Interaction Analysis Reveals Complex Genetic Associations with Alzheimer’s Disease in the CLU and ABCA7 Gene Regions
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Genotype Data and Quality Control (QC)
2.3. Analysis of the AD Risk
2.3.1. The Analysis of Compound Genotypes (CompG)
2.3.2. Single SNP Analysis
2.3.3. Traditional Interaction Analysis
3. Results
3.1. CLU Gene Results
3.2. ABCA7 Gene Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022, 18, 700–789. [Google Scholar] [CrossRef] [PubMed]
- Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H.; Rosi, B.L.; Gusella, J.F.; Crapper-MacLachlan, D.R.; Alberts, M.J. Association of Apolipoprotein E Allele Epsilon 4 with Late-Onset Familial and Sporadic Alzheimer’s Disease. Neurology 1993, 43, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Lucotte, G.; Visvikis, S.; Leininger-Möler, B.; David, F.; Berriche, S.; Revéilleau, S.; Couderc, R.; Babron, M.C.; Aguillon, D.; Siest, G. Association of Apolipoprotein E Allele Ε4 with Late-Onset Sporadic Alzheimer’s Disease. Am. J. Med. Genet. 1994, 54, 286–288. [Google Scholar] [CrossRef]
- Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of Age, Sex, and Ethnicity on the Association between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-Analysis. JAMA 1997, 278, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Ridge, P.G.; Hoyt, K.B.; Boehme, K.; Mukherjee, S.; Crane, P.K.; Haines, J.L.; Mayeux, R.; Farrer, L.A.; Pericak-Vance, M.A.; Schellenberg, G.D.; et al. Assessment of the Genetic Variance of Late-Onset Alzheimer’s Disease. Neurobiol. Aging 2016, 41, 200.e13–200.e20. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The New NHGRI-EBI Catalog of Published Genome-Wide Association Studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.M.; Dangla-Valls, A.; Lovestone, S.; Ribe, E.M.; Buckley, N.J. Clusterin in Alzheimer’s Disease: Mechanisms, Genetics, and Lessons from Other Pathologies. Front. Neurosci. 2019, 13, 164. [Google Scholar] [CrossRef]
- De Roeck, A.; Van Broeckhoven, C.; Sleegers, K. The Role of ABCA7 in Alzheimer’s Disease: Evidence from Genomics, Transcriptomics and Methylomics. Acta Neuropathol. 2019, 138, 201–220. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New Insights into the Genetic Etiology of Alzheimer’s Disease and Related Dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-Wide Meta-Analysis, Fine-Mapping and Integrative Prioritization Implicate New Alzheimer’s Disease Risk Genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-Wide Meta-Analysis Identifies New Loci and Functional Pathways Influencing Alzheimer’s Disease Risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Grau, S.; de Rojas, I.; Hernández, I.; Quintela, I.; Montrreal, L.; Alegret, M.; Hernández-Olasagarre, B.; Madrid, L.; González-Perez, A.; Maroñas, O.; et al. Genome-Wide Association Analysis of Dementia and Its Clinical Endophenotypes Reveal Novel Loci Associated with Alzheimer’s Disease and Three Causality Networks: The GR@ACE Project. Alzheimers Dement. 2019, 15, 1333–1347. [Google Scholar] [CrossRef]
- Nuutinen, T.; Huuskonen, J.; Suuronen, T.; Ojala, J.; Miettinen, R.; Salminen, A. Amyloid-β 1–42 Induced Endocytosis and Clusterin/ApoJ Protein Accumulation in Cultured Human Astrocytes. Neurochem. Int. 2007, 50, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.M.; Mulder, S.D.; Beliën, J.A.M.; Musters, R.J.P.; Eikelenboom, P.; Veerhuis, R. Astrocytic A Beta 1-42 Uptake Is Determined by A Beta-Aggregation State and the Presence of Amyloid-Associated Proteins. Glia 2010, 58, 1235–1246. [Google Scholar] [CrossRef]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Børte, S.; Winsvold, B.S.; Drange, O.K.; et al. A Genome-Wide Association Study with 1,126,563 Individuals Identifies New Risk Loci for Alzheimer’s Disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, P.; Harold, D.; Sims, R.; Gerrish, A.; Lambert, J.-C.; Carrasquillo, M.M.; Abraham, R.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; et al. Common Variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP Are Associated with Alzheimer’s Disease. Nat. Genet. 2011, 43, 429–435. [Google Scholar] [CrossRef]
- Shulman, J.M.; Chen, K.; Keenan, B.T.; Chibnik, L.B.; Fleisher, A.; Thiyyagura, P.; Roontiva, A.; McCabe, C.; Patsopoulos, N.A.; Corneveaux, J.J.; et al. Genetic Susceptibility for Alzheimer Disease Neuritic Plaque Pathology. JAMA Neurol. 2013, 70, 1150–1157. [Google Scholar] [CrossRef]
- Apostolova, L.G.; Risacher, S.L.; Duran, T.; Stage, E.C.; Goukasian, N.; West, J.D.; Do, T.M.; Grotts, J.; Wilhalme, H.; Nho, K.; et al. Associations of the Top 20 Alzheimer Disease Risk Variants with Brain Amyloidosis. JAMA Neurol. 2018, 75, 328–341. [Google Scholar] [CrossRef]
- Stage, E.; Duran, T.; Risacher, S.L.; Goukasian, N.; Do, T.M.; West, J.D.; Wilhalme, H.; Nho, K.; Phillips, M.; Elashoff, D.; et al. The Effect of the Top 20 Alzheimer Disease Risk Genes on Gray-Matter Density and FDG PET Brain Metabolism. Alzheimers Dement. 2016, 5, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, C.; Nho, K.; Saykin, A.J.; Reuter, M.; Rieckmann, A. A Longitudinal Imaging Genetics Study of Neuroanatomical Asymmetry in Alzheimer’s Disease. Biol. Psychiatry 2018, 84, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Li, H.; Ruberu, K.; Chan, S.; Elliott, D.A.; Low, J.K.; Cheng, D.; Karl, T.; Garner, B. Deletion of Abca7 Increases Cerebral Amyloid-β Accumulation in the J20 Mouse Model of Alzheimer’s Disease. J. Neurosci. 2013, 33, 4387–4394. [Google Scholar] [CrossRef]
- Fu, Y.; Hsiao, J.-H.T.; Paxinos, G.; Halliday, G.M.; Kim, W.S. ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain. J. Alzheimer’s Dis. 2016, 54, 569–584. [Google Scholar] [CrossRef]
- Templeton, A.R.; Maxwell, T.; Posada, D.; Stengård, J.H.; Boerwinkle, E.; Sing, C.F. Tree Scanning: A Method for Using Haplotype Trees in Phenotype/Genotype Association Studies. Genetics 2005, 169, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-E.; Seltman, H.; Peskind, E.R.; Galloway, N.; Zhou, P.X.; Rosenthal, E.; Wijsman, E.M.; Tsuang, D.W.; Devlin, B.; Schellenberg, G.D. Comprehensive Analysis of APOE and Selected Proximate Markers for Late-Onset Alzheimer’s Disease: Patterns of Linkage Disequilibrium and Disease/Marker Association. Genomics 2007, 89, 655–665. [Google Scholar] [CrossRef]
- Lescai, F.; Chiamenti, A.M.; Codemo, A.; Pirazzini, C.; D’Agostino, G.; Ruaro, C.; Ghidoni, R.; Benussi, L.; Galimberti, D.; Esposito, F.; et al. An APOE Haplotype Associated with Decreased Ε4 Expression Increases the Risk of Late Onset Alzheimer’s Disease. J. Alzheimer’s Dis. 2011, 24, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.W.; Crenshaw, D.; Welsh-Bohmer, K.A.; Burns, D.K.; Roses, A.D. New Genetic Approaches to AD: Lessons from APOE-TOMM40 Phylogenetics. Curr. Neurol. Neurosci. Rep. 2016, 16, 48. [Google Scholar] [CrossRef]
- Babenko, V.N.; Afonnikov, D.A.; Ignatieva, E.V.; Klimov, A.V.; Gusev, F.E.; Rogaev, E.I. Haplotype Analysis of APOE Intragenic SNPs. BMC Neurosci. 2018, 19, 16. [Google Scholar] [CrossRef]
- Kulminski, A.M.; Huang, J.; Wang, J.; He, L.; Loika, Y.; Culminskaya, I. Apolipoprotein E Region Molecular Signatures of Alzheimer’s Disease. Aging Cell 2018, 17, e12779. [Google Scholar] [CrossRef]
- Kulminski, A.M.; Philipp, I.; Loika, Y.; He, L.; Culminskaya, I. Haplotype Architecture of the Alzheimer’s Risk in the APOE Region via Co-Skewness. Alzheimers Dement. 2020, 12, e12129. [Google Scholar] [CrossRef] [PubMed]
- Kulminski, A.M.; Shu, L.; Loika, Y.; Nazarian, A.; Arbeev, K.; Ukraintseva, S.; Yashin, A.; Culminskaya, I. APOE Region Molecular Signatures of Alzheimer’s Disease across Races/Ethnicities. Neurobiol. Aging 2020, 87, 141.e1–141.e8. [Google Scholar] [CrossRef]
- Kulminski, A.M.; Philipp, I.; Loika, Y.; He, L.; Culminskaya, I. Protective Association of the Ε2/Ε3 Heterozygote with Alzheimer’s Disease Is Strengthened by TOMM40-APOE Variants in Men. Alzheimers Dement. 2021, 17, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Kulminski, A.M.; Philipp, I.; Shu, L.; Culminskaya, I. Definitive Roles of TOMM40-APOE-APOC1 Variants in the Alzheimer’s Risk. Neurobiol. Aging 2022, 110, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Y.; Mok, K.Y.; Kwok, T.C.Y.; Mok, V.C.T.; Guo, Q.; Ip, F.C.; Chen, Y.; Mullapudi, N.; Alzheimer’s Disease Neuroimaging Initiative; et al. Non-Coding Variability at the APOE Locus Contributes to the Alzheimer’s Risk. Nat. Commun. 2019, 10, 3310. [Google Scholar] [CrossRef]
- Nazarian, A.; Loika, Y.; He, L.; Culminskaya, I.; Kulminski, A.M. Genome-Wide Analysis Identified Abundant Genetic Modulators of Contributions of the Apolipoprotein E Alleles to Alzheimer’s Disease Risk. Alzheimer’s Dement. 2022, 18, 2067–2078. [Google Scholar] [CrossRef]
- Nazarian, A.; Philipp, I.; Culminskaya, I.; He, L.; Kulminski, A.M. Inter- and Intra-Chromosomal Modulators of the APOE Ɛ2 and Ɛ4 Effects on the Alzheimer’s Disease Risk. GeroScience 2023, 45, 233–247. [Google Scholar] [CrossRef]
- Naj, A.C.; Jun, G.; Beecham, G.W.; Wang, L.-S.; Vardarajan, B.N.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Jarvik, G.P.; Crane, P.K.; et al. Common Variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 Are Associated with Late-Onset Alzheimer’s Disease. Nat. Genet. 2011, 43, 436–441. [Google Scholar] [CrossRef]
- Beecham, G.W.; Bis, J.C.; Martin, E.R.; Choi, S.-H.; DeStefano, A.L.; van Duijn, C.M.; Fornage, M.; Gabriel, S.B.; Koboldt, D.C.; Larson, D.E.; et al. The Alzheimer’s Disease Sequencing Project: Study Design and Sample Selection. Neurol. Genet. 2017, 3, e194. [Google Scholar] [CrossRef]
- Crane, P.K.; Foroud, T.; Montine, T.J.; Larson, E.B. Alzheimer’s Disease Sequencing Project Discovery and Replication Criteria for Cases and Controls: Data from a Community-Based Prospective Cohort Study with Autopsy Follow-Up. Alzheimers Dement. 2017, 13, 1410–1413. [Google Scholar] [CrossRef]
- Lee, J.H.; Cheng, R.; Graff-Radford, N.; Foroud, T.; Mayeux, R. Analyses of the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study: Implication of Additional Loci. Arch. Neurol. 2008, 65, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Dumeyer, D.; Faber, K.; Vardarajan, B.; Goate, A.; Renton, A.; Chao, M.; Boeve, B.; Cruchaga, C.; Pericak-Vance, M.; Haines, J.L.; et al. The National Institute on Aging Late-Onset Alzheimer’s Disease Family Based Study: A Resource for Genetic Discovery. Alzheimers Dement. 2022, 18, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.r-project.org (accessed on 25 June 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Allison, P.D. Comparing Logit and Probit Coefficients across Groups. Sociol. Methods Res. 1999, 28, 186–208. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Storey, J.D.; Bass, A.J.; Dabney, A.; Robinson, D. Qvalue: Q-Value Estimation for False Discovery Rate Control. R Package Version 2.32.0. 2023. Available online: https://bioconductor.org/packages/qvalue/ (accessed on 25 June 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Slowikowski, K. Ggrepel: Automatically Position Non-Overlapping Text Labels with “Ggplot2”. R Package Version 0.9.3. 2023. Available online: https://github.com/slowkow/ggrepel (accessed on 25 June 2023).
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M.; et al. GWAS on Family History of Alzheimer’s Disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.; Gibbons, E.; Dehghani, N.; Eapen, J.; Guerreiro, R.; Bras, J. Genome-Wide Association of Polygenic Risk Extremes for Alzheimer’s Disease in the UK Biobank. Sci. Rep. 2022, 12, 8404. [Google Scholar] [CrossRef] [PubMed]
SNP2 = 0 | SNP2 = 1 or 2 | |
---|---|---|
SNP1 = 0 | MM | Mm |
SNP1 = 1 or 2 | mM | mm |
Chromosome | Position | SNP | Allele | β | Se | p-Value | q-Value | Effects |
---|---|---|---|---|---|---|---|---|
CLU gene | ||||||||
8 | 27,402,132 | rs1042064 | C | −0.073 | 0.030 | 1.44 × 10−2 | 3.67 × 10−2 | −−−− |
8 | 27,402,777 | rs7341557 | A | −0.156 | 0.038 | 3.98 × 10−5 | 2.03 × 10−4 | −−−− |
8 | 27,415,576 | rs2640724 | A | −0.122 | 0.030 | 3.89 × 10−5 | 2.03 × 10−4 | −−−− |
8 | 27,417,422 | rs1873933 | A | −0.119 | 0.034 | 4.30 × 10−4 | 1.64 × 10−3 | −−−− |
8 | 27,422,491 | rs59953408 | G | 0.203 | 0.049 | 3.65 × 10−5 | 2.03 × 10−4 | ++++ |
8 | 27,430,506 | rs7831810 | G | 0.110 | 0.032 | 6.15 × 10−4 | 1.88 × 10−3 | ++++ |
ABCA7 gene | ||||||||
19 | 552,650 | rs7247601 | T | 0.095 | 0.030 | 1.38 × 10−3 | 2.65 × 10−2 | ++++ |
19 | 1,043,638 | rs3752231 | T | 0.148 | 0.030 | 5.76 × 10−7 | 2.88 × 10−5 | ++++ |
19 | 1,049,269 | rs4147914 | A | 0.104 | 0.033 | 1.59 × 10−3 | 2.65 × 10−2 | ++++ |
19 | 1,065,677 | rs4147937 | A | −0.125 | 0.044 | 4.21 × 10−3 | 4.21 × 10−2 | −−+− |
19 | 1,080,189 | rs2074453 | C | −0.091 | 0.030 | 2.15 × 10−3 | 2.68 × 10−2 | −−−− |
SNP Pairs | CompG Model | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mM | Mm | mm | ||||||||||||||
SNP1 | SNP2 | β | Se | p-Value | q-Value | Effects | β | Se | p-Value | q-Value | Effects | β | Se | p-Value | q-Value | Effects |
rs66924402 | rs10096092 | −0.148 | 0.042 | 4.00 × 10−4 | 3.41 × 10−3 | +−−− | −0.111 | 0.397 | 7.81 × 10−1 | 6.54 × 10−1 | −+−+ | 0.011 | 0.037 | 7.66 × 10−1 | 4.24 × 10−1 | −−−+ |
rs66924402 | rs7845904 | −0.080 | 0.033 | 1.45 × 10−2 | 4.69 × 10−2 | −−−− | −0.071 | 0.050 | 1.56 × 10−1 | 4.15 × 10−1 | −−+− | 0.008 | 0.078 | 9.19 × 10−1 | 4.55 × 10−1 | −−++ |
rs66924402 | rs73231005 | −0.121 | 0.045 | 7.07 × 10−3 | 2.83 × 10−2 | +−−− | 0.013 | 0.038 | 7.23 × 10−1 | 6.40 × 10−1 | +−++ | −0.001 | 0.041 | 9.84 × 10−1 | 4.70 × 10−1 | −−++ |
rs66924402 | rs10503815 | −0.087 | 0.034 | 9.27 × 10−3 | 3.45 × 10−2 | −−−− | −0.123 | 0.059 | 3.59 × 10−2 | 2.52 × 10−1 | −−+− | −0.016 | 0.057 | 7.83 × 10−1 | 4.27 × 10−1 | −−++ |
rs34319290 | rs7845904 | 0.001 | 0.050 | 9.92 × 10−1 | 7.77 × 10−1 | +−+− | −0.054 | 0.044 | 2.25 × 10−1 | 4.65 × 10−1 | −−+− | 0.386 | 0.133 | 3.81 × 10−3 | 2.17 × 10−2 | ++++ |
rs55986679 | rs9331916 | 0.099 | 0.037 | 8.26 × 10−3 | 3.11 × 10−2 | ++++ | 0.079 | 0.038 | 3.68 × 10−2 | 2.54 × 10−1 | +−++ | 0.024 | 0.054 | 6.54 × 10−1 | 3.93 × 10−1 | +++− |
rs55986679 | rs9331888 | 0.103 | 0.042 | 1.38 × 10−2 | 4.48 × 10−2 | ++++ | 0.105 | 0.037 | 4.94 × 10−3 | 7.13 × 10−2 | +−++ | 0.103 | 0.048 | 3.05 × 10−2 | 7.44 × 10−2 | ++++ |
rs17466060 | rs881146 | 0.090 | 0.035 | 1.05 × 10−2 | 3.76 × 10−2 | ++++ | 0.094 | 0.061 | 1.20 × 10−1 | 3.80 × 10−1 | ++−+ | 0.109 | 0.064 | 8.99 × 10−2 | 1.34 × 10−1 | ++++ |
rs17466060 | rs17466684 | 0.104 | 0.042 | 1.48 × 10−2 | 4.74 × 10−2 | ++++ | 0.058 | 0.052 | 2.57 × 10−1 | 4.88 × 10−1 | +−++ | 0.086 | 0.054 | 1.09 × 10−1 | 1.48 × 10−1 | +++− |
rs17466060 | rs2279591 | 0.118 | 0.046 | 1.02 × 10−2 | 3.72 × 10−2 | +−++ | 0.066 | 0.052 | 2.07 × 10−1 | 4.49 × 10−1 | +−++ | 0.091 | 0.049 | 6.20 × 10−2 | 1.09 × 10−1 | ++++ |
rs17466060 | rs9331916 | 0.120 | 0.043 | 5.84 × 10−3 | 2.48 × 10−2 | ++++ | 0.099 | 0.052 | 5.56 × 10−2 | 3.12 × 10−1 | +−++ | 0.127 | 0.051 | 1.32 × 10−2 | 4.37 × 10−2 | ++++ |
rs17466060 | rs9331888 | 0.149 | 0.047 | 1.67 × 10−3 | 9.44 × 10−3 | ++++ | 0.156 | 0.053 | 3.02 × 10−3 | 5.31 × 10−2 | ++++ | 0.179 | 0.049 | 2.40 × 10−4 | 3.77 × 10−3 | ++++ |
rs17466060 | rs9314349 | 0.161 | 0.052 | 1.81 × 10−3 | 9.51 × 10−3 | ++++ | 0.110 | 0.054 | 4.04 × 10−2 | 2.73 × 10−1 | ++++ | 0.125 | 0.049 | 1.11 × 10−2 | 3.94 × 10−2 | ++++ |
rs17466060 | rs12549671 | 0.114 | 0.045 | 1.11 × 10−2 | 3.88 × 10−2 | ++++ | 0.091 | 0.052 | 7.74 × 10−2 | 3.45 × 10−1 | ++++ | 0.125 | 0.047 | 7.94 × 10−3 | 3.28 × 10−2 | ++++ |
rs17466060 | rs36046209 | 0.038 | 0.035 | 2.70 × 10−1 | 3.78 × 10−1 | +++− | −0.063 | 0.088 | 4.74 × 10−1 | 5.73 × 10−1 | ++−− | 0.116 | 0.042 | 5.64 × 10−3 | 2.71 × 10−2 | ++++ |
rs4732724 | rs9331888 | 0.068 | 0.042 | 1.07 × 10−1 | 2.10 × 10−1 | +−++ | 0.082 | 0.045 | 7.06 × 10−2 | 3.35 × 10−1 | +−++ | 0.112 | 0.043 | 8.78 × 10−3 | 3.49 × 10−2 | ++++ |
rs4732724 | rs36046209 | 0.021 | 0.034 | 5.34 × 10−1 | 5.77 × 10−1 | ++++ | −0.004 | 0.070 | 9.58 × 10−1 | 7.00 × 10−1 | +−+− | 0.102 | 0.041 | 1.36 × 10−2 | 4.45 × 10−2 | ++++ |
rs881146 | rs9331888 | −0.086 | 0.067 | 2.01 × 10−1 | 3.11 × 10−1 | −++− | 0.031 | 0.032 | 3.32 × 10−1 | 5.20 × 10−1 | ++++ | 0.140 | 0.054 | 9.25 × 10−3 | 3.53 × 10−2 | ++−+ |
rs881146 | rs12549671 | −0.053 | 0.057 | 3.50 × 10−1 | 4.48 × 10−1 | −++− | 0.002 | 0.032 | 9.55 × 10−1 | 7.00 × 10−1 | −+−+ | 0.155 | 0.062 | 1.27 × 10−2 | 4.37 × 10−2 | ++−+ |
rs17466684 | rs9331888 | −0.288 | 0.101 | 4.23 × 10−3 | 1.94 × 10−2 | −−−− | 0.065 | 0.039 | 9.74 × 10−2 | 3.77 × 10−1 | ++++ | 0.033 | 0.035 | 3.37 × 10−1 | 2.85 × 10−1 | +−++ |
rs9331888 | rs73231005 | 0.102 | 0.044 | 1.98 × 10−2 | 5.98 × 10−2 | ++++ | 0.092 | 0.044 | 3.57 × 10−2 | 2.52 × 10−1 | +−++ | 0.151 | 0.050 | 2.70 × 10−3 | 1.82 × 10−2 | +−++ |
rs9331888 | rs520192 | 0.080 | 0.032 | 1.11 × 10−2 | 3.88 × 10−2 | ++++ | 0.086 | 0.072 | 2.32 × 10−1 | 4.74 × 10−1 | +−++ | −0.004 | 0.059 | 9.47 × 10−1 | 4.60 × 10−1 | +−−− |
rs9331888 | rs36046209 | 0.064 | 0.034 | 5.93 × 10−2 | 1.38 × 10−1 | ++++ | 0.070 | 0.045 | 1.21 × 10−1 | 3.80 × 10−1 | ++++ | 0.159 | 0.056 | 4.19 × 10−3 | 2.29 × 10−2 | ++++ |
rs73231005 | rs9314349 | 0.121 | 0.048 | 1.18 × 10−2 | 4.08 × 10−2 | ++++ | 0.077 | 0.045 | 8.24 × 10−2 | 3.45 × 10−1 | ++++ | 0.075 | 0.046 | 1.03 × 10−1 | 1.43 × 10−1 | −+++ |
rs73231005 | rs36046209 | 0.003 | 0.035 | 9.24 × 10−1 | 7.67 × 10−1 | −−++ | −0.044 | 0.075 | 5.55 × 10−1 | 5.97 × 10−1 | ++−− | 0.096 | 0.039 | 1.45 × 10−2 | 4.68 × 10−2 | +−++ |
SNP Pairs | CompG Model | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mM | Mm | mm | ||||||||||||||
SNP1 | SNP2 | β | Se | p-Value | q-Value | Effects | β | Se | p-Value | q-Value | Effects | β | Se | p-Value | q-Value | Effects |
rs2288955 | rs3787011 | −0.037 | 0.035 | 2.88 × 10−1 | 6.99 × 10−1 | −−−− | −0.253 | 0.085 | 2.92 × 10−3 | 3.63 × 10−2 | −−−− | −0.039 | 0.057 | 4.96 × 10−1 | 4.49 × 10−1 | +−−− |
rs12459759 | rs2240160 | −0.038 | 0.037 | 3.03 × 10−1 | 7.13 × 10−1 | +−+− | −0.131 | 0.046 | 4.30 × 10−3 | 4.37 × 10−2 | −−+− | −0.010 | 0.043 | 8.24 × 10−1 | 5.42 × 10−1 | ++−− |
rs12459759 | rs4807499 | −0.082 | 0.047 | 8.18 × 10−2 | 4.30 × 10−1 | −+−− | −0.143 | 0.045 | 1.33 × 10−3 | 2.42 × 10−2 | −+−− | −0.059 | 0.043 | 1.68 × 10−1 | 2.81 × 10−1 | ++−− |
rs12459759 | rs2240052 | −0.109 | 0.046 | 1.82 × 10−2 | 2.13 × 10−1 | −+−− | −0.145 | 0.044 | 1.05 × 10−3 | 2.30 × 10−2 | −+−− | −0.037 | 0.042 | 3.80 × 10−1 | 4.07 × 10−1 | ++−− |
rs757331 | rs28659974 | 0.089 | 0.054 | 9.77 × 10−2 | 4.60 × 10−1 | −+++ | 0.123 | 0.043 | 4.66 × 10−3 | 4.57 × 10−2 | ++++ | 0.087 | 0.045 | 5.37 × 10−2 | 1.64 × 10−1 | ++++ |
rs3787011 | rs17684161 | −0.022 | 0.052 | 6.73 × 10−1 | 8.43 × 10−1 | +−+− | −0.021 | 0.037 | 5.69 × 10−1 | 5.15 × 10−1 | +−+− | −0.241 | 0.084 | 4.00 × 10−3 | 4.21 × 10−2 | −−−− |
rs3787011 | rs2306718 | 0.008 | 0.060 | 8.92 × 10−1 | 8.79 × 10−1 | +−+− | −0.019 | 0.032 | 5.43 × 10−1 | 5.05 × 10−1 | ++−− | −0.194 | 0.066 | 3.36 × 10−3 | 3.86 × 10−2 | −−−− |
rs7255896 | rs28659974 | 0.107 | 0.055 | 5.21 × 10−2 | 3.58 × 10−1 | ++++ | 0.123 | 0.041 | 2.49 × 10−3 | 3.30 × 10−2 | ++++ | 0.079 | 0.044 | 7.49 × 10−2 | 2.02 × 10−1 | ++++ |
rs7255896 | rs10439143 | 0.086 | 0.057 | 1.30 × 10−1 | 5.26 × 10−1 | +−++ | 0.124 | 0.042 | 3.16 × 10−3 | 3.76 × 10−2 | ++++ | 0.092 | 0.046 | 4.48 × 10−2 | 1.52 × 10−1 | ++++ |
rs12459472 | rs10439143 | 0.135 | 0.056 | 1.50 × 10−2 | 1.88 × 10−1 | +−++ | 0.141 | 0.046 | 2.34 × 10−3 | 3.30 × 10−2 | ++++ | 0.153 | 0.047 | 1.04 × 10−3 | 1.78 × 10−2 | ++−+ |
rs12459842 | rs10439143 | 0.204 | 0.064 | 1.49 × 10−3 | 5.62 × 10−2 | ++++ | 0.141 | 0.038 | 1.86 × 10−4 | 6.35 × 10−3 | ++++ | 0.088 | 0.049 | 7.08 × 10−2 | 1.95 × 10−1 | ++−+ |
rs351967 | rs2240160 | −0.050 | 0.038 | 1.94 × 10−1 | 6.06 × 10−1 | +−−− | −0.111 | 0.038 | 3.93 × 10−3 | 4.18 × 10−2 | −−−− | 0.030 | 0.048 | 5.32 × 10−1 | 4.60 × 10−1 | +−−+ |
rs351967 | rs10413761 | 0.130 | 0.057 | 2.30 × 10−2 | 2.50 × 10−1 | +−++ | 0.130 | 0.040 | 1.18 × 10−3 | 2.40 × 10−2 | ++++ | 0.099 | 0.044 | 2.59 × 10−2 | 1.18 × 10−1 | ++−+ |
rs67692521 | rs10413761 | 0.137 | 0.064 | 3.15 × 10−2 | 2.93 × 10−1 | +−++ | 0.120 | 0.037 | 1.23 × 10−3 | 2.40 × 10−2 | ++++ | 0.073 | 0.046 | 1.14 × 10−1 | 2.34 × 10−1 | ++−+ |
rs351976 | rs10439143 | 0.100 | 0.056 | 7.12 × 10−2 | 4.09 × 10−1 | +−++ | 0.122 | 0.047 | 9.15 × 10−3 | 7.14 × 10−2 | ++++ | 0.136 | 0.047 | 3.97 × 10−3 | 4.21 × 10−2 | ++++ |
rs17684161 | rs10439143 | 0.060 | 0.063 | 3.36 × 10−1 | 7.37 × 10−1 | −+++ | 0.118 | 0.038 | 1.96 × 10−3 | 3.01 × 10−2 | ++++ | 0.023 | 0.048 | 6.33 × 10−1 | 4.93 × 10−1 | +++− |
rs2930898 | rs2306718 | −0.037 | 0.040 | 3.47 × 10−1 | 7.40 × 10−1 | +−−− | −0.124 | 0.044 | 5.04 × 10−3 | 4.76 × 10−2 | +−−− | −0.017 | 0.040 | 6.68 × 10−1 | 5.03 × 10−1 | −+−− |
rs2930898 | rs2240615 | 0.077 | 0.039 | 5.21 × 10−2 | 3.58 × 10−1 | ++++ | 0.127 | 0.043 | 3.10 × 10−3 | 3.74 × 10−2 | −+++ | 0.074 | 0.042 | 8.14 × 10−2 | 2.09 × 10−1 | −+++ |
rs2240615 | rs10439143 | 0.122 | 0.057 | 3.23 × 10−2 | 2.93 × 10−1 | ++++ | 0.113 | 0.043 | 8.31 × 10−3 | 6.69 × 10−2 | ++++ | 0.145 | 0.044 | 1.03 × 10−3 | 1.78 × 10−2 | ++++ |
rs2240160 | rs4807499 | −0.130 | 0.048 | 7.21 × 10−3 | 1.26 × 10−1 | −−−− | −0.107 | 0.038 | 4.90 × 10−3 | 4.72 × 10−2 | −−−− | −0.096 | 0.044 | 2.91 × 10−2 | 1.27 × 10−1 | +−−− |
rs10413761 | rs10439143 | 0.135 | 0.060 | 2.48 × 10−2 | 2.55 × 10−1 | ++−+ | 0.142 | 0.059 | 1.71 × 10−2 | 9.93 × 10−2 | ++++ | 0.186 | 0.054 | 5.83 × 10−4 | 1.17 × 10−2 | ++−+ |
rs28659974 | rs10439143 | 0.079 | 0.056 | 1.61 × 10−1 | 5.72 × 10−1 | ++++ | 0.093 | 0.055 | 8.77 × 10−2 | 2.35 × 10−1 | ++++ | 0.135 | 0.047 | 4.20 × 10−3 | 4.32 × 10−2 | ++++ |
rs10411696 | rs4807499 | −0.241 | 0.081 | 3.11 × 10−3 | 8.97 × 10−2 | −−−− | −0.263 | 0.083 | 1.58 × 10−3 | 2.69 × 10−2 | −−−− | −0.282 | 0.081 | 5.45 × 10−4 | 1.17 × 10−2 | −−−− |
rs4807499 | rs2269846 | −0.191 | 0.064 | 3.01 × 10−3 | 8.97 × 10−2 | −+−− | −0.164 | 0.064 | 1.00 × 10−2 | 7.28 × 10−2 | −−−− | −0.192 | 0.064 | 2.64 × 10−3 | 3.33 × 10−2 | −−−− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarian, A.; Cook, B.; Morado, M.; Kulminski, A.M. Interaction Analysis Reveals Complex Genetic Associations with Alzheimer’s Disease in the CLU and ABCA7 Gene Regions. Genes 2023, 14, 1666. https://doi.org/10.3390/genes14091666
Nazarian A, Cook B, Morado M, Kulminski AM. Interaction Analysis Reveals Complex Genetic Associations with Alzheimer’s Disease in the CLU and ABCA7 Gene Regions. Genes. 2023; 14(9):1666. https://doi.org/10.3390/genes14091666
Chicago/Turabian StyleNazarian, Alireza, Brandon Cook, Marissa Morado, and Alexander M. Kulminski. 2023. "Interaction Analysis Reveals Complex Genetic Associations with Alzheimer’s Disease in the CLU and ABCA7 Gene Regions" Genes 14, no. 9: 1666. https://doi.org/10.3390/genes14091666
APA StyleNazarian, A., Cook, B., Morado, M., & Kulminski, A. M. (2023). Interaction Analysis Reveals Complex Genetic Associations with Alzheimer’s Disease in the CLU and ABCA7 Gene Regions. Genes, 14(9), 1666. https://doi.org/10.3390/genes14091666