Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors
Abstract
:1. Introduction
2. Insulin Dysregulation: A Central Hub
3. The Primary EMS Consequence: Laminitis
4. Obesity Implications as a Secondary Consequence of EMS
5. Genetic Aspect of Equine Metabolic Background
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, P.J. The Equine Metabolic Syndrome: Peripheral Cushing’s Syndrome. Vet. Clin. N. Am. Equine Pract. 2002, 18, 271–293. [Google Scholar] [CrossRef]
- Fulop, T.; Tessier, D.; Carpentier, A. The Metabolic Syndrome. Pathol. Biol. 2006, 54, 375–386. [Google Scholar] [CrossRef]
- Ishikura, S.; Koshkina, A.; Klip, A. Small G Proteins in Insulin Action: Rab and Rho Families at the Crossroads of Signal Transduction and GLUT4 Vesicle Traffic. Acta Physiol. 2008, 192, 61–74. [Google Scholar] [CrossRef]
- Patel, S.; Doble, B.; Woodgett, J.R. Glycogen Synthase Kinase-3 in Insulin and Wnt Signalling: A Double-Edged Sword? Biochem. Soc. Trans. 2004, 32, 803–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, A.E.; Frank, N.; McGowan, C.M.; Menzies-Gow, N.J.; Roelfsema, E.; Vervuert, I.; Feige, K.; Fey, K. ECEIM Consensus Statement on Equine Metabolic Syndrome. J. Vet. Intern. Med. 2019, 33, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.; Tadros, E.M. Insulin Dysregulation. Equine Vet. J. 2014, 46, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Pfeiffer, A.F.H. The Evolving Story of Incretins (GIP and GLP-1) in Metabolic and Cardiovascular Disease: A Pathophysiological Update. Diabetes Obes. Metab. 2021, 23, 5–29. [Google Scholar] [CrossRef]
- de Laat, M.A.; McGree, J.M.; Sillence, M.N. Equine Hyperinsulinemia: Investigation of the Enteroinsular Axis during Insulin Dysregulation. Am. J. Physiol. Endocrinol. Metab. 2015, 310, E61–E72. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, D.M.; Walsh, D.M.; Sillence, M.N.; Pollitt, C.C.; de Laat, M.A. Insulin and Incretin Responses to Grazing in Insulin-Dysregulated and Healthy Ponies. J. Vet. Intern. Med. 2019, 33, 225–232. [Google Scholar] [CrossRef]
- Frank, N.; Geor, R.J.; Bailey, S.R.; Durham, A.E.; Johnson, P.J. Equine Metabolic Syndrome. J. Vet. Intern. Med. 2010, 24, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Lopez, M.J. The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicol. Pathol. 2021, 49, 1294–1307. [Google Scholar] [CrossRef]
- Katz, L.M.; Bailey, S.R. A Review of Recent Advances and Current Hypotheses on the Pathogenesis of Acute Laminitis. Equine Vet. J. 2012, 44, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.; Bailey, S.R.; Elliott, J.; Longland, A. Countermeasures for Pasture-Associated Laminitis in Ponies and Horses. J. Nutr. 2006, 136, 2114S–2121S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollitt, C.C. Equine Laminitis. Clin. Tech. Equine Pract. 2004, 3, 34–44. [Google Scholar] [CrossRef]
- Johnson, P.J.; Acvim, D.; Messer, N.T.; Abvp, D.; Slight, S.H.; Wiedmeyer, C.; Buff, P.; Ganjam, V.K. Endocrinopathic Laminitis in the Horse. Clin. Tech. Equine Pract. 2004, 3, 45–56. [Google Scholar] [CrossRef] [Green Version]
- de Laat, M.A.; McGowan, C.M.; Sillence, M.N.; Pollitt, C.C. Equine Laminitis: Induced by 48 h Hyperinsulinaemia in Standardbred Horses. Equine Vet. J. 2010, 42, 129–135. [Google Scholar] [CrossRef]
- Rattigan, S.; Bussey, C.T.; Ross, R.M.; Richards, S.M. Obesity, Insulin Resistance, and Capillary Recruitment. Microcirculation 2007, 14, 299–309. [Google Scholar] [CrossRef]
- Asplin, K.E.; Sillence, M.N.; Pollitt, C.C.; McGowan, C.M. Induction of Laminitis by Prolonged Hyperinsulinaemia in Clinically Normal Ponies. Vet. J. 2007, 174, 530–535. [Google Scholar] [CrossRef]
- Frank, N.; Elliott, S.B.; Brandt, L.E.; Keisler, D.H. Physical Characteristics, Blood Hormone Concentrations, and Plasma Lipid Concentrations in Obese Horses with Insulin Resistance. J. Am. Vet. Med. Assoc. 2006, 228, 1383–1390. [Google Scholar] [CrossRef]
- Treiber, K.H.; Kronfeld, D.S.; Hess, T.M.; Byrd, B.M.; Splan, R.K.; Staniar, W.B. Evaluation of Genetic and Metabolic Predispositions and Nutritional Risk Factors for Pasture-Associated Laminitis in Ponies. J. Am. Vet. Med. Assoc. 2006, 228, 1538–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.R.; Habershon-Butcher, J.L.; Ransom, K.J.; Elliott, J.; Menzies-Gow, N.J. Hypertension and Insulin Resistance in a Mixed-Breed Population of Ponies Predisposed to Laminitis. Am. J. Vet. Res. 2008, 69, 122–129. [Google Scholar] [CrossRef]
- McGowan, C.M.; Frost, R.; Pfeiffer, D.U.; Neiger, R. Serum Insulin Concentrations in Horses with Equine Cushing’s Syndrome: Response to a Cortisol Inhibitor and Prognostic Value. Equine Vet. J. 2004, 36, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.M.; McGowan, C.M.; McGowan, T.; Lamb, S.V.; Schanbacher, B.J.; Place, N.J. Correlation of Plasma Insulin Concentration with Laminitis Score in a Field Study of Equine Cushing’s Disease and Equine Metabolic Syndrome. J. Equine Vet. Sci. 2009, 29, 87–94. [Google Scholar] [CrossRef]
- Carter, R.A.; Treiber, K.H.; Geor, R.J.; Douglass, L.; Harris, P.A. Prediction of Incipient Pasture-Associated Laminitis from Hyperinsulinaemia, Hyperleptinaemia and Generalised and Localised Obesity in a Cohort of Ponies. Equine Vet. J. 2009, 41, 171–178. [Google Scholar] [CrossRef]
- Bailey, S.R.; Chockalingham, S. Proliferative Effects of Insulin on Equine Lamellar Epithelial Cells Mediated By the IGF-1 Receptor. J. Equine Vet. Sci. 2010, 30, 96. [Google Scholar] [CrossRef]
- Burns, T.A.; Watts, M.R.; Weber, P.S.; McCutcheon, L.J.; Geor, R.J.; Belknap, J.K. Distribution of Insulin Receptor and Insulin-like Growth Factor-1 Receptor in the Digital Laminae of Mixed-Breed Ponies: An Immunohistochemical Study. Equine Vet. J. 2013, 45, 326–332. [Google Scholar] [CrossRef] [PubMed]
- De Laat, M.A.; Pollitt, C.C.; Kyaw-Tanner, M.T.; McGowan, C.M.; Sillence, M.N. A Potential Role for Lamellar Insulin-like Growth Factor-1 Receptor in the Pathogenesis of Hyperinsulinaemic Laminitis. Vet. J. 2013, 197, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Pass, M.A.; Pollitt, S.; Pollitt, C.C. Decreased Glucose Metabolism Causes Separation of Hoof Lamellae in Vitro: A Trigger for Laminitis? Equine Vet. J. 1998, 30, 133–138. [Google Scholar] [CrossRef]
- Asplin, K.E.; Curlewis, J.D.; Mcgowan, C.M.; Pollitt, C.C.; Sillence, M.N. Glucose Transport in the Equine Hoof. Equine Vet. J. 2011, 43, 196–201. [Google Scholar] [CrossRef]
- Stumvoll, M.; Goldstein, B.J.; Van Haeften, T.W. Type 2 Diabetes: Principles of Pathogenesis and Therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, C.; Tursi, M.; Miretti, S.; Giusto, G.; Gandini, M.; Re, G.; Valle, E. Effect of Sugar Metabolite Methylglyoxal on Equine Lamellar Explants: An Ex Vivo Model of Laminitis. PLoS ONE 2021, 16, e0253840. [Google Scholar] [CrossRef]
- Venugopal, C.S.; Eades, S.; Holmes, E.P.; Beadle, R.E. Insulin Resistance in Equine Digital Vessel Rings: An in Vitro Model to Study Vascular Dysfunction in Equine Laminitis. Equine Vet. J. 2011, 43, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.A.; Geor, R.J.; Burton Staniar, W.; Cubitt, T.A.; Harris, P.A. Apparent Adiposity Assessed by Standardised Scoring Systems and Morphometric Measurements in Horses and Ponies. Vet. J. 2009, 179, 204–210. [Google Scholar] [CrossRef]
- Johnson, P.J.; Wiedmeyer, C.E.; LaCarrubba, A.; Seshu Ganjam, V.K.; Messer, N.T. Laminitis and the Equine Metabolic Syndrome. Vet. Clin. N. Am. Equine Pract. 2010, 26, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.; Lehrke, M.; Parhofer, K.G.; Broedl, U.C. Adipokines and Insulin Resistance. Mol. Med. 2008, 14, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Gentry, L.R.; Thompson, D.L.; Gentry, G.T.; Davis, K.A.; Godke, R.A.; Cartmill, J.A. The Relationship between Body Condition, Leptin, and Reproductive and Hormonal Characteristics of Mares during the Seasonal Anovulatory Period. J. Anim. Sci. 2002, 80, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- Kearns, C.F.; McKeever, K.H.; Roegner, V.; Brady, S.M.; Malinowski, K. Adiponectin and Leptin Are Related to Fat Mass in Horses. Vet. J. 2006, 172, 460–465. [Google Scholar] [CrossRef]
- Pratt-Phillips, S.E.; Owens, K.M.; Dowler, L.E.; Cloninger, M.T. Assessment of Resting Insulin and Leptin Concentrations and Their Association With Managerial and Innate Factors in Horses. J. Equine Vet. Sci. 2010, 30, 127–133. [Google Scholar] [CrossRef]
- Carter, R.A.; McCutcheon, L.J.; George, L.A.; Smith, T.L.; Frank, N.; Geor, R.J. Effects of Diet-Induced Weight Gain on Insulin Sensitivity and Plasma Hormone and Lipid Concentrations in Horses. Am. J. Vet. Res. 2009, 70, 1250–1258. [Google Scholar] [CrossRef]
- Bruynsteen, L.; Erkens, T.; Peelman, L.J.; Ducatelle, R.; Janssens, G.P.J.; Harris, P.A.; Hesta, M. Expression of Inflammation-Related Genes Is Associated with Adipose Tissue Location in Horses. BMC Vet. Res. 2013, 9, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, G.M. The Metabolic Syndrome: Time to Get off the Merry-Go-Round? J. Intern. Med. 2011, 269, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Boston, R.C.; Stefanovski, D.; Kronfeld, D.S.; Harris, P.A. Obesity and Diet Affect Glucose Dynamics and Insulin Sensitivity in Thoroughbred Geldings. J. Anim. Sci. 2003, 81, 2333–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treiber, K.H.; Boston, R.C.; Kronfeld, D.S.; Staniar, W.B.; Harris, P.A. Insulin Resistance and Compensation in Thoroughbred Weanlings Adapted to High-Glycemic Meals. J. Anim. Sci. 2005, 83, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Keen, J.A.; Fordham, T.; Morgan, R.A. Adipose Tissue Dysfunction in Obese Horses with Equine Metabolic Syndrome. Equine Vet. J. 2019, 51, 760–766. [Google Scholar] [CrossRef] [Green Version]
- Marycz, K.; Kornicka, K.; Marędziak, M.; Golonka, P.; Nicpoń, J. Equine Metabolic Syndrome Impairs Adipose Stem Cells Osteogenic Differentiation by Predominance of Autophagy over Selective Mitophagy. J. Cell. Mol. Med. 2016, 20, 2384–2404. [Google Scholar] [CrossRef]
- Marycz, K.; Kornicka, K.; Szlapka-Kosarzewska, J.; Weiss, C. Excessive Endoplasmic Reticulum Stress Correlates with Impaired Mitochondrial Dynamics, Mitophagy and Apoptosis, in Liver and Adipose Tissue, but Not in Muscles in EMS Horses. Int. J. Mol. Sci. 2018, 19, 165. [Google Scholar] [CrossRef] [Green Version]
- Marycz, K.; Szłapka-Kosarzewska, J.; Geburek, F.; Kornicka-Garbowska, K. Systemic Administration of Rejuvenated Adipose-Derived Mesenchymal Stem Cells Improves Liver Metabolism in Equine Metabolic Syndrome (EMS)—New Approach in Veterinary Regenerative Medicine. Stem Cell Rev. Rep. 2015, 15, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Menzies-Gow, N.J.; Katz, L.M.; Barker, K.J.; Elliott, J.; De Brauwere, M.N.; Jarvis, N.; Marr, C.M.; Pfeiffer, D.U. Epidemiological Study of Pasture-Associated Laminitis and Concurrent Risk Factors in the South of England. Vet. Rec. 2010, 167, 690–694. [Google Scholar] [CrossRef]
- McCue, M.E.; Geor, R.J.; Schultz, N. Equine Metabolic Syndrome: A Complex Disease Influenced by Genetics and the Environment. J. Equine Vet. Sci. 2015, 35, 367–375. [Google Scholar] [CrossRef]
- Lewis, S.L.; Holl, H.M.; Streeter, C.; Posbergh, C.; Schanbacher, B.J.; Place, N.J.; Mallicote, M.F.; Long, M.T.; Brooks, S.A. Genomewide Association Study Reveals a Risk Locus for Equine Metabolic Syndrome in the Arabian Horse. J. Anim. Sci. 2017, 95, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Blattmann, P.; Schuberth, C.; Pepperkok, R.; Runz, H. RNAi-Based Functional Profiling of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with Cholesterol-Regulatory Function. PLoS Genet. 2013, 9, e1003338. [Google Scholar] [CrossRef]
- Li, Z.; Feng, S.; Zhou, L.; Liu, S.; Cheng, J. NS5ATP6 Modulates Intracellular Triglyceride Content through FGF21 and Independently of SIRT1 and SREBP1. Biochem. Biophys. Res. Commun. 2016, 475, 133–139. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y. Fibroblast Growth Factor 21, the Endocrine FGF Pathway and Novel Treatments for Metabolic Syndrome. Drug Discov. Today 2014, 19, 579–589. [Google Scholar] [CrossRef]
- Cash, C.M.; Fitzgerald, D.M.; Spence, R.J.; de Laat, M.A. Preliminary Analysis of the FAM174A Gene Suggests It Lacks a Strong Association with Equine Metabolic Syndrome in Ponies. Domest. Anim. Endocrinol. 2020, 72, 106439. [Google Scholar] [CrossRef]
- Stefaniuk-Szmukier, M.; Ropka-Molik, K.; Bugno-Poniewierska, M. Identyfikacja Wariantu w Rejonie Genu FAM14A Potencjalnie Związanego z Występowaniem Syndromu Metabolicznego (EMS) u Koni Czystej Krwi Arabskiej. Wiad. Aootechniczne 2017, 5, 46–48. [Google Scholar] [CrossRef]
- Schultz, N. Characterization of Equine Metabolic Syndrome and Mapping of Candidate Genetic Loci. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2016. [Google Scholar]
- Norton, E.M.; Avila, F.; Schultz, N.E.; Mickelson, J.R.; Geor, R.J.; McCue, M.E. Evaluation of an HMGA2 Variant for Pleiotropic Effects on Height and Metabolic Traits in Ponies. J. Vet. Intern. Med. 2019, 33, 942–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, R. Nuclear Functions of the HMG Proteins. Biochim. Biophys. Acta Gene Regul. Mech. 2010, 1799, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, M.; Jagannathan, V.; Plattet, P.; Neuditschko, M.; Signer-Hasler, H.; Bachmann, I.; Pacholewska, A.; Dietschi, E.; Flury, C.; Rieder, S.; et al. A Non-Synonymous HMGA2 Variant Decreases Height in Shetland Ponies and Other Small Horses. PLoS ONE 2015, 10, e0140749. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefaniuk-Szmukier, M.; Piórkowska, K.; Ropka-Molik, K. Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors. Genes 2023, 14, 1544. https://doi.org/10.3390/genes14081544
Stefaniuk-Szmukier M, Piórkowska K, Ropka-Molik K. Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors. Genes. 2023; 14(8):1544. https://doi.org/10.3390/genes14081544
Chicago/Turabian StyleStefaniuk-Szmukier, Monika, Katarzyna Piórkowska, and Katarzyna Ropka-Molik. 2023. "Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors" Genes 14, no. 8: 1544. https://doi.org/10.3390/genes14081544
APA StyleStefaniuk-Szmukier, M., Piórkowska, K., & Ropka-Molik, K. (2023). Equine Metabolic Syndrome: A Complex Disease Influenced by Multifactorial Genetic Factors. Genes, 14(8), 1544. https://doi.org/10.3390/genes14081544