Ancient Mitogenomes Reveal Stable Genetic Continuity of the Holocene Serows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Handling and DNA Extraction
2.3. DNA Library Preparation and Sequencing
2.4. Data Analysis
2.5. Bioinformatics Analysis
3. Results
4. Discussion
4.1. Capricornis Phylogeny and Their Divergences
4.2. Phylogeography of C. sumatraensis
4.3. Maternal Demographic History of the C. sumatraensis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phan, T.D.; Nijhawan, S.; Li, S. Capricornis sumatraensis. The IUCN Red List of Threatened Species 2020: E.T162916735A162916910. Available online: https://www.iucnredlist.org/species/162916735/162916910 (accessed on 20 April 2023).
- Schaller, G.B. Mountain Monarchs: Wild Sheep and Goats of the Himalaya; The University of Chicago Press: Chicago, IL, USA, 1977. [Google Scholar]
- Huang, W.B.; Zhu, X.W.; Wang, X.Y. A fossil Ailuropoda and Capricornis from Guilin County, Kwangsi. Vert. PalAsiat 1983, 21, 151–159. [Google Scholar] [CrossRef]
- Jass, C.N.; Mead, J.I. Capricornis crispus. Mamm. Species 2004, 750, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.R. Capricornis rubidus (Amended Version of 2021 Assessment). The IUCN Red List of Threatened Species 2022: E.T3815A214430673. Available online: https://www.iucnredlist.org/species/3815/214430673 (accessed on 20 April 2023).
- Grubb, P. Artiodactyla: Bovidae: Caprinae. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; Volume 1, pp. 703–706. [Google Scholar]
- Groves, C.P.; Grubb, P.J. Reclassification of the Serows and Gorals (Nemorhaedus: Bovidae); Croom Helm Editions: London, UK, 1985; pp. 45–50. [Google Scholar]
- Valdez, R. Subfamily Caprinae. In Handbook of the Mammals of the World: Vol. 2: Hoofed Mammals; Wilson, D.E., Mittermeier, R.A., Eds.; Lynx Editions: Barcelona, Spain, 2011; pp. 742–759. [Google Scholar]
- Mori, E.; Nerva, L.; Lovari, S. Reclassification of the serows and gorals: The end of a neverending story? Mammal Rev. 2019, 49, 256–262. [Google Scholar] [CrossRef]
- Liu, W.; Yao, Y.F.; Yu, Q.; Ni, Q.Y.; Zhang, M.W.; Yang, J.D.; Mai, M.M.; Xu, H.L. Genetic variation and phylogenetic relationship between three serow species of the genus Capricornis based on the complete mitochondrial DNA control region sequences. Mol. Biol. Rep. 2013, 40, 6793–6802. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.L.; Zhang, Y.S.; Feng, L.M. Complete mitochondrial genome of the Himalayan serow (Capricornis thar) and its phylogenetic status within the genus Capricornis. Biochem. Syst. Ecol. 2016, 65, 115–123. [Google Scholar] [CrossRef]
- Tokida, K. Capricornis crispus. The IUCN Red List of Threatened Species 2020: E. T3811A22151909. Available online: https://www.iucnredlist.org/species/3811/22151909 (accessed on 20 April 2023).
- Basler, N.; Xenikoudakis, G.; Westbury, M.V.; Song, L.F.; Sheng, G.L.; Barlow, A. Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone. BMC Res. Notes. 2017, 10, 754. [Google Scholar] [CrossRef]
- Meyer, M.; Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5448. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 2014, 15, 356. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Jónsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic. Acids. Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012, 9, 772. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef]
- Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol. Biol. 2013, 13, 166. [Google Scholar] [CrossRef]
- Pérez, T.; González, I.; Essler, S.E.; Fernández, M.; Domínguez, A. The shared mitochondrial genome of Rupicapra pyrenaica ornata and Rupicapra rupicapra cartusiana: Old remains of a common past. Mol. Phylogenet. Evol. 2014, 79, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Luikart, G.; Gielly, L.; Excoffier, L.; Vigne, J.D.; Bouvet, J.; Taberlet, P. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc. Natl. Acad. Sci. USA 2001, 98, 5927–5932. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Sawyer, S.; Krause, J.; Guschanski, K.; Savolainen, V.; Paabo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 2012, 7, e34131. [Google Scholar] [CrossRef]
- Palkopoulou, E.; Lipson, M.; Mallick, S.; Nielsen, S.; Rohland, N.; Baleka, S.; Karpinski, E.; Ivancevic, A.M.; To, T.; Kortschak, R.D.; et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. USA 2018, 115, E2566–E2574. [Google Scholar] [CrossRef]
- Westbury, M.V.; Hartmann, S.; Barlow, A.; Preick, M.; Ridush, B.; Nagel, D.; Rathgeber, T.; Ziegler, R.; Baryshnikov, G.; Sheng, G.; et al. Hyena paleogenomes reveal a complex evolutionary history of cross-continental gene flow between spotted and cave hyena. Sci. Adv. 2020, 6, eaay0456. [Google Scholar] [CrossRef]
- Geist, V. On the evolution of the Caprinae. In The Biology and Management of Capricornis and Related Mountain Antelopes; Soma, H., Ed.; Croom Helm Editions: London, UK, 1987; pp. 3–40. [Google Scholar]
- Zeng, W.B. The passageway of the flora migration on both sides of the Taiwan strait in Pleistocene epoch. Acta Bot Brasilica 1993, 16, 107–110. [Google Scholar]
- Liu, Y.G.; Shi, X.F.; Lv, H.L. Advances in Paleoceanographic Studies on the Japan Sea, Okhotsk Sea and Bering Sea. Adv. Mar. Biol. 2004, 22, 519–530. [Google Scholar]
- Zhao, Z.B. A preliminary study on the evolution of Taiwan strait. Taiwan Strait. 1982, 1, 20–24. [Google Scholar]
- Jia, C.Z.; He, D.F.; Lu, J.M. Episodes and geodynamic setting of Himalayan movement in China. Oil Gas Geol. 2004, 25, 121–125. [Google Scholar]
- Sheng, G.L.; Hu, J.M.; Tong, H.W.; Llamas, B.; Yuan, J.X.; Hou, X.D.; Chen, S.G.; Xiao, B.; Lai, X.L. Ancient DNA of northern China Hystricidae sub-fossils reveals the evolutionary history of old world porcupines in the Late Pleistocene. BMC Evol. Biol. 2020, 20, 88. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. Lond. 1996, 58, 247–276. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef]
- Weiss, T.L.; Linsley, B.K.; Gordon, A.L.; Rosenthal, Y.; Dannenmann-Di Palma, S. Constraints on Marine Isotope Stage 3 and 5 Sea Level From the Flooding History of the Karimata Strait in Indonesia. Paleoceanogr. Paleoclimatol. 2022, 37, e2021PA004361. [Google Scholar] [CrossRef]
- Nowaczyk, N.R.; Liu, J.B.; Plessen, B.; Wegwerth, A.; Arz, H.W. A High-Resolution Paleosecular Variation Record for Marine Isotope Stage 6 From Southeastern Black Sea Sediments. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021350. [Google Scholar] [CrossRef]
- Wan, T.; Oaks, J.R.; Jiang, X.L.; Huang, H.; Knowles, L.L. Differences in Quaternary co-divergence reveals community-wide diversification in the mountains of southwest China varied among species. Proc. Biol. Sci. 2021, 288, 20202567. [Google Scholar] [CrossRef]
- Shepherd, C.R.; Gomez, L.; Rachmayuningtyas, B.A. The illegal trade of the Sumatran serow Capricornis sumatraensis sumatraensis for traditional medicine in Indonesia. InJAST 2022, 3, 98–104. [Google Scholar] [CrossRef]
- Lovari, S.; Mori, E.; Procaccio, E.L. On the Behavioural Biology of the Mainland Serow: A Comparative Study. Animals 2020, 10, 1669. [Google Scholar] [CrossRef]
- Isarankura Na Ayudhya, J.; Merceron, G.; Wannaprasert, T.; Jaeger, J.-J.; Chaimanee, Y.; Shoocongdej, R.; Suraprasit, K. Dental mesowear and microwear for the dietary reconstruction of Quaternary Southeast Asian serows and gorals. Front. Ecol. Evol. 2022, 10, 1000168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Xiao, B.; Hu, J.; Lin, H.; Du, Z.; Xiang, K.; Pan, D.; Hou, X.; Yuan, J.; Lai, X.; et al. Ancient Mitogenomes Reveal Stable Genetic Continuity of the Holocene Serows. Genes 2023, 14, 1187. https://doi.org/10.3390/genes14061187
Song S, Xiao B, Hu J, Lin H, Du Z, Xiang K, Pan D, Hou X, Yuan J, Lai X, et al. Ancient Mitogenomes Reveal Stable Genetic Continuity of the Holocene Serows. Genes. 2023; 14(6):1187. https://doi.org/10.3390/genes14061187
Chicago/Turabian StyleSong, Shiwen, Bo Xiao, Jiaming Hu, Haifeng Lin, Zhicheng Du, Kunpeng Xiang, Dong Pan, Xindong Hou, Junxia Yuan, Xulong Lai, and et al. 2023. "Ancient Mitogenomes Reveal Stable Genetic Continuity of the Holocene Serows" Genes 14, no. 6: 1187. https://doi.org/10.3390/genes14061187
APA StyleSong, S., Xiao, B., Hu, J., Lin, H., Du, Z., Xiang, K., Pan, D., Hou, X., Yuan, J., Lai, X., & Sheng, G. (2023). Ancient Mitogenomes Reveal Stable Genetic Continuity of the Holocene Serows. Genes, 14(6), 1187. https://doi.org/10.3390/genes14061187