Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Cases with Pathogenic Findings
4.2. Cases with Likely Pathogenic Findings
4.3. Cases with Variants of Uncertain Significance (VUS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Rickman, L.; Fiegler, H.; Shaw-Smith, C.; Nash, R.; Cirigliano, V.; Voglino, G.; Ng, B.L.; Scott, C.; Whittaker, J.; Adinolfi, M.; et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J. Med. Genet. 2006, 43, 353–361. [Google Scholar] [CrossRef]
- Oneda, B.; Rauch, A. Microarrays in prenatal diagnosis. Best Prac. Res. Clin. Obstet. Gynaecol. 2017, 42, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Grati, F.R.; Ballarati, L.; Bernardini, L.; Bizzoco, D.; Camurri, L.; Casalone, R.; Cardarelli, L.; Cavalli, P.; Ciccone, R.; et al. Microarray application in prenatal diagnosis: A position statement from the cytogenetics working group of the Italian Society of Human Genetics (SIGU), November 2011. Ultrasound Obstet. Gynecol. 2012, 39, 384–388. [Google Scholar] [CrossRef] [PubMed]
- South, S.T.; Lee, C.; Lamb, A.N.; Higgins, A.W.; Kearney, H.M. ACMG Standards and Guidelines for constitutional cytogenomic mi-croarray analysis, including postnatal and prenatal applications: Revision 2013. Genet. Med. 2013, 15, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Dugoff, L.; Norton, M.E.; Kuller, J.A. The use of chromosomal microarray for prenatal diagnosis. Am. J. Obstet. Gynecol. 2016, 215, B2–B9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Obstetricians and Gynecologists. Commitee opinion No. 682: Microarrays and Next-Generation Se-quencing Technology: The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology. Obstet. Gynecol. 2016, 128, e262–e268. [Google Scholar] [CrossRef] [PubMed]
- Armour, C.M.; Dougan, S.D.; Brock, J.A.; Chari, R.; Chodirker, B.N.; Debie, I.; Evans, J.A. Practice guideline: Joint CCMG-SOGC recommen-dations for the use of chromosomal microarray analysis for prenatal diagnosis and assessment of fetal loss in Canada. J. Med. Genet. 2018, 55, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; de Leeuw, N.; Mann, K.; Schuring-Blom, H.; Morgan, S.; Giardino, D.; Rack, K.; Hastings, R. European guidelines for constitutional cytogenomic analysis. Eur. J. Hum. Genet. 2019, 27, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klapwijk, J.E.; Srebniak, M.I.; Go, A.T.J.I.; Govaerts, L.C.P.; Lewis, C.; Hammond, J.; Hill, M.; Lou, S.; Vogel, I.; Ormond, K.E.; et al. Author response for “How to deal with uncertainty in prenatal genomics: A systematic review of guidelines and policies”. Clin. Genet. 2021, 100, 647–658. [Google Scholar] [CrossRef]
- Tzetis, M.; Kitsiou-Tzeli, S.; Frysira, H.; Xaidara, A.; Kanavakis, E. The clinical utility of molecular karyotyping using high-resolution array-comparative genomic hybridization. Expert Rev. Mol. Diagn. 2012, 12, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Oikonomakis, V.; Kosma, K.; Mitrakos, A.; Sofocleous, C.; Pervanidou, P.; Syrmou, A.; Pampanos, A.; Psoni, S.; Fryssira, H.; Kanavakis, E.; et al. Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clin. Genet. 2016, 89, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Breman, A.; Pursley, A.N.; Hixson, P.; Bi, W.; Ward, P.; Bacino, C.A.; Shaw, C.; Lupski, J.R.; Beaudet, A.; Patel, A.; et al. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat. Diagn. 2012, 32, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Tanner, L.M.; Alitalo, T.; Stefanovic, V. Prenatal array comparative genomic hybridization in a well-defined cohort of high-risk pregnancies. A 3-year implementation results in a public tertiary academic referral hospital. Prenat. Diagn. 2021, 41, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Lovrecic, L.; Remec, Z.I.; Volk, M.; Rudolf, G.; Writzl, K.; Peterlin, B. Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC Med. Genet. 2016, 17, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egloff, M.; Hervé, B.; Quibel, T.; Jaillard, S.; Le Bouar, G.; Uguen, K.; Saliou, A.-H.; Valduga, M.; Perdriolle, E.; Coutton, C.; et al. Diagnostic yield of chromosomal microarray analysis in fetuses with isolated increased nuchal translucency: A French multicenter study. Ultrasound Obstet. Gynecol. 2018, 52, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Hillman, S.C.; McMullan, D.J.; Silcock, L.; Maher, E.R.; Kilby, M.D. How does altering the resolution of chromosomal microarray analysis in the prenatal setting affect the rates of pathological and uncertain findings? J. Matern. Fetal Neonatal Med. 2014, 27, 649–657. [Google Scholar] [CrossRef]
- Mardy, A.; Wiita, A.; Wayman, B.; Drexler, K.; Sparks, T.; Norton, M. Variants of uncertain significance in prenatal microarrays: A retrospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 431–438. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; Kilby, M.D. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Dabell, M.P.; Fisher, A.J.; Coppinger, J.; Bandholz, A.M.; Ellison, J.W.; Ravnan, J.B.; Torchia, B.S.; Ballif, B.C.; Rosenfeld, J.A. Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat. Diagn. 2012, 32, 976–985. [Google Scholar] [CrossRef]
- Watson, C.T.; Tomas, M.-B.; Sharp, A.J.; Mefford, H.C. The Genetics of Microdeletion and Microduplication Syndromes: An Update. Annu. Rev. Genom. Hum. Genet. 2014, 15, 215–244. [Google Scholar] [CrossRef] [Green Version]
- Fujitani, M.; Zhang, S.; Fujiki, R.; Fujihara, Y.; Yamashita, T. A chromosome 16p13.11 microduplication causes hyperactivity through dysregulation of miR-484/protocadherin-19 signaling. Mol. Psychiatry 2017, 22, 364–374. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, A.; García-García, G.; Menor, F.; Millán, J.M.; Tomás-Vila, M.; Jaijo, T. The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease. Clin. Chem. Lab. Med. 2018, 56, 229–235. [Google Scholar] [CrossRef]
- Haer-Wigman, L.; Ouden, A.D.; van Genderen, M.M.; Kroes, H.Y.; Verheij, J.; Smailhodzic, D.; Hoekstra, A.S.; Vijzelaar, R.; Blom, J.; Derks, R.; et al. Diagnostic analysis of the highly complex OPN1LW/OPN1MW gene cluster using long-read sequencing and MLPA. NPJ Genom. Med. 2022, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- McKnight, D.; Bean, L.; Karbassi, I.; Beattie, K.; Bienvenu, T.; Bonin, H.; Fang, P.; Chrisodoulou, J.; Friez, M.; Helgeson, M.; et al. Recommendations by the ClinGen Rett/Angelman-like expert panel for gene-specific variant interpretation methods. Hum. Mutat. 2022, 43, 1097–1113. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Arai, A.C.; Rumbaugh, G.; Srivastava, A.K.; Turner, G.; Hayashi, T.; Suzuki, E.; Jiang, Y.; Zhang, L.; Rodriguez, J.; et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 18163–18168. [Google Scholar] [CrossRef] [PubMed]
- Brunet, M.; Vargas, C.; Larrieu, D.; Torrisani, J.; Dufresne, M. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Int. J. Mol. Sci. 2020, 21, 8515. [Google Scholar] [CrossRef]
- Bramswig, N.C.; Lüdecke, H.-J.; Pettersson, M.; Albrecht, B.; Bernier, R.A.; Cremer, K.; Eichler, E.E.; Falkenstein, D.; Gerdts, J.; Jansen, S.; et al. Identification of new TRIP12 variants and detailed clinical evaluation of individuals with non-syndromic intellectual disability with or without autism. Hum. Genet. 2017, 136, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Q.; Fleischer, J.; Al-Kateb, H.; Mito, Y.; Amarillo, I.; Shinawi, M. Intragenic CNTN4 copy number variants associated with a spectrum of neurobehavioral phenotypes. Eur. J. Med. Genet. 2020, 63, 103736. [Google Scholar] [CrossRef]
- Fernandez, T.; Morgan, T.; Davis, N.; Klin, A.; Morris, A.; Farhi, A.; Lifton, R.P. Disruption of Contactin 4 (CNTN4) Results in Developmental Delay and Other Features of 3p Deletion Syndrome. Am. J. Hum. Genet. 2004, 74, 1286–1293. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0002929707628560 (accessed on 28 March 2023). [CrossRef] [Green Version]
- Roohi, J.; Montagna, C.; Tegay, D.H.; Palmer, L.E.; DeVincent, C.; Pomeroy, J.C.; Christian, S.L.; Nowak, N.; Hatchwell, E. Disruption of contactin 4 in three subjects with autism spectrum disorder. J. Med. Genet. 2008, 46, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Budisteanu, M.; Papuc, S.M.; Streata, I.; Cucu, M.; Pirvu, A.; Serban-Sosoi, S.; Erbescu, A. The Phenotypic Spectrum of 15q13.3 Region Duplications: Report of 5 Patients. Genes 2021, 12, 1025. Available online: https://www.mdpi.com/2073-4425/12/7/1025 (accessed on 28 March 2023).
- Smajlagić, D.; Lavrichenko, K.; Berland, S.; Helgeland, Ø.; Knudsen, G.P.; Vaudel, M.; Haavik, J.; Knappskog, P.M.; Njølstad, P.R.; Houge, G.; et al. Population prevalence and inheritance pattern of recurrent CNVs associated with neurodevelopmental disorders in 12,252 newborns and their parents. Eur. J. Hum. Genet. 2021, 29, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Olzmann, J.A.; Chin, L.-S.; Li, L. Mutations associated with Charcot–Marie–Tooth disease cause SIMPLE protein mislocal-ization and degradation by the proteasome and aggresome–autophagy pathways. J. Cell Sci. 2011, 124, 3319–3331. Available online: https://journals.biologists.com/jcs/article/124/19/3319/31984/Mutations-associated-with-Charcot-Marie-Tooth (accessed on 28 March 2023). [CrossRef] [PubMed] [Green Version]
- Kumar, C.V.; Swetha, R.G.; Ramaiah, S.; Anbarasu, A. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein. J. Biomol. Struct. Dyn. 2015, 33, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.; Palladino, V.S.; McNeill, R.V.; Chiocchetti, A.G.; Haslinger, D.; Leyh, M.; Gersic, D.; Frank, M.; Grünewald, L.; Klebe, S.; et al. ADHD-associated PARK2 copy number variants: A pilot study on gene expression and effects of supplementary deprivation in patient-derived cell lines. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2022, 189, 257–270. [Google Scholar] [CrossRef]
Sample Type | Sex | Indication for Testing | Molecular Karyotype (ISCN) | Size | Classification | Associated Conditions | Follow-Up | |
---|---|---|---|---|---|---|---|---|
1 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 14q13.1q13.2 (34,857,622_36,420,214)×1 dn | 1.56 Mb | PATHOGENIC | N/A | |
2 | AF | M | PARENTAL ANXIETY | arr[GRCh37] 15q11.1q11.2 (20,416,244_23,217,514)×1 | 1.95 Mb | PATHOGENIC | 15q11.2 Deletion syndrome (#615656) | N/A |
3 | AF | F | FAMILY HISTORY | arr[GRCh37] 15q11.1q11.2 (20,575,646_23,300,287)×1 | 2.7 Μb | PATHOGENIC | 15q11.2 Deletion syndrome (#615656) | N/A |
4 | CVS | M | FAMILY HISTORY | arr[GRCh37] 15q11.1q13.3(20,190,548_33,528,589)×1 mat arr[GRCh37] 22q11.1q11.21(16,486,086_20,311,763)×3 mat | 13.34 Mb/3.8 Mb | PATHOGENIC PATHOGENIC | 15q11.2 Deletion syndrome (#615656) | N/A |
5 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 16p13.13(1,765,602_1,917,328)×1 dn | 152 Kb | LIKELY PATHOGENIC | 16p13.3 Deletion (Neurodevelopmental disorder with or without variable brain abnormalities, #618443) | TOP |
6 | AF | F | U/S: INCREASED NT | arr[GRCh37] 17p12(14,111,772_15,441,783)×1 | 1.33 Mb | PATHOGENIC | Hereditary neuropathy with liability to pressure palsy (#162500) | N/A |
7 | AF | F | PARENTAL ANXIETY | arr[GRCh37] 17q21.31(40,958,642_41,492,704)×1 | 534 Kb | PATHOGENIC | N/A | |
8 | CVS | M | AMA | arr[GRCh37] 2p22.3(32,314,654_32,878,185)×1 | 563 Kb | PATHOGENIC | N/A | |
9 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 3q29(195,804,728_197,760,071)×1 dn | 1.95 Mb | PATHOGENIC | 3q29 microdeletion syndrome (#609425) | N/A |
10 | AF | M | PARENTAL ANXIETY | arr[GRCh37] 3q29(195,038,425_197,837,049)×1 | 2.8 Mb | PATHOGENIC | 3q29 microdeletion syndrome (#609425) | N/A |
11 | AF | M | FAMILY HISTORY | arr[GRCh37] 6q27(169,841,473_170,911,240)×1 arr[GRCh37] 7q33q36.3(136,282,120_159,128,556)×3 | 1.1 Mb, 22.8 Mb | PATHOGENIC | N/A | |
12 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 15q13.3(32,065,000_32,509,926)×3 | 445 Kb | LIKELY PATHOGENIC | 15q13.3 microdeletion syndrome (#612001) | Healthy at age of 2 years |
13 | CVS | M | FAMILY HISTORY | arr[GRCh37] 8p23.3p23.1(191,53_6,911,531)×1 mat arr[GRCh37] 16p13.3(96,766_5,453,898)×3 mat | 6.7 Mb, 5.4 Mb | PATHOGENIC | N/A | |
14 | CVS 2X400K | M | FAMILY HISTORY | arr[GRCh37] Xp11.23(48,542,491_48,546,333)×1 | 3.8 Kb | PATHOGENIC | Wiskott–Aldrich syndrome (#301000) | TOP |
15 | AF | M | PARENTAL ANXIETY | arr[GRCh37] Xp11.23(43,660,254_44,210,254)×1 | 550 Kb | PATHOGENIC | TOP | |
16 | CVS | M | FAMILY HISTORY | arr[GRCh37] Xq28(153,387,892_153,541,289)×1 | 153 Kb | PATHOGENIC | N/A | |
17 | AF | M | PARENTAL ANXIETY | arr[GRCh37] 10p15.3p14(102,539_8,286,394)×3 arr[GRCh37] 12p13.33p13.31(192,511_9,286,959)×3 | 8.2 Mb, 9.1 Mb | PATHOGENIC PATHOGENIC | N/A | |
18 | CVS | F | FAMILY HISTORY | arr[GRCh37] 11q23.3q25(116,722,111_134,868,407)×3 mat arr[GRCh37] 22q11.1q11.21(17,397,498_20,402,677)×3 mat | 18 Mb, 3 Mb | PATHOGENIC | N/A | |
19 | CVS | M | U/S: CYSTIC HYGROMA | arr[GRCh37] 15q13.2q13.3(30,938,664_32,509,926)×3 | 1.57 Mb | LIKELY PATHOGENIC | 15q13.3 recurrent region (includes CHRNA7) | TOP |
20 | AF | M | FAMILY HISTORY | arr[GRCh37] 15q13.3(32,037,769_32,509,926)×3 | 472 Kb | LIKELY PATHOGENIC | 15q13.3 recurrent region (includes CHRNA7) | Healthy at 18 months |
21 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 15q13.3(32,037,769_32,635,959)×3 | 598 Kb | LIKELY PATHOGENIC | 15q13.3 recurrent region (includes CHRNA7) | Healthy at 8 years |
22 | AF | M | FAMILY HISTORY | arr[GRCh37] 16p13.11(14,910,205_16,311,070)×3 pat | 1.4 Mb | PATHOGENIC | N/A | |
23 | AF | M | FAMILY HISTORY | arr[GRCh37] 16p13.11(14,910,205_16,311,070)×3 pat | 1.4 Mb | PATHOGENIC | N/A | |
24 | CVS | F | FAMILY HISTORY | arr[GRCh37] 16p13.11(14,910,205_16,742,212)×3 | 1.8 Mb | PATHOGENIC | N/A | |
25 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 16p13.3(581,896_1,385,223)×3 | 803.3 Kb | LIKELY PATHOGENIC | 16p13.3 duplication syndrome (#613458) | Healthy at 9 years |
26 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 19p13.2(10,870,008_13,372,813)×3 | 2.5 Mb | PATHOGENIC | TOP | |
27 | CVS | M | FAMILY HISTORY | arr[GRCh37] 22q11.21(18,909,044_21,464,119)×3 pat | 2.52 Mb | PATHOGENIC | 22q11.2 microduplication syndrome (#608363) | N/A |
28 | CVS | M | FAMILY HISTORY | arr[GRCh37] 22q11.21(18,894,835_21,505,417)×3 pat | 2.6 Mb | PATHOGENIC | 22q11.2 microduplication syndrome (#608363) | N/A |
29 | CVS | F | FAMILY HISTORY | arr[GRCh37] 22q11.21(18,706,001_21,505,417)×3 pat | 2.8 Mb | PATHOGENIC | 22q11.2 microduplication syndrome (#608363) | N/A |
30 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 2q36.3(230,719,378_230,900,186)×3 | 180.81 Kb | LIKELY PATHOGENIC | Healthy | |
31 | AF | M | BIOCHEMICAL SCREENING: POSITIVE PAPP-A | arr[GRCh37] 3p26.3p26.2(2,618,588_2,904,182)×3 | 286 Kb | LIKELY PATHOGENIC | TOP | |
32 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 6p25.3(1,529,484_1,612,617)×3 dn | 83 Kb | PATHOGENIC | N/A | |
33 | AF | M | PARENTAL ANXIETY | arr[GRCh37] 14q12(29,104,072_29,238,620)×3 | 134 Kb | PATHOGENIC | N/A | |
34 | AF | M | U/S: MEGA CISTERNA MAGNA & RIGHT FOOT CURLY TOE | arr[GRCh37] Xp22.33(61,529_2,625,515)×2 | 2.56 Mb | PATHOGENIC | N/A | |
35 | AF | M | FAMILY HISTORY | arr[GRCh37]Xp22.33(60,701-2,881,568)×2 arr[GRCh37] Xq28(152,660,883_153,172,485)×2 | 2.8 Mb, 10.05 Mb | PATHOGENIC | N/A | |
36 | CVS | F | FAMILY HISTORY | arr[GRCh37] Xq25(122,590,269_122,689,238)×3 mat | 99 Kb | PATHOGENIC | Xq25 duplication syndrome (#300979) | TOP |
37 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] Xq25(122,590,269_122,689,238)×2 mat | 99 Kb | PATHOGENIC | Xq25 duplication syndrome (#300979) | TOP |
38 | AF | M | U/S: VENTRICULAR SEPTAL DEFECT, PERSISTENT LEFT SUPERIOR VENA CAVA | arr[GRCh37] Xq28(147,388,210_147,887,141)×2 | 499 Kb | LIKELY PATHOGENIC | Xq28 duplication syndrome (#300815) | N/A |
39 | CVS | F | FAMILY HISTORY | arr[GRCh37] Xq28(153,505,485_153,780,118)×3 | 275 Kb | PATHOGENIC (Phenotype expression in carrier females depends on X inactivation patterns) | Xq28 duplication syndrome (#300815) | N/A |
A/A | Type | Sex | Indication for Testing | Molecular Karyotype (ISCN) | Size | Classification | Follow-Up |
---|---|---|---|---|---|---|---|
1 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 16p13.13(11,619,313_11,719,980)×1 | 101 Kb | VUS | N/A |
2 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] 16p13.13(11,547,069_11,719,980)×1 | 173 Kb | VUS | Healthy |
3 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 10q24.31q24.32(102,987,428_103,095,872)×3 | 108 Kb | VUS | Healthy |
4 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] 15q11.2(22,833,122_23,672,681)×3 | 840 Kb | VUS | Healthy |
5 | AF | F | PARENTAL ANXIETY | arr[GRCh37] 15q11.2(22,698,522_23,689,829)×3 | 991 Kb | VUS | Healthy |
6 | AF | M | PARENTAL ANXIETY | arr[GRCh37] 16p11.2(31,196,169_31,227,836)×3 | 32 Kb | VUS | N/A |
7 | CVS | F | PARENTAL ANXIETY | arr[GRCh37] Xp22.2(12,633,166_12,984,557)×3 | 352 Kb | VUS | Mild developmental delay |
8 | CVS | M | PARENTAL ANXIETY | arr[GRCh37] Xq21.31q21.32(87,770,417_92,560,288)×2 dn | 4.8 Mb | VUS | N/A |
9 | AF | M | U/S: TRANSPOSITION OF GREAT ARTERIES (D-TGA) | arr[GRCh37] Xq28(153,002,622_153,171,472)×2 | 169 Kb | VUS | Deceased after birth due to thrombophilia |
10 | AF | F | PARENTAL ANXIETY | arr[GRCh37] 6q26(162,799,322_163,029,668)×3 mat | 230 Kb | VUS | Healthy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrakos, A.; Kosma, K.; Makrythanasis, P.; Tzetis, M. Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield? Genes 2023, 14, 1519. https://doi.org/10.3390/genes14081519
Mitrakos A, Kosma K, Makrythanasis P, Tzetis M. Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield? Genes. 2023; 14(8):1519. https://doi.org/10.3390/genes14081519
Chicago/Turabian StyleMitrakos, Anastasios, Konstantina Kosma, Periklis Makrythanasis, and Maria Tzetis. 2023. "Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield?" Genes 14, no. 8: 1519. https://doi.org/10.3390/genes14081519
APA StyleMitrakos, A., Kosma, K., Makrythanasis, P., & Tzetis, M. (2023). Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield? Genes, 14(8), 1519. https://doi.org/10.3390/genes14081519