biomed. Rep. 2021, 15, 1–7. [Google Scholar] [CrossRef]
- Xie, D.; Wu, X.; Lan, L.; Shangguan, F.; Lin, X.; Chen, F.; Xu, S.; Zhang, Y.; Chen, Z.; Huang, K.; et al. Downregulation of TFAM Inhibits the Tumorigenesis of Non-Small Cell Lung Cancer by Activating ROS-Mediated JNK/P38MAPK Signaling and Reducing Cellular Bioenergetics. Oncotarget 2016, 7, 11609–11624. [Google Scholar] [CrossRef]
- Gao, W.; Wu, M.-H.; Wang, N.; Ying, M.-Z.; Zhang, Y.-Y.; Hua, J.; Chuan, L.; Wang, Y.-J. Mitochondrial Transcription Factor A Contributes to Cisplatin Resistance in Patients with Estrogen Receptor-positive Breast Cancer. Mol. Med. Rep. 2016, 14, 5304–5310. [Google Scholar] [CrossRef]
- Peng, H.; Yang, M.; Chen, Z.; Chen, P.; Guan, C.; Xiang, X.; Cai, S.; Chen, Y.; Fang, X. Expression and Methylation of Mitochondrial Transcription Factor a in Chronic Obstructive Pulmonary Disease Patients with Lung Cancer. PLoS ONE 2013, 8, e82739. [Google Scholar] [CrossRef]
- Chan, S.S.L.; Copeland, W.C. DNA Polymerase γ and Mitochondrial Disease: Understanding the Consequence of POLG Mutations. Biochim. Biophys. Acta Bioenerg. 2009, 1787, 312–319. [Google Scholar] [CrossRef]
- Singh, K.K.; Ayyasamy, V.; Owens, K.M.; Koul, M.S.; Vujcic, M. Mutations in Mitochondrial DNA Polymerase γ Promote Breast Tumorigenesis. J. Hum. Genet. 2009, 54, 516–524. [Google Scholar] [CrossRef]
- Rahman, S.; Copeland, W.C. POLG-Related Disorders and Their Neurological Manifestations. Nat. Rev. Neurol. 2019, 15, 40–52. [Google Scholar] [CrossRef]
- Hudson, G.; Chinnery, P.F. Mitochondrial DNA Polymerase-γ and Human Disease. Hum. Mol. Genet. 2006, 15, R244–R252. [Google Scholar] [CrossRef]
- Davidzon, G.; Greene, P.; Mancuso, M.; Klos, K.J.; Ahlskog, J.E.; Hirano, M.; DiMauro, S. Early-Onset Familial Parkinsonism Due to POLG Mutations. Ann. Neurol. 2006, 59, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Longley, M.J.; Graziewicz, M.A.; Bienstock, R.J.; Copeland, W.C. Consequences of Mutations in Human DNA Polymerase γ. Gene 2005, 354, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Naviaux, R.K.; Nguyen, K.V. POLG Mutations Associated with Alpers’ Syndrome and Mitochondrial DNA Depletion. Ann. Neurol. 2004, 55, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Van Goethem, G.; Dermaut, B.; Löfgren, A.; Martin, J.J.; Van Broeckhoven, C. Mutation of POLG Is Associated with Progressive External Ophthalmoplegia Characterized by MtDNA Deletions. Nat. Genet. 2001, 28, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Linkowska, K.; Jawień, A.; Marszałek, A.; Malyarchuk, B.A.; Tońska, K.; Bartnik, E.; Skonieczna, K.; Grzybowski, T. Mitochondrial DNA Polymerase γ Mutations and Their Implications in MtDNA Alterations in Colorectal Cancer. Ann. Hum. Genet. 2015, 79, 320–328. [Google Scholar] [CrossRef]
- Golubickaite, I.; Ugenskiene, R.; Ziliene, E.; Beniusyte, J.; Inciura, A.; Poskiene, L.; Juozaityte, E. POLG Gene Variants in Cervical Cancer Patients and Their Associations with Clinical and Pathomorphological Tumor Characteristics. J. Clin. Med. 2021, 10, 1838. [Google Scholar] [CrossRef]
- Evidence for a Causal Association Between Human Papillomavirus and a Subset of Head and Neck Cancers | JNCI: Journal of the National Cancer Institute | Oxford Academic. Available online: https://academic.oup.com/jnci/article/92/9/709/2906131?login=true (accessed on 22 March 2022).
- Ekstrand, M.I.; Falkenberg, M.; Rantanen, A.; Park, C.B.; Gaspari, M.; Hultenby, K.; Rustin, P.; Gustafsson, C.M.; Larsson, N.-G. Mitochondrial Transcription Factor A Regulates MtDNA Copy Number in Mammals. Hum. Mol. Genet. 2004, 13, 935–944. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Grupe, A.; Li, Y.; Rowland, C.; Nowotny, P.; Hinrichs, A.L.; Smemo, S.; Kauwe, J.S.K.; Maxwell, T.J.; Cherny, S.; Doil, L.; et al. A Scan of Chromosome 10 Identifies a Novel Locus Showing Strong Association with Late-Onset Alzheimer Disease. Am. J. Hum. Genet. 2006, 78, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Gui, Y.; Xu, Z.; Lv, W.; Liu, H.; Zhao, J.-J.; Hu, X.-Y. Association of Mitochondrial DNA Polymerase γ Gene POLG1 Polymorphisms with Parkinsonism in Chinese Populations. PLoS ONE 2012, 7, e50086. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Kamat, A.; Chen, M.; Ke, H.-L.; Chang, D.W.; Yin, J.; Grossman, H.B.; Dinney, C.P.; Wu, X. Association of Polymorphisms in Oxidative Stress Genes with Clinical Outcomes for Bladder Cancer Treated with Bacillus Calmette-Guérin. PLoS ONE 2012, 7, e38533. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Duell, E.J.; Yu, K.; Risch, H.A.; Olson, S.H.; Kooperberg, C.; Wolpin, B.M.; Jiao, L.; Dong, X.; Wheeler, B.; et al. Pathway Analysis of Genome-Wide Association Study Data Highlights Pancreatic Development Genes as Susceptibility Factors for Pancreatic Cancer. Carcinogenesis 2012, 33, 1384–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Localization | Frequency |
---|---|
Larynx | 93 (80.9%) |
Pharynx | 14 (12.2%) |
Paranasal and nasal | 5 (4.3%) |
Oral cavity | 3 (2.6%) |
Characteristics | Frequency | |
---|---|---|
Grade | 1 | 14 (12.2%) |
2 | 87 (75.7%) | |
3 | 13 (11.3%) | |
4 | 1 (0.9%) | |
Size | T1 | 36 (31.3%) |
T2 | 22 (19.1%) | |
T3 | 27 (23.5%) | |
T4 | 30 (26.1%) | |
Cancerous regional lymph nodes | N0 | 70 (60.9%) |
N1 | 45 (39.1%) | |
Metastasis | Absent | 111 (96.5%) |
Present | 4 (3.5%) | |
Stage | I | 32 (27.8%) |
II | 23 (20.0%) | |
III | 17 (14.8%) | |
IV | 43 (37.4%) | |
Death fact | Alive | 71 (61.7%) |
Deceased | 44 (38.3%) |
Gene and SNP | Count | Genotype Frequency | Allele Frequency |
---|---|---|---|
TFAM rs11006132 | 56 | AA—0.49 AG—0.47 GG—0.04 | A—0.72 G—0.28 |
54 | |||
5 | |||
TFAM rs11006129 | 89 | CC—0.77 CT—0.23 | C—0.89 T—0.11 |
26 | |||
TFAM rs1937 | 83 | GG—0.72 CG—0.27 CC—0.01 | G—0.86 C—0.14 |
31 | |||
1 | |||
TFAM rs16912174 | 107 | TT—0.93 GT—0.07 | T—0.97 G—0.03 |
8 | |||
TFAM rs1692202 * | 115 | TT—1.00 | T—1.00 |
TFAM rs3900887 * | 84 | TT—0.76 AT—0.17 AA—0.07 | T—0.84 A—0.16 |
19 | |||
8 | |||
POLG rs3087374 | 9520 | CC—0.83 AC—0.17 | A—0.09 C—0.91 |
POLG rs2072267 | 12 | AA—0.10 AG—0.54 GG—0.36 | A—0.37 G—0.63 |
62 | |||
41 | |||
POLG rs976072 | 20 | AA—0.17 AG—0.56 GG—0.27 | A—0.45 G—0.55 |
64 | |||
31 | |||
POLG rs2307441 | 97 | TT—0.84 CT—0.16 | T—0.92 C—0.08 |
18 |
Variable | p-Value | ||||
---|---|---|---|---|---|
rs3900887 | rs11006132 | rs11006129 | rs1937 | rs16912174 | |
Stage (I, II, III, IV) | 0.815 | 0.145 | 0.577 | 0.534 | 0.455 |
T (T1, T2, T3, T4) | 0.443 | 0.149 | 0.824 | 0.634 | 0.480 |
T (T1, T2 and T3, T4 groups) | 0.174 | 0.877 | 0.236 | 0.596 | 0.349 |
N (negative vs. positive) | 0.751 | 0.998 | 0.437 | 0.627 | 0.596 |
M (negative vs. positive) | 0.007 | 0.550 | 0.036 | 0.977 | 0.746 |
Differentiation grade G (G1, G2, G3, G4) | 0.066 | 0.284 | 0.036 | 0.948 | 0.147 |
Differentiation grade G (G1, G2 vs. G3, G4) | 0.486 | 0.132 | 0.341 | 0.694 | 0.658 |
Survival status | 0.018 | 0.691 | 0.019 | 0.321 | 0.638 |
Variable | p-Value | |||
---|---|---|---|---|
rs3087374 | rs2307441 | rs2072267 | rs976072 | |
Stage (I, II, III, IV) | 0.054 | 0.756 | 0.314 | 0.102 |
T (T1, T2, T3, T4) | 0.017 | 0.788 | 0.494 | 0.934 |
T (T1, T2 and T3, T4 groups) | 0.420 | 0.415 | 0.209 | 0.958 |
N (negative vs. positive) | 0.199 | 0.401 | 0.336 | 0.996 |
M (negative vs. positive) | 0.139 | 0.499 | 0.422 | 0.437 |
Differentiation grade G (G1, G2, G3, G4) | 0.897 | 0.802 | 0.919 | 0.833 |
Differentiation grade G (G1, G2 vs. G3, G4) | 0.455 | 0.314 | 0.873 | 0.585 |
Survival status | 0.076 | 0.102 | 0.449 | 0.646 |
Dependent | SNP | Covariates | Model No. 1 | Model No. 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | |||||
Survival status | rs3900887 | AT vs. TT | 4.565 | 1.554 | 13.414 | 0.006 | 5.891 | 1.698 | 20.447 | 0.005 |
Age * | 0.989 | 0.981 | 0.996 | 0.002 | 0.942 | 0.915 | 0.971 | 0.001 | ||
T | 1.344 | 0.857 | 2.108 | 0.198 | ||||||
N | 3.041 | 1.031 | 8.965 | 0.044 | ||||||
G (G1, G2 vs. G3, G4) | 4.646 | 1.264 | 17.079 | 0.021 | ||||||
Survival status | rs3900887 | A-allele carriers vs. non-carriers | 2.940 | 1.198 | 7.214 | 0.019 | 3.613 | 1.274 | 10.250 | 0.016 |
Age * | 0.989 | 0.982 | 0.996 | 0.003 | 0.986 | 0.942 | 1.032 | 0.551 | ||
T | 1.651 | 1.050 | 2.596 | 0.030 | ||||||
N | 2.887 | 1.021 | 8.165 | 0.046 | ||||||
G (G1, G2 vs. G3, G4) | 6.589 | 1.593 | 27.262 | 0.009 | ||||||
Survival status | rs11006129 | CT vs. CC | 2.875 | 1.166 | 7.086 | 0.022 | 3.679 | 1.288 | 10.511 | 0.015 |
Age * | 0.989 | 0.982 | 0.996 | 0.001 | 0.986 | 0.943 | 1.032 | 0.546 | ||
T | 1.665 | 1.057 | 2.622 | 0.028 | ||||||
N | 2.928 | 1.045 | 8.205 | 0.041 | ||||||
G (G1, G2 vs. G3, G4) | 6.938 | 1.678 | 28.686 | 0.007 | ||||||
Survival status | rs11006129 | T-allele carriers vs. non-carriers | 2.875 | 1.166 | 7.086 | 0.022 | 3.930 | 1.362 | 11.341 | 0.011 |
Age * | 0.989 | 0.982 | 0.996 | 0.001 | 0.989 | 0.945 | 1.035 | 0.624 | ||
T | 1.619 | 1.037 | 2.528 | 0.034 | ||||||
N | 1.985 | 1.145 | 3.442 | 0.015 | ||||||
G (G1, G2 vs. G3, G4) | 6.997 | 1.679 | 29.162 | 0.008 |
Variables | HR | 95% CI | p-Value |
---|---|---|---|
rs11006129 | |||
T-allele carriers | 2.982 | 1.543–5.765 | 0.001 |
Age * | 0.999 | 0.965–1.035 | 0.958 |
T | 1.704 | 1.239–2.342 | 0.001 |
N | 1.604 | 0.794–3.239 | 0.188 |
G (G1, G2 vs. G3, G4) | 2.743 | 1.291–5.831 | 0.009 |
rs3900887 | |||
A-allele carriers | 2.751 | 1.437–5.266 | 0.002 |
Age * | 1.001 | 0.967–1.038 | 0.934 |
T | 1.672 | 1.221–2.289 | 0.001 |
N | 1.537 | 0.756–3.127 | 0.235 |
G (G1, G2 vs. G3, G4) | 2.634 | 1.236–5.612 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubickaite, I.; Ugenskiene, R.; Bartnykaite, A.; Poskiene, L.; Vegiene, A.; Padervinskis, E.; Rudzianskas, V.; Juozaityte, E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes 2023, 14, 434. https://doi.org/10.3390/genes14020434
Golubickaite I, Ugenskiene R, Bartnykaite A, Poskiene L, Vegiene A, Padervinskis E, Rudzianskas V, Juozaityte E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes. 2023; 14(2):434. https://doi.org/10.3390/genes14020434
Chicago/Turabian StyleGolubickaite, Ieva, Rasa Ugenskiene, Agne Bartnykaite, Lina Poskiene, Aurelija Vegiene, Evaldas Padervinskis, Viktoras Rudzianskas, and Elona Juozaityte. 2023. "Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer" Genes 14, no. 2: 434. https://doi.org/10.3390/genes14020434
APA StyleGolubickaite, I., Ugenskiene, R., Bartnykaite, A., Poskiene, L., Vegiene, A., Padervinskis, E., Rudzianskas, V., & Juozaityte, E. (2023). Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes, 14(2), 434. https://doi.org/10.3390/genes14020434