Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants
Abstract
:1. Introduction
2. Migration: A Heritable Seasonal Behavior
2.1. An Innate Migratory Template
2.2. Heritable Migratory Activity Pattern
2.3. Heritable Arrival Dates
3. Unraveling the Genetic Control of Migratory Behavior
3.1. Gene Polymorphism
3.2. Gene Transcription
3.2.1. Genes Involved in Photoperiodic Induction Pathway
3.2.2. Genes Involved in Temperature Sensitive Pathways
3.2.3. Genes Involved in Nutrition Sensitive Pathway
3.2.4. Genes Involved in Timekeeping
3.2.5. Genes Associated with Dopamine Biosynthesis
3.2.6. Changes in Expression of Genes Linked with Epigenetic Modifications
3.2.7. Differential Gene Expressions between Spring and Autumn Migrations
3.3. Global Gene Analyses
4. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lack, D. Bird migration and natural selection. Oikos 1968, 19, 1–9. [Google Scholar] [CrossRef]
- Salomonsen, F. The evolutionary significance of bird migration. Dan. Biol. Medd. 1955, 22, 1–62. [Google Scholar]
- Alerstam, T. Bird Migration; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Berthold, P. Control of Bird Migration; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Pulido, F.; Berthold, P. Quantitative genetic analysis of migratory behavior. In Avian Migration; Berthold, P., Gwinner, E., Sonnenschein, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 53–77. [Google Scholar]
- Harris, M.P. Abnormal migration and hybridization of Larus argentatus and L. fuscus after fostering experiments. Ibis 1969, 112, 488–498. [Google Scholar] [CrossRef]
- Berthold, P.; Wiltschko, W.; Miltenberger, H.; Querner, U. Genetic transmission of migratory behavior into a nonmigratory bird population. Experientia 1990, 46, 107–108. [Google Scholar] [CrossRef]
- Liedvogel, M.; Akesson, S.; Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 2011, 26, 561–569. [Google Scholar] [CrossRef]
- Valikangas, I. Finnische Zugvogel aus englischen Vogeleiern. Vogelzug 1933, 4, 159–166. [Google Scholar]
- Nice, M.M. Zur Naturgeschichte des Singammers. J. Ornithol. 1934, 82, 1–96. [Google Scholar] [CrossRef]
- Nice, M.M. Studies in the life history of the song sparrow. Vol I A population study of the song sparrow. Trans. Linn. Soc. N. Y. 1937, 4–6, 1–247. [Google Scholar]
- Berthold, P. Genetic control of migratory behavior in birds. Trends Ecol. Evol. 1991, 6, 254–257. [Google Scholar] [CrossRef]
- Berthold, P.; Querner, U. Genetic basis of migratory behavior in European warblers. Science 1981, 212, 77–79. [Google Scholar] [CrossRef]
- Berthold, P.; Helbig, A.J.; Mohr, G.; Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 1992, 360, 668–670. [Google Scholar] [CrossRef]
- Vega, M.L.; Willemoes, M.; Thomson, R.L.; Tolvanen, J.; Rutila, J.; Samaš, P.; Strandberg, R.; Grim, T.; Fossøy, F.; Stokke, B.G.; et al. First-time migration in juvenile common cuckoos documented by satellite tracking. PLoS ONE 2016, 11, e0168940. [Google Scholar] [CrossRef]
- Berthold, P.; Helbig, A.J. The genetics of bird migration: Stimulus, timing, and direction. Ibis 1992, 134 (Suppl. S1), 35–40. [Google Scholar] [CrossRef]
- Berthold, P.; Pulido, F. Heritability of migratory activity in a natural bird population. Proc. R. Soc. Lond. B 1994, 257, 311–315. [Google Scholar]
- Berthold, P. Endogenous component of annual cycles of migration and moult. In Acta XVIII Congressus Internationalis Ornithologici; Ilyichev, V.D., Gavrilov, V.M., Eds.; Nauka: Moscow, Ruassia, 1985; pp. 922–929. [Google Scholar]
- Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 1996, 199, 39–48. [Google Scholar] [CrossRef]
- Berthold, P.; Gwinner, E.; Klein, H.; Westrich, P. Beziehungen zwischen Zugunruhe und Zugablauf bei Garten und Monchsgrasmucke (Sylvia borin und S. atricapilla). Z. Tierpsychol. 1972, 30, 26–35. [Google Scholar] [CrossRef]
- Hedenström, A. Migration routes and wintering areas of willow warblers Phylloscopus trochilus (L.) ringed in Fennoscandia. Ornis Fenn. 1987, 64, 137. [Google Scholar]
- Lerche-Jørgensen, M.; Willemoes, M.; Tøttrup, A.P.; Snell, K.R.; Thorup, K. No apparent gain from continuing migration for more than 3000 kilometres: Willow warblers breeding in Denmark winter across the entire northern Savannah as revealed by geolocators. Mov. Ecol. 2017, 5, 17. [Google Scholar] [CrossRef]
- Zhao, T.; Ilieva, M.; Larson, K.; Lundberg, M.; Neto, J.M.; Sokolovskis, K.; Åkesson, S.; Bensch, S. Autumn migration direction of juvenile willow warblers (Phylloscopus t. trochilus and P. t. acredula) and their hybrids assessed by qPCR SNP genotyping. Mov. Ecol. 2020, 8, 22. [Google Scholar] [CrossRef]
- Sokolovskis, K.; Lundberg, M.; Åkesson, S.; Willemoes, M.; Zhao, T.; Caballero-Lopez, V.; Bensch, S. Migration direction in a songbird explained by two loci. Nat. Comm. 2023, 14, 165. [Google Scholar] [CrossRef]
- Morrison, C.A.; Alves, J.A.; Gunnarsson, T.G.; Porisson, B.; Gill, J.A. Why do earlier arriving migratory birds have better breeding success? Ecol. Evol. 2019, 9, 8856–8864. [Google Scholar] [CrossRef] [PubMed]
- Aebischer, A.; Perrin, N.; Krieg, M.; Studer, J.; Meyer, D.R. The role of territory choice, mate choice and arrival date on breeding success in the Savi’s Warbler, Locustella luscinioides. J. Avian Biol. 1996, 27, 143–152. [Google Scholar] [CrossRef]
- Currie, D.; Thompson, D.; Burke, T. Patterns of territory settlement and consequences for breeding success in the northern wheatear Oenanthe oenanthe. Ibis 2000, 142, 389–398. [Google Scholar] [CrossRef]
- McKellar, A.E.; Marra, P.P.; Ratcliffe, L.M. Starting over: Experimental effects of breeding delay on reproductive success in early-arriving male American redstarts. J. Avian Biol. 2013, 44, 495–503. [Google Scholar] [CrossRef]
- Norris, D.R.; Marra, P.P.; Kyser, T.K.; Sherry, T.W.; Ratcliffe, L.M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. Royal Soc. B Biol. Sci. 2004, 271, 59–64. [Google Scholar] [CrossRef]
- Rockwell, S.M.; Bocetti, C.I.; Marra, P.P. Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s Warbler (Setophaga kirtlandii). Auk 2012, 129, 744–752. [Google Scholar] [CrossRef]
- Velmala, W.; Helle, S.; Ahola, M.P.; Klaassen, M.; Lehikoinen, E.; Rainio, K.; Sirkia, P.M.; Laaksonen, T. Natural selection for earlier male arrival to breeding grounds through direct and indirect effects in a migratory songbird. Ecol. Evol. 2015, 5, 1205–1213. [Google Scholar] [CrossRef]
- Tarka, M.; Hansson, B.; Hasselquist, D. Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird. J. Evol. Biol. 2015, 28, 1024–1038. [Google Scholar] [CrossRef]
- Bowers, E.K.; Grindstaff, J.L.; Soukup, S.S.; Drilling, N.E.; Eckerle, K.P.; Sakaluk, S.K.; Thompson, C.F. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Ecology 2016, 97, 2880–2891. [Google Scholar] [CrossRef]
- Visser, M.E.; Gienapp, P.; Husby, A.; Morrisey, M.; de la Hera, I.; Pulido, F.; Both, C. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biol. 2015, 13, e1002120. [Google Scholar] [CrossRef]
- Kullberg, C.; Fransson, T.; Hedlund, J.; Jonzén, N.; Langvall, O.; Nilsson, J.; Bolmgren, K. Change in spring arrival of migratory birds under an era of climate change, Swedish data from the last 140 years. Ambio 2015, 44 (Suppl. S1), S69–S77. [Google Scholar] [CrossRef]
- Mueller, J.C.; Pulido, F.; Kempenaers, B. Identification of a gene associated with avian migratory behavior. Proc. R. Soc. B 2011, 278, 2848–2856. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, G.; Ambrosini, R.; Caprioli, M.; Costanzo, A.; Liechti, F.; Gatti, E.; Gianfranceschi, L.; Podofillini, S.; Romano, A.; Romano, M.; et al. Clock gene polymorphism and scheduling of migration: A geolocator study of the barn swallow Hirundo rustica. Sci. Rep. 2015, 5, 12443. [Google Scholar] [CrossRef]
- Saino, N.; Bazzi, G.; Gatti, E.; Caprioli, M.; Cecere, J.G.; Possenti, C.D.; Galimberti, A.; Orioli, V.; Bani, L.; Rubolini, D.; et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 2015, 24, 1758–1773. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.P.; Abolins-Abols, M.; Atwell, J.W.; Rice, R.J.; Milá, B.; Ketterson, E.D. Variation in candidate genes CLOCK and ADCYPA1 does not consistently predict differences in migratory behaviour in the songbird genus Junco. F1000 Res. 2013, 2, 115. [Google Scholar] [CrossRef] [PubMed]
- Parody-Merino, Á.M.; Battley, P.F.; Conklin, J.R.; Fidler, A.E. No evidence for an association between Clock gene allelic variation and migration timing in a long-distance migratory shorebird (Limosa lapponica baueri). Oecologia 2019, 191, 843–859. [Google Scholar] [CrossRef]
- Kramer, G.R.; Streby, H.M.; Peterson, S.M.; Lehman, J.A.; Buehler, D.A.; Wood, P.B.; McNeil, D.J.; Larkin, J.L.; Andersen, D.E. Nonbreeding isolation and population-specific migration patterns among three populations of Golden-winged Warblers. Condor Ornithol. Appl. 2017, 119, 108–121. [Google Scholar] [CrossRef]
- Kramer, G.R.; Andersen, D.E.; Buehler, D.A.; Wood, P.B.; Peterson, S.M.; Lehman, J.A.; Aldinger, K.R.; Bulluck, L.P.; Harding, S.; Jones, J.A.; et al. Population trends in Vermivora warblers are linked to strong migratory connectivity. Proc. Natl. Acad. Sci. USA 2018, 115, E3192–E3200. [Google Scholar] [CrossRef]
- Toews, D.P.L.; Taylor, S.A.; Streby, H.M.; Kramer, G.R.; Lovette, I.J. Selection on VPS13A linked to migration in a songbird. Proc. Nat. Acad. Sci. USA 2019, 116, 18272–18274. [Google Scholar] [CrossRef]
- Gu, Z.; Pan, S.; Lin, Z.; Hu, L.; Dai, X.; Chang, J.; Xue, Y.; Su, H.; Long, J.; Sun, M.; et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 2021, 591, 259–264. [Google Scholar] [CrossRef]
- Merlin, C.; Liedvogel, M. The genetics and epigenetics of animal migration and orientation: Birds, butterflies and beyond. J. Exp. Biol. 2019, 222 (Suppl. S1), jeb191890. [Google Scholar] [CrossRef]
- Delmore, K.; Illera, J.C.; Pérez-Tris, J.; Segelbacher, G.; Ramos, J.S.L.; Durieux, G.; Ishigohoka, J.; Liedvogel, M. The evolutionary history and genomics of European blackcap migration. eLife 2020, 9, e54462. [Google Scholar] [CrossRef]
- Bossu, C.M.; Heath, J.A.; Kaltenecker, G.S.; Helm, B.; Ruegg, K.C. Clock linked genes underlie seasonal migratory timing in a diurnal raptor. Proc. R. Soc. B 2022, 289, 20212507. [Google Scholar] [CrossRef] [PubMed]
- Newton, I. The Migration Ecology of Birds; Academic Press: London, UK, 2007. [Google Scholar]
- Tryjanowski, P.; Yosef, R. Differences between the spring and autumn migration of the red-backed shrike Lanius collurio: Record from the Eilat Stopover (Israel). Acta Ornithol. 2002, 37, 85–90. [Google Scholar] [CrossRef]
- Nilsson, C.; Klaassen, R.H.G.; Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 2013, 181, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, J.M.; Boswell, T.; Eiermann, S.J.; Breuner, C.W.; Ramenofsky, M. Contribution of endocrinology to the migration life history of birds. Gen. Comp. Endocrinol. 2013, 190, 47–60. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, D.; Malik, S.; Gupta, N.J.; Rani, S.; Kumar, V. Difference in control between spring and autumn migration in birds: Insight from seasonal changes in hypothalamic gene expression in captive buntings. Proc. R. Soc. B 2018, 285, 1531. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V. Metabolic plasticity mediates differential responses to spring and autumn migrations: Evidence from gene expression patterns in migratory buntings. Exp. Physiol. 2019, 104, 1841–1857. [Google Scholar] [CrossRef]
- Rastogi, A.; Kumari, Y.; Rani, S.; Kumar, V. Neural correlates of migration: Activation of hypothalamic clock(s) in and out of migratory state in the blackheaded bunting (Emberiza melanocephala). PLoS ONE 2013, 8, e70065. [Google Scholar] [CrossRef]
- Jain, N.; Kumar, V. Changes in food intake, body weight, gonads and plasma concentrations of thyroxine, luteinizing hormone and testosterone in captive male buntings exposed to natural daylengths at 29° N. J. Biosci. 1995, 20, 417–426. [Google Scholar] [CrossRef]
- Mishra, I.; Singh, D.; Kumar, V. Daily levels and rhythm in circulating corticosterone and insulin are altered with photostimulated seasonal states in night-migratory blackheaded buntings. Horm. Behav. 2018, 94, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Scheuerlein, A.; Gwinner, E. Proximate and ultimate aspects of photoperiodic sensitivity in equatorial Stonechats Saxicola torquata axillaris. In Proceedings of the 22nd International Ornithological Congress, Durban, South Africa; Adams, N.J., Slotow, R.H., Eds.; Bird Life South Africa: Johannesburg, South Africa, 1999; pp. 1756–1766. [Google Scholar]
- Kumar, V.; Wingfield, J.C.; Dawson, A.; Ramenofsky, M.; Rani, S.; Bartell, P. Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol. Biochem. Zool. 2010, 83, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Surbhi, V.K. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen. Comp. Endocrinol. 2014, 220, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Nakane, Y.; Ikegami, K.; Ono, H.; Yamamoto, N.; Yoshida, S.; Hirunagi, K.; Ebihara, S.; Kubo, Y.; Yoshimura, T. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. USA 2010, 107, 15264–15268. [Google Scholar] [CrossRef] [PubMed]
- Halford, S.; Pires, S.S.; Turton, M.; Zheng, L.; González-Menéndez, I.; Davies, W.L.; Peirson, S.N.; García-Fernández, J.M.; Hankins, M.W.; Foster, R.G. VA opsin-based photoreceptors in the hypothalamus of birds. Curr. Biol. 2009, 19, 1396–1402. [Google Scholar] [CrossRef]
- Yoshimura, T.; Yasuo, S.; Watanabe, M.; Iigo, M.; Yamamura, T.; Hirunagi, K.; Ebihara, S. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 2003, 426, 178–181. [Google Scholar] [CrossRef]
- Nakao, N.; Ono, H.; Yamamura, T.; Anraku, T.; Takagi, T.; Higashi, K. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 2008, 452, 317–322. [Google Scholar] [CrossRef]
- Majumdar, G.; Rani, S.; Kumar, V. Hypothalamic gene switches control transitions between seasonal life history states in a night migratory photoperiodic songbird. Mol. Cell. Endocrinol. 2015, 399, 110–121. [Google Scholar] [CrossRef]
- Sharma, A.; Das, S.; Sur, S.; Tiwari, J.; Chaturvedi, K.; Agarwal, N.; Malik, S.; Rani, S.; Kumar, V. Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds. Sci. Rep. 2021, 11, 12823. [Google Scholar] [CrossRef]
- Mishra, I.; Singh, D.; Kumar, V. Seasonal alterations in the daily rhythms in hypothalamic expression of genes involved in the photoperiodic transduction and neurosteroid dependent processes in migratory blackheaded buntings. J. Neuroendocrinol. 2017, 29, 12469. [Google Scholar] [CrossRef]
- Sur, S.; Chaturvedi, K.; Sharma, A.; Malik, S.; Rani, S.; Kumar, V. Ambient temperature affects multiple drivers of physiology and behaviour: Adaptation for timely departure of obligate spring migrants. J. Exp. Biol. 2020, 223, jeb236109. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Swarup, V.; Le, H.; Kumar, V. Transcriptional signatures in liver reveal metabolic adaptations to seasons in migratory blackheaded buntings. Front. Physiol. 2018, 9, 1568. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Budki, P.; Rani, S.; Kumar, V. Temperature alters the photoperiodically controlled phenologies linked with migration and reproduction in a night-migratory songbird. Proc. Biol. Sci. 2012, 279, 509–515. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Sur, S.; Sharma, A.; Taufique, S.K.T.; Gupta, N.J.; Kumar, V. Temperature alters the hypothalamic transcription of photoperiod responsive genes in induction of seasonal response in migratory redheaded buntings. Mol. Cell. Endocrinol. 2019, 493, 110454. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.M.; Siemens, J.; Glazer, J.M.; Tsuruda, P.R.; Basbaum, A.I.; Cheryl, L.S. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448, 204–208. [Google Scholar] [CrossRef]
- Odum, E.P. Pre-migratory hyperphagia in birds. Am. J. Clin. Nutr. 1960, 8, 621–629. [Google Scholar] [CrossRef]
- Goymann, W.; Spina, F.; Ferri, A.; Fusani, L. Body fat influences departure from stopover sites in migratory birds: Evidence from whole-island telemetry. Biol Lett. 2010, 6, 478–481. [Google Scholar] [CrossRef]
- Goymann, W.; Lupi, S.; Kaiya, H.; Cardinale, M.; Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc Natl Acad Sci USA 2017, 114, 1946–1951. [Google Scholar] [CrossRef]
- Sjoberg, S. Stopover Behaviour in Migratory Songbirds: Timing, Orientation and Departures. Ph.D. Thesis, Department of Biology, Lund University, Lund, Sweden, 2015. [Google Scholar]
- Joly-Amado, A.; Cansell, C.; Denis, R.G.; Delbes, A.S.; Castel, J.; Martinez, S.; Luquet, S. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 725–737. [Google Scholar] [CrossRef]
- Rastogi, A.; Malik, S.; Rani, S.; Kumar, V. Changes in brain peptides associated with reproduction and energy homeostasis in photosensitive and photorefractory migratory redheaded buntings. Gen. Comp. Endocrinol. 2016, 230–231, 67–75. [Google Scholar]
- Agarwal, N.; Komal, R.; Kumari, Y.; Malik, S.; Rani, S.; Kumar, V. Development of vernal migration in redheaded buntings: Concurrent behavioural, physiological and neural changes under stimulatory photoperiods. Photochem. Photobiol. Sci. 2019, 18, 2509–2520. [Google Scholar] [CrossRef]
- Mishra, I.; Singh, D.; Kumar, V. Temporal Expression of c-fos and genes coding for neuropeptides and enzymes of amino acid and amine neurotransmitter biosynthesis in retina, pineal and hypothalamus of a migratory songbird: Evidence for circadian rhythm-dependent seasonal responses. Neuroscience 2018, 371, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Follett, B. The nature of photoperiodic clock in vertebrates. Proc. Zool. Soc. Calcutta 1993, J. B. S. Haldane Commemoration Vol., 217–227. [Google Scholar]
- Bartell, P.A.; Gwinner, E. A separate circadian oscillator controls nocturnal migratory restlessness in the songbird Sylvia borin. J. Biol. Rhythm. 2005, 20, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Malik, S.; Trivedi, A.K.; Singh, S.; Kumar, V. A circadian clock regulates migratory restlessness in the blackheaded bunting, Emberiza melanocephala. Curr. Sci. 2006, 91, 1093–1096. [Google Scholar]
- McMillan, J.P. Pinealectomy abolishes the circadian rhythm of migratory restlessness. J. Comp. Physiol. 1972, 79, 105–112. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Malik, S.; Rani, S.; Kumar, V. Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird. Physiol. Behav. 2016, 156, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Trivedi, A.K.; Rani, S.; Panda, S.; Kumar, V. Circadian timing in central and peripheral tissues in a migratory songbird: Dependence on annual life-history states. FASEB J. 2015, 29, 4248–4255. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V. Extra-hypothalamic brain clocks in songbirds: Photoperiodic state dependent clock gene oscillations in night-migratory blackheaded buntings, Emberiza melanocephala. J. Photochem. Photobiol. B 2017, 169, 13–20. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, D.; Gupta, P.; Bhardwaj, S.K.; Kaur, I.; Kumar, V. Molecular changes associated with migratory departure from wintering areas in obligate songbird migrants. J. Exp. Biol. 2021, 224, 242153. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Kumar, J.; Rani, S.; Kumar, V. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds. Comp. Biochem. Physiol. A 2015, 184C, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tripathi, V.; Kumar, V. Hypothalamic molecular correlates of photoperiod-induced spring migration in intact and castrated male redheaded buntings. Mol. Cell. Endocrinol. 2023, 561, 111829. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Sharma, A.; Malik, I.; Bhardwaj, S.K.; Kumar, V. Daytime light spectrum affects photoperiodic induction of vernal response in obligate spring migrants. Comp. Biochem. Physiol. A 2021, 259, 111017. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, T.J. Circannual and circadian rhythms of DNA methyltransferase and histone deacetylase enzymes in the Siberian hamsters (Phodopus sungorus) hypothalamus. Gen. Comp. Endocrinol. 2017, 243, 130–137. [Google Scholar] [CrossRef]
- Stevenson, T.J. Epigenetic regulation of biological rhythms: An evolutionary ancient molecular timer. Trends Genet. 2018, 34, 90–100. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic functions. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Zechner, R.; Zimmermann, R.; Eichmann, T.O.; Kohlwein, S.D.; Haemmerle, G.; Lass, A.; Madeo, F. Fat Signals-lipases and lipolysis in lipid metabolism and signalling. Cell Metab. 2012, 15, 279–291. [Google Scholar] [CrossRef]
- Lundberg, M.; Boss, J.; Canbäck, B.; Liedvogel, M.; Larson, K.W.; Grahn, M.; Akesson, S.; Bensch, S.; Wright, A. Characterisation of a transcriptome to find sequence differences between two differentially migrating subspecies of the willow warbler Phylloscopus trochilus. BMC Genom. 2013, 14, 330. [Google Scholar] [CrossRef]
- Fudickar, A.M.; Peterson, M.P.; Greives, T.J.; Atwell, J.W.; Bridge, E.S.; Ketterson, E.D. Differential gene expression in seasonal sympatry: Mechanisms involved in diverging life histories. Biol. Lett. 2016, 12, 20160069. [Google Scholar] [CrossRef]
- Boss, J.; Liedvogel, M.; Lundberg, M.; Olsson, P.; Reischke, N.; Naurin, S.; Akesson, S.; Hasselquist, D.; Wright, A.; Grahn, M.; et al. Gene expression in the brain of a migratory songbird during breeding and migration. Mov. Ecol. 2016, 4, 4. [Google Scholar] [CrossRef]
- Johnston, R.A.; Paxton, K.L.; Moore, F.R.; Wayne, R.K.; Smith, T.B. Seasonal gene expression in a migratory songbird. Mol. Ecol. 2016, 25, 5680–5691. [Google Scholar] [CrossRef]
- Franchini, P.; Irisarri, I.; Fudickar, A.; Schmidt, A.; Meyer, A.; Wikelski, M.; Partecke, J. Animal tracking meets migration genomics: Transcriptomic analysis of a partially migratory bird species. Mol. Ecol. 2017, 26, 3204–3216. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, D.; Das, S.; Kumar, V. Hypothalamic and liver transcriptome from two crucial life-history stages in a migratory songbird. Exp. Physiol. 2018, 103, 559–569. [Google Scholar] [CrossRef]
- Sharma, A.; Das, S.; Singh, D.; Rani, S.; Kumar, V. Differences in transcription regulation of diurnal metabolic support to contrasting seasonal states in migratory songbirds. J. Ornithol. 2022, 163, 199–212. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Misra, M.; Malik, S. Effects of duration and time of food availability on photoperiodic responses in the migratory male blackheaded bunting (Emberiza melanocephala). J. Exp. Biol. 2001, 204, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Gwinner, E. Circannual Rhythms; Springer: Berlin, Germany, 1986. [Google Scholar]
- Helm, B.; Schwabl, I.; Gwinner, E. Circannual basis of geographically distinct bird schedules. J. Exp. Biol. 2009, 212, 1259–1269. [Google Scholar] [CrossRef]
- Carroll, S.B. Evolution at two levels: On genes and form. PLoS Biol. 2005, 3, e245. [Google Scholar] [CrossRef]
- Gwinner, E. Circannual rhythms in bird migration: Control of temporal patterns and interactions with photo-period. In Bird Migration: Physiology and Ecophysiology; Gwinner, E., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990; pp. 257–268. [Google Scholar]
- Gwinner, E. Circannual Rhythms. Endogenous Annual Clocks in the Organizations of Seasonal Processes; Springer: Heidelberg, Germany, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Sur, S.; Tripathi, V.; Kumar, V. Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes 2023, 14, 1191. https://doi.org/10.3390/genes14061191
Sharma A, Sur S, Tripathi V, Kumar V. Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes. 2023; 14(6):1191. https://doi.org/10.3390/genes14061191
Chicago/Turabian StyleSharma, Aakansha, Sayantan Sur, Vatsala Tripathi, and Vinod Kumar. 2023. "Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants" Genes 14, no. 6: 1191. https://doi.org/10.3390/genes14061191
APA StyleSharma, A., Sur, S., Tripathi, V., & Kumar, V. (2023). Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes, 14(6), 1191. https://doi.org/10.3390/genes14061191