A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sequencing
2.2. Variant Calling and Data Filtering
2.3. Power Estimate
2.4. Leukocyte Telomere Length Estimation
2.5. Association Analysis and Variant Annotation
3. Results
3.1. Variant Calling and Data Filtering
3.2. Power Estimate
3.3. Leukocyte Telomere Length Estimation
3.4. Association Analysis and Variant Annotation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and Limitations of Genome-Wide Association Studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Marigorta, U.M.; Rodríguez, J.A.; Gibson, G.; Navarro, A. Replicability and Prediction: Lessons and Challenges from GWAS. Trends Genet. 2018, 34, 504–517. [Google Scholar] [CrossRef] [PubMed]
- McMahon, A.; Lewis, E.; Buniello, A.; Cerezo, M.; Hall, P.; Sollis, E.; Parkinson, H.; Hindorff, L.A.; Harris, L.W.; MacArthur, J.A.L. Sequencing-Based Genome-Wide Association Studies Reporting Standards. Cell Genom. 2021, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Geibel, J.; Reimer, C.; Weigend, S.; Weigend, A.; Pook, T.; Simianer, H. How Array Design Creates SNP Ascertainment Bias. PLoS ONE 2021, 16, e0245178. [Google Scholar] [CrossRef]
- Génin, E. Missing Heritability of Complex Diseases: Case Solved? Hum. Genet. 2020, 139, 103–113. [Google Scholar] [CrossRef]
- Lee, M.; Napier, C.E.; Yang, S.F.; Arthur, J.W.; Reddel, R.R.; Pickett, H.A. Comparative Analysis of Whole Genome Sequencing-Based Telomere Length Measurement Techniques. Methods 2017, 114, 4–15. [Google Scholar] [CrossRef]
- Chen, J. Statistical Considerations on NGS Data for Inferring Copy Number Variations. Methods Mol. Biol. 2021, 2243, 27–58. [Google Scholar] [CrossRef]
- Battle, S.L.; Puiu, D.; Verlouw, J.; Broer, L.; Boerwinkle, E.; Taylor, K.D.; Rotter, J.I.; Rich, S.S.; Grove, M.L.; Pankratz, N.; et al. A Bioinformatics Pipeline for Estimating Mitochondrial DNA Copy Number and Heteroplasmy Levels from Whole Genome Sequencing Data. NAR Genom. Bioinform. 2022, 4, lqac034. [Google Scholar] [CrossRef]
- Hall, A.N.; Morton, E.; Queitsch, C. First Discovered, Long out of Sight, Finally Visible: Ribosomal DNA. Trends Genet. 2022, 38, 587–597. [Google Scholar] [CrossRef]
- Monaghan, P.; Ozanne, S.E. Somatic Growth and Telomere Dynamics in Vertebrates: Relationships, Mechanisms and Consequences. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2018, 373, 20160446. [Google Scholar] [CrossRef]
- Jenner, L.P.; Peska, V.; Fulnečková, J.; Sýkorová, E. Telomeres and Their Neighbors. Genes 2022, 13, 1663. [Google Scholar] [CrossRef] [PubMed]
- Saretzki, G. Telomeres, Telomerase and Ageing. Subcell. Biochem. 2018, 90, 221–308. [Google Scholar] [CrossRef] [PubMed]
- Schrumpfová, P.P.; Fajkus, J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020, 10, 1425. [Google Scholar] [CrossRef] [PubMed]
- de Lange, T. Shelterin-Mediated Telomere Protection. Annu. Rev. Genet. 2018, 52, 223–247. [Google Scholar] [CrossRef] [PubMed]
- Shammas, M.A. Telomeres, Lifestyle, Cancer, and Aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef]
- Whittemore, K.; Vera, E.; Martínez-Nevado, E.; Sanpera, C.; Blasco, M.A. Telomere Shortening Rate Predicts Species Life Span. Proc. Natl. Acad. Sci. USA 2019, 116, 15122–15127. [Google Scholar] [CrossRef] [PubMed]
- Adwan Shekhidem, H.; Sharvit, L.; Leman, E.; Manov, I.; Roichman, A.; Holtze, S.; Huffman, D.M.; Y Cohen, H.; Bernd Hildebrandt, T.; Shams, I.; et al. Telomeres and Longevity: A Cause or an Effect? Int. J. Mol. Sci. 2019, 20, 3233. [Google Scholar] [CrossRef]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of Telomeres and Telomerase in Cancer, and Advances in Telomerase-Targeted Therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef]
- Aviv, A.; Shay, J.W. Reflections on Telomere Dynamics and Ageing-Related Diseases in Humans. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2018, 373, 20160436. [Google Scholar] [CrossRef]
- Crocco, P.; De Rango, F.; Dato, S.; Rose, G.; Passarino, G. Telomere Length as a Function of Age at Population Level Parallels Human Survival Curves. Aging 2021, 13, 204–218. [Google Scholar] [CrossRef]
- Vera, E.; Bernardes de Jesus, B.; Foronda, M.; Flores, J.M.; Blasco, M.A. The Rate of Increase of Short Telomeres Predicts Longevity in Mammals. Cell Rep. 2012, 2, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Wilbourn, R.V.; Moatt, J.P.; Froy, H.; Walling, C.A.; Nussey, D.H.; Boonekamp, J.J. The Relationship between Telomere Length and Mortality Risk in Non-Model Vertebrate Systems: A Meta-Analysis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2018, 373, 20160447. [Google Scholar] [CrossRef] [PubMed]
- Fick, L.J.; Fick, G.H.; Li, Z.; Cao, E.; Bao, B.; Heffelfinger, D.; Parker, H.G.; Ostrander, E.A.; Riabowol, K. Telomere Length Correlates with Life Span of Dog Breeds. Cell Rep. 2012, 2, 1530–1536. [Google Scholar] [CrossRef]
- Bichet, C.; Bouwhuis, S.; Bauch, C.; Verhulst, S.; Becker, P.H.; Vedder, O. Telomere Length Is Repeatable, Shortens with Age and Reproductive Success, and Predicts Remaining Lifespan in a Long-Lived Seabird. Mol. Ecol. 2020, 29, 429–441. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Wang, Z.; Liu, J.-P. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019, 8, 54. [Google Scholar] [CrossRef]
- Armanios, M. The Role of Telomeres in Human Disease. Annu. Rev. Genom. Hum. Genet. 2022, 23, 363–381. [Google Scholar] [CrossRef]
- Revy, P.; Kannengiesser, C.; Bertuch, A.A. Genetics of Human Telomere Biology Disorders. Nat. Rev. Genet. 2023, 24, 86–108. [Google Scholar] [CrossRef]
- Rossiello, F.; Jurk, D.; Passos, J.F.; d’Adda di Fagagna, F. Telomere Dysfunction in Ageing and Age-Related Diseases. Nat. Cell Biol. 2022, 24, 135–147. [Google Scholar] [CrossRef]
- Hu, H.; Mu, T.; Ma, Y.; Wang, X.; Ma, Y. Analysis of Longevity Traits in Holstein Cattle: A Review. Front. Genet. 2021, 12, 695543. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, A.; Wang, Y.; Luo, H.; Yan, X.; Guo, X.; Li, X.; Liu, L.; Su, G. Genetic Parameters and Genome-Wide Association Studies of Eight Longevity Traits Representing Either Full or Partial Lifespan in Chinese Holsteins. Front. Genet. 2021, 12, 634986. [Google Scholar] [CrossRef]
- De Vries, A. Symposium Review: Why Revisit Dairy Cattle Productive Lifespan? J. Dairy Sci. 2020, 103, 3838–3845. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, N.; Shiga, K.; Yonai, M.; Kaneyama, K.; Kobayashi, S.; Kojima, T.; Goto, Y.; Kishi, M.; Aso, H.; Suzuki, T.; et al. Remarkable Differences in Telomere Lengths among Cloned Cattle Derived from Different Cell Types. Biol. Reprod. 2002, 66, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Albarella, S.; Parma, P.; Galdiero, G.; D’Anza, E.; Pistucci, R.; Peretti, V.; Ciotola, F. Characterization of Telomere Length in Agerolese Cattle Breed, Correlating Blood and Milk Samples. Anim. Genet. 2022, 53, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.E.; Dechow, C.D.; Liu, W.S.; Harvatine, K.J.; Ott, T.L. Hot Topic: Association of Telomere Length with Age, Herd, and Culling in Lactating Holsteins. J. Dairy Sci. 2012, 95, 6384–6387. [Google Scholar] [CrossRef]
- Seeker, L.A.; Ilska, J.J.; Psifidi, A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Holland, R.; Froy, H.; Salvo-Chirnside, E.; Bagnall, A.; et al. Bovine Telomere Dynamics and the Association between Telomere Length and Productive Lifespan. Sci. Rep. 2018, 8, 12748. [Google Scholar] [CrossRef]
- Ilska-Warner, J.J.; Psifidi, A.; Seeker, L.A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Whitelaw, B.; Nussey, D.H.; Coffey, M.P.; Banos, G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front. Genet. 2019, 10, 1048. [Google Scholar] [CrossRef]
- Seeker, L.A.; Underwood, S.L.; Wilbourn, R.V.; Dorrens, J.; Froy, H.; Holland, R.; Ilska, J.J.; Psifidi, A.; Bagnall, A.; Whitelaw, B.; et al. Telomere Attrition Rates Are Associated with Weather Conditions and Predict Productive Lifespan in Dairy Cattle. Sci. Rep. 2021, 11, 5589. [Google Scholar] [CrossRef]
- Katoto, P.D.M.C.; Kayembe-Kitenge, T.; Pollitt, K.J.G.; Martens, D.S.; Ghosh, M.; Nachega, J.B.; Nemery, B.; Nawrot, T.S. Telomere Length and Outcome of Treatment for Pulmonary Tuberculosis in a Gold Mining Community. Sci. Rep. 2021, 11, 4031. [Google Scholar] [CrossRef]
- Auld, E.; Lin, J.; Chang, E.; Byanyima, P.; Ayakaka, I.; Musisi, E.; Worodria, W.; Davis, J.L.; Segal, M.; Blackburn, E.; et al. HIV Infection Is Associated with Shortened Telomere Length in Ugandans with Suspected Tuberculosis. PLoS ONE 2016, 11, e0163153. [Google Scholar] [CrossRef]
- Vasilopoulos, E.; Fragkiadaki, P.; Kalliora, C.; Fragou, D.; Docea, A.O.; Vakonaki, E.; Tsoukalas, D.; Calina, D.; Buga, A.M.; Georgiadis, G.; et al. The Association of Female and Male Infertility with Telomere Length (Review). Int. J. Mol. Med. 2019, 44, 375–389. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Della Valle, G.; Russo, M.; Longobardi, V.; Albero, G.; De Canditiis, C.; Kosior, M.A.; Pistucci, R.; Gasparrini, B. Evaluation of Bovine Sperm Telomere Length and Association with Semen Quality. Theriogenology 2020, 158, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.E.; Zdraljevic, S.; Tanny, R.E.; Seo, B.; Riccardi, D.D.; Noble, L.M.; Rockman, M.V.; Alkema, M.J.; Braendle, C.; Kammenga, J.E.; et al. The Genetic Basis of Natural Variation in Caenorhabditis Elegans Telomere Length. Genetics 2016, 204, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Manning, E.L.; Crossland, J.; Dewey, M.J.; Van Zant, G. Influences of Inbreeding and Genetics on Telomere Length in Mice. Mamm. Genome 2002, 13, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Tilesi, F.; Di Domenico, E.G.; Pariset, L.; Bosco, L.; Willems, D.; Valentini, A.; Ascenzioni, F. Telomere Length Diversity in Cattle Breeds. Diversity 2010, 2, 1118–1129. [Google Scholar] [CrossRef]
- Seeker, L.A.; Ilska, J.J.; Psifidi, A.; Wilbourn, R.V.; Underwood, S.L.; Fairlie, J.; Holland, R.; Froy, H.; Bagnall, A.; Whitelaw, B.; et al. Longitudinal Changes in Telomere Length and Associated Genetic Parameters in Dairy Cattle Analysed Using Random Regression Models. PLoS ONE 2018, 13, e0192864. [Google Scholar] [CrossRef]
- Sun, X.; Niu, Q.; Jiang, J.; Wang, G.; Zhou, P.; Li, J.; Chen, C.; Liu, L.; Xu, L.; Ren, H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes 2023, 14, 1183. [Google Scholar] [CrossRef]
- Saatchi, M.; Beever, J.E.; Decker, J.E.; Faulkner, D.B.; Freetly, H.C.; Hansen, S.L.; Yampara-Iquise, H.; Johnson, K.A.; Kachman, S.D.; Kerley, M.S.; et al. QTLs Associated with Dry Matter Intake, Metabolic Mid-Test Weight, Growth and Feed Efficiency Have Little Overlap across 4 Beef Cattle Studies. BMC Genom. 2014, 15, 1004. [Google Scholar] [CrossRef]
- Ignatieva, E.V.; Yudin, N.S.; Larkin, D.M. Compilation and Functional Classification of Telomere Length-Associated Genes in Humans and Other Animal Species. Vavilovskii Zhurnal Genet. Sel. 2023, 27, 283–292. [Google Scholar] [CrossRef]
- Porter, V.; Alderson, L.; Hall, S.J.G.; Sponenberg, D.P. Mason’s World Encyclopedia of Livestock Breeds and Breeding, 2 Volume Pack; CABI: Wallingford, UK, 2016. [Google Scholar]
- 1000 Bull Genomes Project. 1000 Bulls GATK Fastq to GVCF Guidelines (GATKv3.8). 2019. Available online: http://www.1000bullgenomes.com/doco/1000bullsGATK3.8pipelineSpecifications_Run8_Revision_20191101.docx (accessed on 7 August 2021).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- McKinney, G.J.; Waples, R.K.; Seeb, L.W.; Seeb, J.E. Paralogs Are Revealed by Proportion of Heterozygotes and Deviations in Read Ratios in Genotyping-by-Sequencing Data from Natural Populations. Mol. Ecol. Resour. 2017, 17, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J. Sample Size Requirements for Matched Case-Control Studies of Gene-Environment Interaction. Stat. Med. 2002, 21, 35–50. [Google Scholar] [CrossRef]
- Sobota, R.S.; Shriner, D.; Kodaman, N.; Goodloe, R.; Zheng, W.; Gao, Y.-T.; Edwards, T.L.; Amos, C.I.; Williams, S.M. Addressing Population-Specific Multiple Testing Burdens in Genetic Association Studies. Ann. Hum. Genet. 2015, 79, 136–147. [Google Scholar] [CrossRef]
- Ding, Z.; Mangino, M.; Aviv, A.; Spector, T.; Durbin, R. Estimating Telomere Length from Whole Genome Sequence Data. Nucleic Acids Res. 2014, 42, e75. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.-Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance Component Model to Account for Sample Structure in Genome-Wide Association Studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Bliss, C.I. Statistics in Biology, Statistical Methods for Research in the Natural Sciences; McGraw-Hill Book Company: New York, NY, USA, 1967. [Google Scholar]
- Mangiafico, S.S. An R Companion for the Handbook of Biological Statistics, Version 1.3.2; Rutgers Cooperative Extension: New Brunswick, NJ, USA, 2015. [Google Scholar]
- Alkharusi, H. Categorical Variables in Regression Analysis: A Comparison of Dummy and Effect Coding. Int. J. Educ. 2012, 4, 202–210. [Google Scholar] [CrossRef]
- Price, A.L.; Zaitlen, N.A.; Reich, D.; Patterson, N. New Approaches to Population Stratification in Genome-Wide Association Studies. Nat. Rev. Genet. 2010, 11, 459–463. [Google Scholar] [CrossRef]
- Storey, J.D.; Bass, A.J.; Dabney, A.; Robinson, D. Qvalue: Q-Value Estimation for False Discovery Rate Control. 2021. Available online: https://github.com/StoreyLab/qvalue (accessed on 25 March 2021).
- Cingolani, P. Variant Annotation and Functional Prediction: SnpEff. Methods Mol. Biol. 2022, 2493, 289–314. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC Genome Browser and Associated Tools. Brief. Bioinform. 2013, 14, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, M.A.; Johnston, S.E.; Pilkington, J.G.; Pemberton, J.M. Genetic Architecture and Lifetime Dynamics of Inbreeding Depression in a Wild Mammal. Nat. Commun. 2021, 12, 2972. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Zhong, Z.; Jiang, S. A Whole Genome Sequencing-Based Genome-Wide Association Study Reveals the Potential Associations of Teat Number in Qingping Pigs. Animals 2022, 12, 1057. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Charchar, F.J.; Barnes, T.; Gawron-Kiszka, M.; Sedkowska, A.; Podolecka, E.; Kowalczyk, J.; Rathbone, W.; Kalarus, Z.; Grzeszczak, W.; et al. A Common Variant in Low-Density Lipoprotein Receptor-Related Protein 6 Gene (LRP6) Is Associated with LDL-Cholesterol. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1316–1321. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, L.; Dai, H.; Qiu, G.; Liu, J.; Yu, D.; Liu, J.; Lyu, C.-Z.; Liu, L.; Zheng, M. Genome-Wide Association Analysis of Anti-TNF-α Treatment Response in Chinese Patients with Psoriasis. Front. Pharmacol. 2022, 13, 968935. [Google Scholar] [CrossRef]
- Monir, M.M.; Zhu, J. Comparing GWAS Results of Complex Traits Using Full Genetic Model and Additive Models for Revealing Genetic Architecture. Sci. Rep. 2017, 7, 38600. [Google Scholar] [CrossRef]
- Hayward, R.A.; Kent, D.M.; Vijan, S.; Hofer, T.P. Multivariable Risk Prediction Can Greatly Enhance the Statistical Power of Clinical Trial Subgroup Analysis. BMC Med. Res. Methodol. 2006, 6, 18. [Google Scholar] [CrossRef]
- Hayes, B.; Macleod, I.; Daetwyler, H.D.; Phil, B.; Chamberlain, A.; Vander Jagt, C.; Capitan, A.; Pausch, H.; Stothard, P.; Liao, X.; et al. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Raven, L.-A.; Cocks, B.G.; Hayes, B.J. Multibreed Genome Wide Association Can Improve Precision of Mapping Causative Variants Underlying Milk Production in Dairy Cattle. BMC Genom. 2014, 15, 62. [Google Scholar] [CrossRef]
- Sevillano, C.A.; Ten Napel, J.; Guimarães, S.E.F.; Silva, F.F.; Calus, M.P.L. Effects of Alleles in Crossbred Pigs Estimated for Genomic Prediction Depend on Their Breed-of-Origin. BMC Genom. 2018, 19, 740. [Google Scholar] [CrossRef]
- Carvalheiro, R.; Costilla, R.; Neves, H.H.R.; Albuquerque, L.G.; Moore, S.; Hayes, B.J. Unraveling Genetic Sensitivity of Beef Cattle to Environmental Variation under Tropical Conditions. Genet. Sel. Evol. 2019, 51, 29. [Google Scholar] [CrossRef] [PubMed]
- Martens, D.S.; Van Der Stukken, C.; Derom, C.; Thiery, E.; Bijnens, E.M.; Nawrot, T.S. Newborn Telomere Length Predicts Later Life Telomere Length: Tracking Telomere Length from Birth to Child- and Adulthood. eBioMedicine 2021, 63, 103164. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.E.; Kemper, K.E.; MacLeod, I.M.; Chamberlain, A.J.; Hayes, B.J. Genetics of Complex Traits: Prediction of Phenotype, Identification of Causal Polymorphisms and Genetic Architecture. Proc. Biol. Sci. 2016, 283, 20160569. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S.; Kirkpatrick, B.W. Linkage Disequilibrium in the North American Holstein Population. Anim. Genet. 2009, 40, 279–288. [Google Scholar] [CrossRef]
- Veeriah, S.; Brennan, C.; Meng, S.; Singh, B.; Fagin, J.A.; Solit, D.B.; Paty, P.B.; Rohle, D.; Vivanco, I.; Chmielecki, J.; et al. The Tyrosine Phosphatase PTPRD Is a Tumor Suppressor That Is Frequently Inactivated and Mutated in Glioblastoma and Other Human Cancers. Proc. Natl. Acad. Sci. USA 2009, 106, 9435–9440. [Google Scholar] [CrossRef]
- Szaumkessel, M.; Wojciechowska, S.; Janiszewska, J.; Zemke, N.; Byzia, E.; Kiwerska, K.; Kostrzewska-Poczekaj, M.; Ustaszewski, A.; Jarmuz-Szymczak, M.; Grenman, R.; et al. Recurrent Epigenetic Silencing of the PTPRD Tumor Suppressor in Laryngeal Squamous Cell Carcinoma. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2017, 39, 1010428317691427. [Google Scholar] [CrossRef]
- Hartlieb, S.A.; Sieverling, L.; Nadler-Holly, M.; Ziehm, M.; Toprak, U.H.; Herrmann, C.; Ishaque, N.; Okonechnikov, K.; Gartlgruber, M.; Park, Y.-G.; et al. Alternative Lengthening of Telomeres in Childhood Neuroblastoma from Genome to Proteome. Nat. Commun. 2021, 12, 1269. [Google Scholar] [CrossRef]
- Codd, V.; Wang, Q.; Allara, E.; Musicha, C.; Kaptoge, S.; Stoma, S.; Jiang, T.; Hamby, S.E.; Braund, P.S.; Bountziouka, V.; et al. Polygenic Basis and Biomedical Consequences of Telomere Length Variation. Nat. Genet. 2021, 53, 1425–1433. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, H.; Yang, M.-Q.; Li, J.-Y. GPC1 Is Associated with Poor Prognosis and Treg Infiltration in Colon Adenocarcinoma. Comput. Math. Methods Med. 2022, 2022, 8209700. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Z.; Shi, Y.; Wang, S.; Ren, J.; Yu, Z.; Huang, D.; Yan, K.; He, Y.; Liu, X.; et al. FTO Stabilizes MIS12 and Counteracts Senescence. Protein Cell 2022, 13, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.C.; Mc Cartney, A.M.; Donoghue, M.T.A.; Loughran, N.B.; Spillane, C.; Teeling, E.C.; O’Connell, M.J. Molecular Adaptation of Telomere Associated Genes in Mammals. BMC Evol. Biol. 2013, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qin, L.; Wang, S.; Li, M.; Shi, D.; Tian, Y.; Wang, J.; Fu, L.; Li, Z.; Guo, W.; et al. CPSF4 Activates Telomerase Reverse Transcriptase and Predicts Poor Prognosis in Human Lung Adenocarcinomas. Mol. Oncol. 2014, 8, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Muntané, G.; Farré, X.; Rodríguez, J.A.; Pegueroles, C.; Hughes, D.A.; de Magalhães, J.P.; Gabaldón, T.; Navarro, A. Biological Processes Modulating Longevity across Primates: A Phylogenetic Genome-Phenome Analysis. Mol. Biol. Evol. 2018, 35, 1990–2004. [Google Scholar] [CrossRef] [PubMed]
Position (BTA) | Ref/Alt Allele | Gene | Variant Type | q-Value 1 | q-Value 2 |
---|---|---|---|---|---|
3:119873308 | A */G | GPC1 | intron variant | 3.31 × 10−2 | NA |
8:36400561 | C */T | PTPRD | intron variant | NA | 1.45 × 10−2 |
8:36433838 | T */G | PTPRD | intron variant | NA | 2.79 × 10−2 |
8:36441863 | A */C | PTPRD | intron variant | NA | 2.79 × 10−2 |
8:36496551 | G */T | PTPRD | intron variant | 8.15 × 10−3 | 2.57 × 10−3 |
8:36516223 | G */A | PTPRD | intron variant | 1.59 × 10−3 | 2.5 × 10−4 |
8:36554362 | G */A | PTPRD | intron variant | NA | 2.5 × 10−2 |
8:36583129 | A */G | PTPRD | intron variant | NA | 3.03 × 10−2 |
11:12087073 | T/G * | EXOC6B | intron variant | 1.77 × 10−6 | 6.21 × 10−3 |
16:70386226 | T/C * | RPS6KC1 | intron variant | 6.22 × 10−3 | 3.59 × 10−2 |
16:70795459 | G */T | NSL1 | intron variant | 3.48 × 10−3 | 8.89 × 10−2 |
18:47718019 | T */A | ENSBTAG00000040318 | missense variant | 7.42 × 10−2 | 1.93 × 10−2 |
21:17460307 | G/A * | AGBL1 | intron variant | 1.07 × 10−2 | 8.51 × 10−2 |
21:65476950 | C/T * | ENSBTAG00000052188 | intron variant | 2.44 × 10−2 | NA |
29:24118907 | T */C | ENSBTAG00000048576 (NELL1) | intron variant | NA | 2.33 × 10−3 |
29:24142137 | A */G | ENSBTAG00000048576 (NELL1) | intron variant | NA | 4.79 × 10−3 |
29:24168343 | A */G | ENSBTAG00000048576 (NELL1) | intron variant | NA | 1.17 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igoshin, A.V.; Yudin, N.S.; Romashov, G.A.; Larkin, D.M. A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes 2023, 14, 1596. https://doi.org/10.3390/genes14081596
Igoshin AV, Yudin NS, Romashov GA, Larkin DM. A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes. 2023; 14(8):1596. https://doi.org/10.3390/genes14081596
Chicago/Turabian StyleIgoshin, Alexander V., Nikolay S. Yudin, Grigorii A. Romashov, and Denis M. Larkin. 2023. "A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length" Genes 14, no. 8: 1596. https://doi.org/10.3390/genes14081596
APA StyleIgoshin, A. V., Yudin, N. S., Romashov, G. A., & Larkin, D. M. (2023). A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes, 14(8), 1596. https://doi.org/10.3390/genes14081596