Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, R.S.; Sommer, I.E.; Murray, R.M.; Meyer-Lindenberg, A.; Weinberger, D.R.; Cannon, T.D.; O’Donovan, M.; Correll, C.U.; Kane, J.M.; van Os, J.; et al. Schizophrenia. Nat. Rev. Dis. Prim. 2015, 1, 15067. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Küstner, B.; Martín, C.; Pastor, L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE 2018, 13, e0195687. [Google Scholar] [CrossRef] [Green Version]
- Driver, D.I.; Thomas, S.; Gogtay, N.; Rapoport, J.L. Childhood-Onset Schizophrenia and Early-onset Schizophrenia Spectrum Disorders: An Update. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, J.L.; Gogtay, N. Childhood onset schizophrenia: Support for a progressive neurodevelopmental disorder. Int. J. Dev. Neurosci. 2011, 29, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, A.; Drozd, M.M.; Thümmler, S.; Dor, E.; Capovilla, M.; Askenazy, F.; Bardoni, B. Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity from Classical Studies to the Genomic Era. Front. Genet. 2019, 10, 1137. [Google Scholar] [CrossRef]
- Ahn, K.; Gotay, N.; Andersen, T.M.; Anvari, A.A.; Gochman, P.; Lee, Y.; Sanders, S.; Guha, S.; Darvasi, A.; Glessner, J.T.; et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol. Psychiatry 2014, 19, 568–572. [Google Scholar] [CrossRef] [Green Version]
- Stentebjerg-Olesen, M.; Pagsberg, A.K.; Fink-Jensen, A.; Correll, C.U.; Jeppesen, P. Clinical Characteristics and Predictors of Outcome of Schizophrenia-Spectrum Psychosis in Children and Adolescents: A Systematic Review. J. Child Adolesc. Psychopharmacol. 2016, 26, 410–427. [Google Scholar] [CrossRef]
- Fraguas, D.; De Castro, M.J.; Medina, O.; Parellada, M.; Moreno, D.; Graell, M.; Merchán-Naranjo, J.; Arango, C. Does Diagnostic Classification of Early-Onset Psychosis Change Over Follow-Up? Child Psychiatry Hum. Dev. 2008, 39, 137–145. [Google Scholar] [CrossRef]
- Castro-Fornieles, J.; Baeza, I.; De La Serna, E.; Gonzalez-Pinto, A.; Parellada, M.; Graell, M.; Moreno, D.; Otero, S.; Arango, C. Two-year diagnostic stability in early-onset first-episode psychosis. J. Child Psychol. Psychiatry 2011, 52, 1089–1098. [Google Scholar] [CrossRef]
- Díaz-Caneja, C.M.; Pina-Camacho, L.; Rodríguez-Quiroga, A.; Fraguas, D.; Parellada, M.; Arango, C. Predictors of outcome in early-onset psychosis: A systematic review. Schizophrenia 2015, 1, 14005. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.K.; Leathem, L.D.; Currin, D.L.; Karlsgodt, K.H. Adolescent Neurodevelopment and Vulnerability to Psychosis. Biol. Psychiatry 2021, 89, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, C.A.; Douard, E.; Mollon, J.; Smith, R.; Hojlo, M.A.; Das, A.; Goldman, M.; Garvey, E.; Cabral, K.; Li, J.; et al. Similar Rates of Deleterious Copy Number Variants in Early-Onset Psychosis and Autism Spectrum Disorder. Am. J. Psychiatry 2022, 179, 853–861. [Google Scholar] [CrossRef]
- Singh, T.; Poterba, T.; Curtis, D.; Akil, H.; Al Eissa, M.; Barchas, J.D.; Bass, N.; Bigdeli, T.B.; Breen, G.; Bromet, E.J.; et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022, 604, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Lun, P.; Chen, J.; Li, Q.; Chang, K.; Li, T.; Pan, D.; Zhang, J.; Zhou, J.; Wang, K.; et al. Association analysis of risk genes identified by SCHEMA with schizophrenia in the Chinese Han population. Psychiatr. Genet. 2022, 32, 188–193. [Google Scholar] [CrossRef]
- Zhou, X. Over-representation of potential SP4 target genes within schizophrenia-risk genes. Mol. Psychiatry 2022, 27, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Kunii, M.; Doi, H.; Hashiguchi, S.; Matsuishi, T.; Sakai, Y.; Iai, M.; Okubo, M.; Nakamura, H.; Takahashi, K.; Katsumoto, A.; et al. De novo CACNA1G variants in developmental delay and early-onset epileptic encephalopathies. J. Neurol. Sci. 2020, 416, 117047. [Google Scholar] [CrossRef]
- Trivisano, M.; Santarone, M.E.; Micalizzi, A.; Ferretti, A.; Dentici, M.L.; Novelli, A.; Vigevano, F.; Specchio, N. GRIA3 missense mutation is cause of an x-linked developmental and epileptic encephalopathy. Seizure 2020, 82, 1–6. [Google Scholar] [CrossRef]
- Utine, G.E.; Taşkıran, E.Z.; Koşukcu, C.; Karaosmanoğlu, B.; Güleray, N.; Doğan, O.A.; Kiper, P.O.S.; Boduroğlu, K.; Alikaşifoğlu, M. HERC1 mutations in idiopathic intellectual disability. Eur. J. Med. Genet. 2017, 60, 279–283. [Google Scholar] [CrossRef]
- Liao, W.; Liu, Y.; Wang, L.; Cai, X.; Xie, H.; Yi, F.; Huang, R.; Fang, C.; Xie, P.; Zhou, J. Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl. Psychiatry 2021, 11, 143. [Google Scholar] [CrossRef]
- Rhee, S.J.; Han, D.; Lee, Y.; Kim, H.; Lee, J.; Lee, K.; Shin, H.; Kim, H.; Lee, T.Y.; Kim, M.; et al. Comparison of serum protein profiles between major depressive disorder and bipolar disorder. BMC Psychiatry 2020, 20, 145. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Coryell, W.; Scheftner, W.A.; Lawson, W.B.; DePaulo, J.R.; Gejman, P.V.; Sanders, A.R.; et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry 2011, 16, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daga, A.; Majmundar, A.J.; Braun, D.A.; Gee, H.Y.; Lawson, J.A.; Shril, S.; Jobst-Schwan, T.; Vivante, A.; Schapiro, D.; Tan, W.; et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 2018, 93, 204–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavros, C.F.; Brownstein, C.A.; Thyagrajan, R.; Genetti, C.A.; Tembulkar, S.; Graber, K.; Murphy, Q.; Cabral, K.; VanNoy, G.E.; Bainbridge, M.; et al. De novo variant of TRRAP in a patient with very early onset psychosis in the context of non-verbal learning disability and obsessive-compulsive disorder: A case report. BMC Med. Genet. 2018, 19, 197. [Google Scholar] [CrossRef] [Green Version]
- Uhlig, H.H.; Schwerd, T.; Koletzko, S.; Shah, N.; Kammermeier, J.; Elkadri, A.; Ouahed, J.; Wilson, D.C.; Travis, S.P.; Turner, D.; et al. The Diagnostic Approach to Monogenic Very Early Onset Inflammatory Bowel Disease. Gastroenterology 2014, 147, 990–1007.e3. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 1224. [Google Scholar] [CrossRef] [Green Version]
- Guðbjartsson, H.; Þór Ísleifsson, H.; Ragnarsson, B.; Guimaraes, R.; Wu, H.; Ólafsdóttir, H.; Stefánsson, S.K. Ultra-fast joint-genotyping with SparkGOR. bioRxiv 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Eisenberg, E.; Levanon, E.Y. Human housekeeping genes, revisited. Trends Genet. 2013, 29, 569–574. [Google Scholar] [CrossRef]
- Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am. J. Hum. Genet. 2011, 89, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Ionita-Laza, I.; Lee, S.; Makarov, V.; Buxbaum, J.D.; Lin, X. Sequence Kernel Association Tests for the Combined Effect of Rare and Common Variants. Am. J. Hum. Genet. 2013, 92, 841–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockowitz, S.; LeCompte, N.; Carmack, M.; Quitadamo, A.; Wang, L.; Park, M.; Knight, D.; Sexton, E.; Smith, L.; Sheidley, B.; et al. Children’s rare disease cohorts: An integrative research and clinical genomics initiative. npj Genom. Med. 2020, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Schubach, M.; Shendure, J.; Kircher, M. CADD-Splice—Improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021, 13, 31. [Google Scholar] [CrossRef]
- Poltavskaya, E.G.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Kornetov, A.N.; Bokhan, N.A.; Ivanova, S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Tarabeux, J.; Kebir, O.; Gauthier, J.; Hamdan, F.F.; Xiong, L.; Piton, A.; Spiegelman, D.; Henrion, É.; Millet, B.; S2D team; et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry 2011, 1, e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghaddam, B.; Javitt, D.C. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment: Official publication of the American College of Neuropsychopharmacology. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kornhuber, H.; Schmid-Burgk, W.; Holzmüller, B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 1980, 20, 379–382. [Google Scholar] [CrossRef]
- Coyle, J.T. The Glutamatergic Dysfunction Hypothesis for Schizophrenia. Harv. Rev. Psychiatry 1996, 3, 241–253. [Google Scholar] [CrossRef]
- Hu, W.; MacDonald, M.L.; Elswick, D.E.; Sweet, R.A. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 2015, 1338, 38–57. [Google Scholar] [CrossRef] [Green Version]
- Priol, A.-C.; Denis, L.; Boulanger, G.; Thépaut, M.; Geoffray, M.-M.; Tordjman, S. Detection of Morphological Abnormalities in Schizophrenia: An Important Step to Identify Associated Genetic Disorders or Etiologic Subtypes. Int. J. Mol. Sci. 2021, 22, 9464. [Google Scholar] [CrossRef]
- Newcomer, J.W.; Farber, N.B.; Olney, J.W. NMDA receptor function, memory, and brain aging. Dialog. Clin. Neurosci. 2000, 2, 219–232. [Google Scholar] [CrossRef]
- Lee, G.; Zhou, Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front. Mol. Neurosci. 2019, 12, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, Y.; Yamada, K.; Noda, Y.; Mori, H.; Mishina, M.; Nabeshima, T. Hyperfunction of Dopaminergic and Serotonergic Neuronal Systems in Mice Lacking the NMDA Receptor ε1 Subunit. J. Neurosci. 2001, 21, 750–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfving, B.; Müller, H.K.; Oliveras, I.; Østerbøg, T.B.; Rio-Alamos, C.; Sanchez-Gonzalez, A.; Tobeña, A.; Fernandez-Teruel, A.; Aznar, S. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109669. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dang, W.; Du, Y.; Zhou, Q.; Liu, Z.; Jiao, K. Correlation of functional GRIN2A gene promoter polymorphisms with schizophrenia and serum d-serine levels. Gene 2015, 568, 25–30. [Google Scholar] [CrossRef]
- Jha, S.; Read, S.; Hurd, P.; Crespi, B. Segregating polymorphism in the NMDA receptor gene GRIN2A, schizotypy, and mental rotation among healthy individuals. Neuropsychologia 2018, 117, 347–351. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
N (%) | |
---|---|
Natal Sex | |
Female | 13 (38.2) |
Male | 21 (61.8) |
Race | |
African American/African | 6 (17.6) |
Asian or Pacific Islander | 1 (2.9) |
European American/European | 21 (61.8) |
Other | 1 (2.9) |
Declined to answer/unknown | 5 (14.7) |
Ethnicity | |
Hispanic/Latino | 7 (20.6) |
Non-Hispanic/Latino | 20 (58.8) |
Other | 2 (5.9) |
Declined to answer/unknown | 5 (14.7) |
Current age (years) | |
13–18 | 15 (44.1) |
19–25 | 16 (47.1) |
26+ | 3 (8.8) |
Average current age | 20 (SD: 4.4) |
Age of onset of psychotic symptoms (years) | |
<8 | 10 (29.4) |
8–12 | 18 (52.9) |
13–18 | 6 (17.6) |
Average age of onset of psychotic symptoms | 9.6 (SD: 3.1) |
Co-occurring diagnoses | |
Anxiety | 12 (35.3) |
ADHD | 18 (52.9) |
ASD | 9 (26.5) |
Depression | 12 (35.3) |
History of developmental delays | 11 (32.4) |
History of epilepsy or seizures | 11 (32.4) |
Intellectual disability | 5 (14.7) |
Chrom | Bp Start | Bp Stop | Gene Symbol | Number of Markers | p-Value | Number of Markers Tested |
---|---|---|---|---|---|---|
chr1 | 161016735 | 161039760 | ARHGAP30 | 7 | 0.49585008 | 7 |
chr1 | 231297857 | 231357302 | TRIM67 | 4 | 0.63673534 | 2 |
chr16 | 9852375 | 10276611 | GRIN2A | 11 | 0.00367797 | 5 |
chr16 | 30709529 | 30755602 | SRCAP | 11 | 0.04454448 | 8 |
chr17 | 17584786 | 17714767 | RAI1 | 16 | 0.3747328 | 5 |
chr19 | 47222763 | 47250251 | STRN4 | 2 | NA | NA |
chr21 | 45958863 | 45960078 | KRTAP10-1 | 6 | 0.8630309 | 4 |
chr4 | 151185593 | 151936879 | LRBA | 14 | 0.35271382 | 10 |
chr6 | 139561197 | 139613276 | TXLNB | 5 | 0.24115499 | 4 |
chr7 | 150709296 | 150721586 | ATG9B | 11 | 0.10667966 | 8 |
Chrom | POS | REF | Alt | Max Consequence | Carrier Count | Allele Freq | p-Value Fisher | Ref Case Count | Het Case Count | Hom Case Count | Ref Ctrl Count | Het Ctrl Count | Hom Ctrl Count |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr16 | 9858054 | T | TCGG | Protein altering variant | 0 | 0.0044 | 1 | 34 | 0 | 0 | 31 | 0 | 0 |
chr16 | 9858055 | T | TG | Frameshift variant | 0 | 0.0045 | 1 | 34 | 0 | 0 | 31 | 0 | 0 |
chr16 | 9858072 | G | C | Stop gained | 0 | 0.0044 | 1 | 34 | 0 | 0 | 31 | 0 | 0 |
chr16 | 9858074 | TTTGG | T | Frameshift variant | 0 | 0.0044 | 1 | 34 | 0 | 0 | 31 | 0 | 0 |
chr16 | 9858079 | T | TAAAAAA | Inframe insertion | 0 | 0.0045 | 1 | 34 | 0 | 0 | 31 | 0 | 0 |
chr16 | 9858173 | G | T | Missense variant | 2 | 0.0168 | 0.25 | 32 | 2 | 0 | 34 | 0 | 0 |
chr16 | 9934641 | G | T | Missense variant | 1 | 0.0042 | 1 | 33 | 1 | 0 | 33 | 0 | 0 |
chr16 | 9934969 | G | A | Splice region variant | 1 | 0.0042 | 1 | 33 | 1 | 0 | 33 | 0 | 0 |
chr16 | 9943800 | G | A | Missense variant | 0 | 0.0042 | 1 | 34 | 0 | 0 | 34 | 0 | 0 |
chr16 | 10031844 | G | C | Missense variant | 2 | 0.0085 | 0.5 | 32 | 2 | 0 | 32 | 0 | 0 |
chr16 | 10032161 | T | C | Missense variant | 1 | 0.0042 | 1 | 33 | 1 | 0 | 34 | 0 | 0 |
ID | Natal Sex | Race | Ethnicity | Age of Onset of Psychotic Symptoms |
---|---|---|---|---|
1 | Male | European American/European | Non-Hispanic | 9 |
2 | Male | European American/European | Non-Hispanic | 12 |
3 | Male | European American/European | Non-Hispanic | 12 |
4 | Female | African American/African | Hispanic | 10 |
5 | Male | European American/European | Hispanic | 9 |
6 | Female | European American/European | Non-Hispanic | 4 |
7 | Male | African American/African | Declined to answer | 13 |
Chrom | POS (GRCh37) | REF | Alt | Amino Acid Change | Het OR Hom | ACMG Interpretation | Categories | Rs Number |
---|---|---|---|---|---|---|---|---|
chr16 | 9858173 | G | T | p.Asn1076Lys | het | Benign | BA1, BS2, BP4, BP6 | rs61758995 |
chr16 | 9858173 | G | T | p.Asn1076Lys | het | Benign | BA1, BS2, BP4, BP6 | rs61758995 |
chr16 | 9934641 | G | T | p.Ala505Glu | het | VUS | PM2, PM1 | |
chr16 | 9934969 | G | A | het | Benign | BA1, BS2, BP4, BP6 | rs7193290 | |
chr16 | 10031844 | G | C | p.Pro327Ala | het | Likely Benign | PM2, BS2, BP4 | rs771168389 |
chr16 | 10031844 | G | C | p.Pro327Ala | het | Likely Benign | PM2, BS2, BP4 | rs771168389 |
chr16 | 10032161 | T | C | p.Lys221Arg | het | Benign | BA1, BS2, BP6 | rs61731464 |
ID | Diagnosis | Co-Occurring Condition(s) | Inheritance | Carrier Parent Phenotype | Other Family History of Neuropsychiatric Disease |
---|---|---|---|---|---|
1 | Early-onset schizophrenia | ASD | Paternal | Anxiety, depression, substance use disorder | None noted |
2 | Early-onset psychosis | OCD | Paternal | None noted | Maternal uncle: schizophrenia |
3 | Early-onset psychosis | Epilepsy, microcephaly | Maternal | ADHD | Brother: seizures Family history of bipolar disorder |
4 | Early-onset psychosis | Adenoidectomy, ADHD combined type, asthma, bipolar II disorder, obesity, type 2 diabetes mellitus | Unknown | Unknown | Mother: ADHD Father: PTSD and substance use Maternal grandmother: depression |
5 | Early-onset psychosis | Paternal | Severe OCD without psychotic symptoms | Maternal family history of bipolar disorder, schizophrenia, and ADHD | |
6 | Early-onset psychosis | ADHD, ASD, Chiari malformation, seizures | Unknown | Unknown | Maternal grandmother: bipolar disorder |
7 | Early-onset psychosis | Depression, PTSD, reactive attachment disorder | Unknown | Unknown | Mother: seizures Father: childhood epilepsy (now outgrown) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojlo, M.A.; Ghebrelul, M.; Genetti, C.A.; Smith, R.; Rockowitz, S.; Deaso, E.; Beggs, A.H.; Agrawal, P.B.; Glahn, D.C.; Gonzalez-Heydrich, J.; et al. Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes 2023, 14, 779. https://doi.org/10.3390/genes14040779
Hojlo MA, Ghebrelul M, Genetti CA, Smith R, Rockowitz S, Deaso E, Beggs AH, Agrawal PB, Glahn DC, Gonzalez-Heydrich J, et al. Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes. 2023; 14(4):779. https://doi.org/10.3390/genes14040779
Chicago/Turabian StyleHojlo, Margaret A., Merhawi Ghebrelul, Casie A. Genetti, Richard Smith, Shira Rockowitz, Emma Deaso, Alan H. Beggs, Pankaj B. Agrawal, David C. Glahn, Joseph Gonzalez-Heydrich, and et al. 2023. "Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants" Genes 14, no. 4: 779. https://doi.org/10.3390/genes14040779
APA StyleHojlo, M. A., Ghebrelul, M., Genetti, C. A., Smith, R., Rockowitz, S., Deaso, E., Beggs, A. H., Agrawal, P. B., Glahn, D. C., Gonzalez-Heydrich, J., & Brownstein, C. A. (2023). Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes, 14(4), 779. https://doi.org/10.3390/genes14040779