Helicobacter pylori Strains Isolated from Raw Poultry Meat in the Shahrekord Region, Iran: Frequency and Molecular Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Colony Morphology, Gram-Staining and Biochemical Analysis of H. pylori
2.3. Genotypical Identification of H. pylori by 16S rRNA-Based PCR Confirmation
2.4. H. pylori Antibiotic Susceptibility Pattern
Target Gene | Oligonucleotide Sequence (5′–3′) | Size (bp) | Annealing Temperature (°C) | Authors | |
---|---|---|---|---|---|
16S rRNA | F: CTATGACGGGTATCCGGC R: ATTCCACCTACCTCTCCCA | 375 | 53 | [28] | |
VacA | s1a | F: CTCTCGCTTTAGTAGGAGC R: CTGCTTGAATGCGCCAAAC | 213 | 64 | [32] |
s1b | F: AGCGCCATACCGCAAGAG R: CTGCTTGAATGCGCCAAAC | 187 | 64 | [32] | |
s1c | F: CTCTCGCTTTAGTGGGGYT R: CTGCTTGAATGCGCCAAAC | 213 | 64 | [32] | |
s2 | F: GCTAACACGCCAAATGATCC R: CTGCTTGAATGCGCCAAAC | 199 | 64 | [32] | |
m1a | F: GGTCAAAATGCGGTCATGG R: CCATTGGTACCTGTAGAAAC | 290 | 64 | [32] | |
m1b | F: GGCCCCAATGCAGTCATGGA R: GCTGTTAGTGCCTAAAGAAGCAT | 291 | 64 | [32] | |
m2 | F: GGAGCCCCAGGAAACATTG R: CATAACTAGCGCCTTGCA | 352 | 64 | [32] | |
CagA | CagA | F: GATAACAGCCAAGCTTTTGAGG R: CTGCAAAAGATTGTTTGGCAGA | 300 | 56 | [32] |
IceA | IceA1 | F: GTGTTTTTAACCAAAGTATC R: CTATAGCCATYTCTTTGCA | 247 | 56 | [33] |
IceA2 | F: GTTGGGTATATCACAATTTAT R: TTCCCTATTTTCTAGTAGGT | 229 | 56 | [33] | |
OipA | F: GTTTTTGATGCATGGGATTT R: GTGCATCTCTTATGGCTTT | 401 | 56 | [33] | |
BabA2 | F: CCAAACGAAACAAAAAGCGT R: GCTTGTGTAAAAGCCGTCGT | 105 | 57 | [34] |
2.5. Genotyping Analysis
2.6. Analytical Statistics
3. Results
3.1. Helicobacter spp. Prevalence in Poultry Based on Morphological and Biochemical Analysis
3.2. Identification of H. pylori with PCR Targeting the 16SrRNA Gene
3.3. H. pylori Sensitivity to Antibiotics and the MAR Index
3.4. Genotype Distribution among H. pylori Isolates Obtained from Various Origins or Poultry Samples
3.5. Genotyping Patterns of H. pylori Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ranjbar, R.; Khamesipour, F.; Jonaidi-Jafari, N.; Rahimi, E. Helicobacter pylori in bottled mineral water: Genotyping and antimicrobial resistance properties. BMC Microbiol. 2016, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Farsani, F.Y.; Dehkordi, F.S. Phenotypic analysis of antibiotic resistance and genotypic study of the vacA, cagA, iceA, oipA and babA genotypes of the Helicobacter pylori strains isolated from raw milk. Antimicrob. Resist. Infect. Control 2018, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Khamesipour, F.; Jonaidi-Jafari, N.; Rahimi, E. Helicobacter pylori isolated from Iranian drinking water: vacA, cagA, iceA, oipA and babA2 genotype status and antimicrobial resistance properties. FEBS Open Bio 2016, 6, 433–441. [Google Scholar] [CrossRef]
- Waskito, L.A.; Salama, N.R.; Yamaoka, Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 2018, 23, e12516. [Google Scholar] [CrossRef]
- Zarinnezhad, A.; Shahhoseini, M.H.; Piri Gharaghie, T. Evaluating the Relative Frequency of Fungal Infections in the Serum of Patients with Multiple Sclerosis and Healthy Subjects Using PCR. Biol. J. Microorg. 2021, 10, 37–50. [Google Scholar]
- Camilo, V.; Sugiyama, T.; Touati, E. Pathogenesis of Helicobacter pylori infection. Helicobacter 2017, 22, e12405. [Google Scholar] [CrossRef] [PubMed]
- Piri Gharaghie, T.; Hajimohammadi, S. Comparison of anti-candida effects of aqueous, ethanolic extracts and essential oil of E. angustifolia with fluconazole on the growth of clinical strains of Candida. New Cell. Mol. Biotechnol. J. 2021, 11, 25–38. [Google Scholar]
- Khodadadi, M.; Mousavinasab, S.S.; Khamesipour, F.; Katsande, S. The effect of Cichorium intybus L. ethanol extraction on the pathological and biomedical indexes of the liver and kidney of broilers reared under heat stress. Rev. Bras Cienc. Avic. 2016, 18, 407–412. [Google Scholar] [CrossRef]
- Baghbaderani, Z.T.; Shakerian, A.; Rahimi, E. Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. Infect. Drug Resist. 2020, 13, 1339–1349. [Google Scholar] [CrossRef]
- Pius, L.O.; Strausz, P.; Kusza, S. Overview of Poultry Management as a Key Factor for Solving Food and Nutritional Security with a Special Focus on Chicken Breeding in East African Countries. Biology 2021, 10, 810. [Google Scholar] [CrossRef]
- Smith, D.P. 24 Poultry Processing and Products. Princ. Appl. 2014, 549–566. [Google Scholar] [CrossRef]
- Mousavi, R.; Rahimi, E.; Shakerian, A. Incidence and Profiles of Antibiotic Resistance and Virulence Markers of The Escherichia coli O157 Bacteria Recovered from Poultry Meat. Egypt. J. Vet. Sci. 2020, 51, 215–223. [Google Scholar] [CrossRef]
- Hamada, M.; Elbehiry, A.; Marzouk, E.; Moussa, I.M.; Hessain, A.M.; Alhaji, J.H.; Heme, H.A.; Zahran, R.; Abdeen, E. Helicobacter pylori in a poultry slaughterhouse: Prevalence, genotyping and antibiotic resistance pattern. Saudi J. Biol. Sci. 2018, 25, 1072–1078. [Google Scholar] [CrossRef]
- Wong, J.T.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R.G. Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur. 2017, 15, 43–52. [Google Scholar] [CrossRef]
- Bibi, F.; Alvi, S.A.; Sawan, S.A.; Yasir, M.; Sawan, A.; Jiman-Fatani, A.A.; Azhar, E.I. Detection and genotyping of Helicobacter pylori among gastric ulcer and cancer patients from Saudi Arabia. Pak. J. Med. Sci. 2017, 33, 320. [Google Scholar] [CrossRef]
- Cardos, I.A.; Zaha, D.C.; Sindhu, R.K.; Cavalu, S. Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules 2021, 26, 6078. [Google Scholar] [CrossRef] [PubMed]
- Doohan, D.; Rezkitha, Y.A.; Waskito, L.A.; Yamaoka, Y.; Miftahussurur, M. Helicobacter pylori BabA–SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins 2021, 13, 485. [Google Scholar] [CrossRef]
- Mégraud, F. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004, 53, 1374–1384. [Google Scholar] [CrossRef]
- Ansari, H.; Doosti, A.; Kargar, M.; Bijanzadeh, M.; Jafarinya, M. Antimicrobial resistant determination and prokaryotic expression of smpA gene of Acinetobacter baumannii isolated from admitted patients. Jundishapur J. Microbiol. 2017, 10, e59370. [Google Scholar] [CrossRef]
- Khademi, F.; Poursina, F.; Hosseini, E.; Akbari, M.; Safaei, H.G. Helicobacter pylori in Iran: A systematic review on the antibiotic resistance. Iran. J. Basic Med. Sci. 2015, 18, 2. [Google Scholar]
- Alexander, S.M.; Retnakumar, R.J.; Chouhan, D.; Devi, T.N.; Dharmaseelan, S.; Devadas, K.; Thapa, N.; Tamang, J.P.; Lamtha, S.C.; Chattopadhyay, S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front. Microbiol. 2021, 12, 713955. [Google Scholar] [CrossRef] [PubMed]
- Öztekin, M.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Overview of Helicobacter pylori Infection: Clinical Features, Treatment, and Nutritional Aspects. Diseases 2021, 9, 66. [Google Scholar] [CrossRef]
- Kishk, R.M.; Soliman, N.M.; Anani, M.M.; Nemr, N.; Salem, A.; Attia, F.; Allithy, A.N.; Fouad, M. Genotyping of Helicobacter pylori virulence genes cagA and vacA: Regional and National Study. Int. J. Microbiol. 2021, 2021, 5540560. [Google Scholar] [CrossRef]
- Kisiala, M.; Kowalska, M.; Pastor, M.; Korza, H.J.; Czapinska, H.; Bochtler, M. Restriction endonucleases that cleave RNA/DNA heteroduplexes bind dsDNA in A-like conformation. Nucleic Acids Res. 2020, 48, 6954–6969. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, C.; Kato, I.; Plummer, M.; Muñoz, N.; Stein, A.; Jan van Doorn, L.; Franceschi, S.; Canzian, F. Risk of advanced gastric precancerous lesions in Helicobacter pylori infected subjects is influenced by ABO blood group and cagA status. Int. J. Cancer 2013, 133, 315–322. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Lankarani, K.B.; Afshari, M. Meta-analysis of the prevalence of Helicobacter pylori infection among children and adults of Iran. Int. J. Prev. Med. 2016, 7, 48. [Google Scholar]
- Akhlaghi, H.; Javan, A.J.; Chashmi, S.H.E. Public health significance of Helicobacter pullorum, a putative food-associated emerging zoonotic pathogen in Iran. Comp. Immunol. Microbiol. Infect. Dis. 2022, 87, 101849. [Google Scholar] [CrossRef]
- Riley, L.K.; Franklin, C.L.; Hook, R.J.; Besch-Williford, C. Identification of murine helicobacters by PCR and restriction enzyme analyses. J. Clin. Microbiol. 1996, 34, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Tohid, G.P.; Shandiz, S.A.S. The Inhibitory Effects of Silver Nanoparticles on Bap Gene Expression in Antibiotic-Resistant Acinetobacter baumanni Isolates using Real-Time PCR. Sci. J. Ilam Univ. Med. Sci. 2018, 26, 175–185. [Google Scholar]
- Suzuki, S.; Esaki, M.; Kusano, C.; Ikehara, H.; Gotoda, T. Development of Helicobacter pylori treatment: How do we manage antimicrobial resistance? World J. Gastroenterol. 2019, 25, 1907. [Google Scholar] [CrossRef]
- Ayandele, A.A.; Oladipo, E.K.; Oyebisi, O.; Kaka, M.O. Prevalence of Multi-Antibiotic Resistant Escherichia coli and Klebsiella species obtained from a Tertiary Medical Institution in Oyo State, Nigeria. Qatar Med. J. 2020, 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Yamakawa, A.; Okuda, T.; Ohtani, M.; Suto, H.; Ito, Y.; Yamazaki, Y.; Keida, Y.; Higashi, H.; Hatakeyama, M.; et al. Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J. Clin. Microbiol. 2005, 43, 3906–3916. [Google Scholar] [CrossRef]
- Van Doorn, L.J.; Figueiredo, C.; Sanna, R.; Plaisier, A.; Schneeberger, P.; de Boer, W.; Quint, W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1998, 115, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Proença-Modena, J.L.; Acrani, G.O.; Brocchi, M. Helicobacter pylori: Phenotypes, genotypes and virulence genes. Future Microbiol. 2009, 4, 223–240. [Google Scholar] [CrossRef]
- Keikha, M.; Karbalaei, M. EPIYA motifs of Helicobacter pylori cagA genotypes and gastrointestinal diseases in the Iranian population: A systematic review and meta-analysis. New Microbes New Infect. 2021, 41, 100865. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.; Gheisari, E.; Dehkordi, F.S. Genotyping of vacA alleles of Helicobacter pylori strains recovered from some Iranian food items. Trop. J. Pharm. Res. 2016, 15, 1631–1636. [Google Scholar] [CrossRef]
- Farzi, N.; Yadegar, A.; Aghdaei, H.A.; Yamaoka, Y.; Zali, M.R. Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infect. Genet. Evol. 2018, 60, 26–34. [Google Scholar] [CrossRef]
- Gilani, A.; Razavilar, V.; Rokni, N.; Rahimi, E. VacA and cagA genotypes of Helicobacter pylori isolated from raw meat in Isfahan province, Iran. In Veterinary Research Forum; Faculty of Veterinary Medicine, Urmia University: Urmia, Iran, 2017; Volume 8, p. 75. [Google Scholar]
- Meng, X.; Zhang, H.; Law, J.; Tsang, R.; Tsang, T. Detection of Helicobacter pylori from food sources by a novel multiplex PCR assay. J. Food Saf. 2008, 28, 609–619. [Google Scholar] [CrossRef]
- El Dairouty, R.K.; Murad, H.A.; El Shenawy, M.A.; Hosny, I.M.; Okda, A.Y.; El Shamy, S.M. Helicobacter pylori and its interrelations with other foodborne pathogenic bacteria in Egyptian meat and some meat products. Curr. Sci. Int. 2016, 5, 139–146. [Google Scholar]
- Talimkhani, A.; Mashak, Z. Prevalence and genotyping of Helicobacter pylori isolated from meat, Milk and vegetable in Iran. Jundishapur J. Microbiol. 2017, 10, e14240. [Google Scholar] [CrossRef]
- Momtaz, H.; Dabiri, H.; Souod, N.; Gholami, M. Study of Helicobacter pylori genotype status in cows, sheep, goats and human beings. BMC Gastroenterol. 2014, 14, 61. [Google Scholar] [CrossRef]
- Dabiri, H.; Jafari, F.; Baghaei, K.; Shokrzadeh, L.; Abdi, S.; Pourhoseingholi, M.A.; Mohammadzadeh, A. Prevalence of Helicobacter pylori vacA, cagA, cagE, oipA, iceA, babA2 and babB genotypes in Iranian dyspeptic patients. Microb. Pathog. 2017, 105, 226–230. [Google Scholar] [CrossRef]
- Khaji, L.; Banisharif, G.; Alavi, I. Genotyping of the Helicobacter pylori isolates of raw milk and traditional dairy products. Microbiol. Res. 2017, 8, 43–46. [Google Scholar] [CrossRef]
- Hemmatinezhad, B.; Momtaz, H.; Rahimi, E. VacA, cagA, iceA and oipA genotypes status and antimicrobial resistance properties of Helicobacter pylori isolated from various types of ready to eat foods. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 2. [Google Scholar] [CrossRef]
- Torkan, S.; Shahreza, M.H. VacA, CagA, IceA and OipA genotype status of Helicobacter pylori isolated from biopsy samples from Iranian dogs. Trop. J. Pharm. Res. 2016, 15, 377–384. [Google Scholar] [CrossRef]
- Podzorski, R.P.; Podzorski, D.S.; Wuerth, A.; Tolia, V. Analysis of the vacA, cagA, cagE, iceA, and babA2 genes in Helicobacter pylori from sixty-one pediatric patients from the Midwestern United States. Diagn. Microbiol. Infect. Dis. 2003, 46, 83–88. [Google Scholar] [CrossRef]
- Mashak, Z.; Jafariaskari, S.; Alavi, I.; Sakhaei Shahreza, M.; Safarpoor Dehkordi, F. Phenotypic and genotypic assessment of antibiotic resistance and genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 alleles of Helicobacter pylori bacteria isolated from raw meat. Infect. Drug Resist. 2020, 13, 257–272. [Google Scholar] [CrossRef]
- Elrais, A.M.; Arab, W.S.; Sallam, K.I.; Elmegid, W.A.; Elgendy, F.; Elmonir, W.; Imre, K.; Morar, A.; Herman, V.; Elaadli, H. Prevalence, Virulence Genes, Phylogenetic Analysis, and Antimicrobial Resistance Profile of Helicobacter Species in Chicken Meat and Their Associated Environment at Retail Shops in Egypt. Foods 2022, 11, 1890. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Dehkordi, F.S. Virulence factors and antibiotic resistance of Helicobacter pylori isolated from raw milk and unpasteurized dairy products in Iran. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yahaghi, E.; Khamesipour, F.; Mashayekhi, F.; Safarpoor Dehkordi, F.; Sakhaei, M.H.; Masoudimanesh, M.; Khameneie, M.K. Helicobacter pylori in vegetables and salads: Genotyping and antimicrobial resistance properties. BioMed Res. Int. 2014, 2014, 757941. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, J.; Wang, Z.; Li, H.; Wan, C. Antibiotic resistance of Helicobacter pylori strains isolated from pediatric patients in Southwest China. Front. Microbiol. 2020, 11, 621791. [Google Scholar] [CrossRef]
- Sabbagh, P.; Mohammadnia-Afrouzi, M.; Javanian, M.; Babazadeh, A.; Koppolu, V.; Vasigala, V.R.; Nouri, H.R.; Ebrahimpour, S. Diagnostic methods for Helicobacter pylori infection: Ideals, options, and limitations. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Taneike, I.; Nami, A.; O’connor, A.; Fitzgerald, N.; Murphy, P.; Qasim, A.; O’connor, H.; O’morain, C. Analysis of drug resistance and virulence-factor genotype of Irish Helicobacter pylori strains: Is there any relationship between resistance to metronidazole and cagA status? Aliment. Pharmacol. Ther. 2009, 30, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Markovska, R.; Yordanov, D.; Gergova, G.; Mitov, I. Clarithromycin resistance mutations in Helicobacter pylori in association with virulence factors and antibiotic susceptibility of the strains. Microb. Drug Resist. 2016, 22, 227–232. [Google Scholar] [CrossRef]
- Ghotaslou, R.; Leylabadlo, H.E.; Asl, Y.M. Prevalence of antibiotic resistance in Helicobacter pylori: A recent literature review. World J. Methodol. 2015, 5, 164. [Google Scholar] [CrossRef] [PubMed]
Raw Meat Samples | No Samples Collected | n (%) of H. pylori Positive Samples | H. pylori 16SrRNA PCR Confirmation (%) |
---|---|---|---|
Chicken | 60 | 9 (15.00) | 9 (15.00) |
Turkey | 55 | 7 (12.72) | 7 (12.72) |
Quebec | 65 | 0 | 0 |
Goose | 65 | 0 | 0 |
Ostrich | 75 | 4 (5.33) | 4 (5.33) |
Total | 320 | 20 (6.25) (95%) | 20 (6.25) (95%) |
Type of Raw Milk Samples (Number of H. pylori Strains) | Number (%) Isolates Resistant to Each Antibiotic | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AM10a | Met5 | ER5 | CLR2 | AMX 10 | Tet30 | Lev5 | S10 | RIF30 | Cef30 | TRP25 | FZL1 | Spi100 | |
Chicken (9) | 8 (88.88) | 6 (66.66) | 4 (44.44) | 4 (44.44) | 7 (77.77) | 7 (77.77) | 3 (33.33) | 2 (22.22) | 3 (33.33) | 2 (22.22) | 3 (33.33) | 2 (22.22) | 3 (33.33) |
Turkey (7) | 5 (71.42) | 2 (28.57) | 3 (42.85) | 2 (28.57) | 5 (71.42) | 7 (100) | 2 (28.57) | 7 (100) | 4 (57.14) | 4 (57.14) | 3 (42.85) | 3 (42.85) | 3 (42.85) |
Ostrich (4) | 4 (100) | 2 (50) | 1 (25) | 1 (25) | 3 (75) | 3 (75) | 1 (25) | 1 (25) | 1 (25) | – | 1 (25) | – | – |
Total (20) | 17 (85) | 10 (50) | 8 (40) | 7 (35) | 15 (75) | 17 (85) | 6 (30) | 10 (50) | 8 (40) | 6 (30) | 7 (35) | 5 (25) | 6 (30) |
No. | Antimicrobial Resistance Profile | MAR Index |
---|---|---|
1 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25, FZL1, Spi100 | 1 |
2 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25, FZL1, Spi100 | 1 |
3 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25, FZL1 | 0.923 |
4 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25, FZL1 | 0.923 |
5 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25, FZL1 | 0.923 |
6 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25 | 0.846 |
7 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30, TRP25 | 0.846 |
8 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30 | 0.769 |
9 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30 | 0.769 |
10 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30, Cef30 | 0.769 |
11 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10, RIF30 | 0.692 |
12 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10 | 0.615 |
13 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5, S10 | 0.615 |
14 | AM10, Met5, ER5, CLR2, AMX10, Tet30, Lev5 | 0.538 |
15 | AM10, Met5, ER5, CLR2, AMX10 | 0.384 |
16 | AM10, Met5, ER5, CLR2 | 0.307 |
17 | AM10, Met5, ER5 | 0.230 |
18 | AM10, Met5 | 0.153 |
19 | AM10 | 0.076 |
20 | AM10 | 0.076 |
Average | 0.622 |
Type of Raw Milk Samples (Number of H. pylori Strains) | Number (%) Isolates Harbor Each Genotype | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VacA | CagA | IceA | OipA | BabA2 | ||||||||
s1a | s1b | s1c | s2 | m1a | m1b | m2 | IceA1 | IceA2 | ||||
Chicken (9) | 7 (77.77) | 3 (33.33) | 1 (11.11) | 6 (66.66) | 7 (77.77) | 3 (33.33) | 6 (66.66) | 6 (66.66) | 4 (44.44) | 2 (22.22) | 3 (33.33) | 4 (44.44) |
Turkey (7) | 6 (85.71) | 2 (28.57) | - | 6 (85.71) | 6 (85.71) | 1 (14.28) | 5 (71.42) | 5 (71.42) | 3 (42.85) | 1 (14.28) | 2 (28.57) | 3 (42.85) |
Ostrich (4) | 2 (50) | - | - | 2 (50) | 2 (50) | 1 (25) | 2 (50) | 1 (25) | 1 (25) | - | - | 1 (25) |
Total (20) | 15 (75) | 5 (25) | 1 (5) | 14 (70) | 15 (75) | 5 (25) | 13 (65) | 12 (60) | 8 (40) | 3 (15) | 5 (25) | 8 (40) |
Type of Raw Milk Samples (Number of H. pylori Strains) | Genotyping Pattern (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s1am1a | s1am1b | s1am2 | s1bm1a | s1bm1b | s1bm2 | s1cm1a | s1cm1b | s1cm2 | s2m1a | s2m1b | s2m2 | CagA+ | CagA− | IceA1/IceA2 | OipA+ | OipA− | BabA2+ | BabA2− | |
Chicken (9) | 5 (55.55) | 2 (22.22) | 4 (44.44) | 2 (22.22) | 1 (11.11) | 2 (22.22) | 1 (11.11) | – | 1 (11.11) | 4 (44.44) | 2 (22.22) | 3 (33.33) | 6 (66.66) | 3 (33.33) | 1 (11.11) | 3 (33.33) | 6 (66.66) | 4 (44.44) | 5 (55.55) |
Turkey (7) | 3 (42.85) | 1 (14.28) | 1 (14.28) | 1 (14.28) | 1 (14.28) | - | - | – | – | 3 (42.85) | 1 (14.28) | 2 (28.57) | 3 (42.85) | 2 (28.57) | 1 (14.28) | 2 (28.571) | - | 1 (14.28) | 2 (28.57) |
Ostrich (4) | 1 (25) | – | - | - | – | – | - | – | – | 2 (50) | – | 1 (25) | 1 (25) | - | – | 1 (25) | - | - | 1 (25) |
Total (20) | 9 (45) | 3 (15) | 5 (25) | 3 (15) | 2 (10) | 2 (10) | 1 (5) | - | 1 (5) | 9 (45) | 3 (15) | 6 (30) | 10 (5) | 5 (25) | 2 (10) | 6 (30) | 6 (30) | 5 (25) | 8 (40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadi, S.; Rahimi, E.; Shakerian, A. Helicobacter pylori Strains Isolated from Raw Poultry Meat in the Shahrekord Region, Iran: Frequency and Molecular Characteristics. Genes 2023, 14, 1006. https://doi.org/10.3390/genes14051006
Asadi S, Rahimi E, Shakerian A. Helicobacter pylori Strains Isolated from Raw Poultry Meat in the Shahrekord Region, Iran: Frequency and Molecular Characteristics. Genes. 2023; 14(5):1006. https://doi.org/10.3390/genes14051006
Chicago/Turabian StyleAsadi, Sepehr, Ebrahim Rahimi, and Amir Shakerian. 2023. "Helicobacter pylori Strains Isolated from Raw Poultry Meat in the Shahrekord Region, Iran: Frequency and Molecular Characteristics" Genes 14, no. 5: 1006. https://doi.org/10.3390/genes14051006
APA StyleAsadi, S., Rahimi, E., & Shakerian, A. (2023). Helicobacter pylori Strains Isolated from Raw Poultry Meat in the Shahrekord Region, Iran: Frequency and Molecular Characteristics. Genes, 14(5), 1006. https://doi.org/10.3390/genes14051006