The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Component Studies
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, H.E.; Hedges, L.V. Potentials and limitations. In The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 237–256. [Google Scholar]
- Finckh, A.; Tramèr, M.R. Primer: Strengths and weaknesses of meta-analysis. Nat. Clin. Pract. Rheumatol. 2008, 4, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Egger, M. Meta-analysis: Unresolved issues and future developments. BMJ 1998, 316, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, C.W.; Klamer, B.G.; Buyske, S.; Petrill, S.A.; Ray, W.C. Forming Big Datasets through Latent Class Concatenation of Imperfectly Matched Databases Features. Genes 2019, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res. 2015, 226, 1–13. [Google Scholar] [CrossRef]
- Di Carlo, P.; Punzi, G.; Ursini, G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr. Genet. 2019, 29, 200–210. [Google Scholar] [CrossRef]
- Nieto, R.R.; Carrasco, A.; Corral, S.; Castillo, R.; Gaspar, P.A.; Bustamante, M.L.; Silva, H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front. Psychiatry 2021, 12, 662407. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, L.; Yang, J.; Han, D.; Fang, D.; Qiu, X.; Yang, X.; Qiao, Z.; Ma, J.; Wang, L.; et al. BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J. Affect. Disord. 2018, 227, 226–235. [Google Scholar] [CrossRef]
- Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Systematic review and meta-regression analysis. Front. Integr. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef]
- Verhagen, M.; Van Der Meij, A.; Van Deurzen, P.; Janzing, J.; Arias-Vasquez, A.; Buitelaar, J.; Franke, B. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: Effects of gender and ethnicity. Mol. Psychiatry 2010, 15, 260–271. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar]
- Su, J.; Liu, P.; Liu, B.; Zhang, Y. BDNF polymorphisms across the spectrum of psychiatric morbidity: A protocol for a systematic review and meta-analysis. Medicine 2020, 99, e22875. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.G.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.; Quevedo, J.; et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med. 2015, 13, 289. [Google Scholar]
- Chiou, Y.J.; Huang, T.L. Brain-derived neurotrophic factor (BDNF) and bipolar disorder. Psychiatry Res. 2019, 274, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Kambeitz, J.P.; Bhattacharyya, S.; Kambeitz-Ilankovic, L.M.; Valli, I.; Collier, D.A.; McGuire, P. Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci. Biobehav. Rev. 2012, 36, 2165–2177. [Google Scholar] [PubMed]
- Mandelman, S.D.; Grigorenko, E.L. BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes Brain Behav. 2012, 11, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Greening, D.W.; Notaras, M.; Chen, M.; Xu, R.; Smith, J.D.; Cheng, L.; Simpson, R.J.; Hill, A.F.; van den Buuse, M. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol. Psychiatry 2021, 26, 4431–4447. [Google Scholar] [CrossRef]
- Jasińska, K.K.; Molfese, P.J.; Kornilov, S.A.; Mencl, W.E.; Frost, S.J.; Lee, M.; Pugh, K.R.; Grigorenko, E.L.; Landi, N. The BDNF Val66Met polymorphism influences reading ability and patterns of neural activation in children. PLoS ONE 2016, 11, e0157449. [Google Scholar] [CrossRef]
- Jasińska, K.K.; Molfese, P.J.; Kornilov, S.A.; Mencl, W.E.; Frost, S.J.; Lee, M.; Pugh, K.R.; Grigorenko, E.L.; Landi, N. The BDNF Val66Met polymorphism is associated with structural neuroanatomical differences in young children. Behav. Brain Res. 2017, 328, 48–56. [Google Scholar] [CrossRef]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Vallejo-Curto, M.D.C.; Rodriguez-Jamardo, C.; De las Heras, E.; Barreiro-Villar, C.; Blanco-Formoso, M.; Fernández-Palleiro, P.; Álvarez-Ariza, M.; López, M.; et al. Proteomics in Schizophrenia: A Gateway to Discover Potential Biomarkers of Psychoneuroimmune Pathways. Front. Psychiatry 2019, 10, 885. [Google Scholar] [CrossRef]
- Bowling, H.; Klann, E. Proteomic Tools to Study the Effect of BDNF on De Novo Protein Synthesis. In Brain-Derived Neurotrophic Factor (BDNF); Humana: New York, NY, USA, 2018. [Google Scholar]
- Sheikh, H.I.; Hayden, E.P.; Kryski, K.R.; Smith, H.J.; Singh, S.M. Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR. Psychiatr. Genet. 2010, 20, 109–112. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; McGue, M. Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression. Genes Brain Behav. 2012, 11, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Im, H.-I.; Hollander, J.A.; Bali, P.; Kenny, P.J. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 2010, 13, 1120. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.R.; Flax, J.F.; Azaro, M.A.; Hayter, J.E.; Justice, L.M.; Petrill, S.A.; Bassett, A.S.; Tallal, P.; Brzustowicz, L.M.; Bartlett, C.W. Increasing genotype-phenotype model determinism: Application to bivariate reading/language traits and epistatic interactions in language-impaired families. Hum. Hered. 2010, 70, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Gallagher, D.; Lanctôt, K.L. The effect of exercise on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF) in major depressive disorder: A meta-analysis. J. Psychiatr. Res. 2018, 105, 123–131. [Google Scholar] [CrossRef]
- Ng, T.K.S.; Ho, C.S.H.; Tam, W.W.S.; Kua, E.H.; Ho, R.C. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.A.; Hart, S.A.; Cutting, L.; Deater-Deckard, K.; Schatschneider, C.; Petrill, S. Reading development in young children: Genetic and environmental influences. Child Dev. 2013, 84, 2131–2144. [Google Scholar] [CrossRef]
- Petrill, S.A.; Deater-Deckard, K.; Thompson, L.A.; De Thorne, L.S.; Schatschneider, C. Reading skills in early readers: Genetic and shared environmental influences. J. Learn. Disabil. 2006, 39, 48–55. [Google Scholar] [CrossRef]
- Bartlett, C.W.; Flax, J.F.; Fermano, Z.; Hare, A.; Hou, L.; Petrill, S.A.; Buyske, S.; Brzustowicz, L.M. Gene x gene interaction in shared etiology of autism and specific language impairment. Biol. Psychiatry 2012, 72, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, C.W.; Hou, L.; Flax, J.F.; Hare, A.; Cheong, S.Y.; Fermano, Z.; Zimmerman-Bier, B.; Cartwright, C.; Azaro, M.A.; Buyske, S.; et al. A genome scan for loci shared by autism spectrum disorder and language impairment. Am. J. Psychiatry 2014, 171, 72–81. [Google Scholar] [CrossRef]
- Bartlett, C.W.; Flax, J.F.; Logue, M.W.; Smith, B.J.; Vieland, V.J.; Tallal, P.; Brzustowicz, L.M. Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Hum. Human. Hered. 2004, 57, 10–20. [Google Scholar] [CrossRef]
- Bartlett, C.W.; Flax, J.F.; Logue, M.W.; Vieland, V.J.; Bassett, A.S.; Tallal, P.; Brzustowicz, L.M. A major susceptibility locus for specific language impairment is located on 13q21. Am. J. Hum. Genet. 2002, 71, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.T.; Adams, A.K.; Paniagua, S.; Frijters, J.C.; Boada, R.; Hill, D.E.; Lovett, M.W.; Mahone, E.M.; Willcutt, E.G.; Wolf, M.; et al. Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African-American youth. J. Med. Genet. 2019, 56, 557–566. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2019. Available online: https://www.R-project.org/ (accessed on 14 July 2023).
- RStudio Team. RStudio: Integrated Development for, R. 2020. Available online: http://www.rstudio.com (accessed on 30 August 2023).
- Graffelman, J. Exploring diallelic genetic markers: The HardyWeinberg package. J. Stat. Softw. 2015, 64, 1–23. [Google Scholar] [CrossRef]
- Higham, N.J. Computing the nearest correlation matrix—A problem from finance. IMA J. Numer. Anal. 2002, 22, 329–343. [Google Scholar] [CrossRef]
- Hickendorff, M.; Edelsbrunner, P.; McMullen, J.; Schneider, M.; Trezise, K. Informative tools for characterizing individual differences in learning: Latent class, latent profile, and latent transition analysis. Learn. Individ. Differ. 2018, 66, 4–15. [Google Scholar] [CrossRef]
- Maxwell, T.J.; Corcoran, C.; Del-Aguila, J.L.; Budde, J.P.; Deming, Y.; Cruchaga, C.; Goate, A.M.; Kauwe, J.S. Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-β 42, tau, and p-tau levels. Alzheimer Res. Ther. 2018, 10, 86. [Google Scholar] [CrossRef]
- Pavlicev, M.; Cheverud, J.M.; Wagner, G.P. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proc. R. Soc. B Biol. Sci. 2011, 278, 1903–1912. [Google Scholar] [CrossRef]
Factor | Measure | WRRP | NJLAGS | BLS | CLRDC |
---|---|---|---|---|---|
Working Memory Factor | CLEF Recalling Sentences | X * | X | ||
CTOPP Nonword Repetition | X | X | X | ||
Memory for Digits | X | ||||
Digit Span | X | X | X | ||
Coris Block | X | ||||
CTOPP Ellision | X | X | X | ||
Memory for Sentences | X | X | |||
Backward Span (35) | |||||
Backward Span (58) | |||||
Backward Span (90) | |||||
Backward Span (Sum) | |||||
Reading Comprehension Factor | Passage Comprehension (Woodcock) | X | X | ||
Reading Comprehension PIAT | X | X | |||
Gray Oral Reading Test (Comprehension) ** | X | ||||
Math/Reading Factor | WJ Word Attack | X | X | X | |
WJ Word Identification | X | X | X | ||
WJ Applied Problems | X |
Dataset | Trait | R2 | p-Value |
---|---|---|---|
WRRP | Reading Comprehension | 0.0 | 0.30 |
Memory | 0.0 | 0.45 | |
NJLAGS | Reading Comprehension | 0.0 | 0.12 |
Memory | 0.0 | 0.46 | |
BLS | Reading Comprehension | 0.0 | 0.79 |
Memory | 0.0 | 0.59 | |
CLRDC | Reading Comprehension | 0.0 | 0.28 |
Memory | 0.0 | 0.93 | |
All Samples | Reading Comprehension | 0.0 | 0.92 |
Memory | 0.0 | 0.06 |
Sample | Statistic | All Genotypes | Val/Val C/C | Val/Met C/T | Met/Met T/T |
---|---|---|---|---|---|
WRRP | Correlation | 0.36 | 0.41 | 0.37 | −0.14 |
N | 290 | 177 | 96 | 17 | |
p-value | 4 × 10−10 | 9 × 10−9 | 2 × 10−4 | 0.57 | |
NJLAGS | Correlation | 0.58 | 0.63 | 0.56 | 0.23 |
N | 334 | 203 | 110 | 21 | |
p-value | 1 × 10−33 | 3 × 10−24 | 9 × 10−11 | 0.31 | |
BLS | Correlation | 0.45 | 0.42 | 0.53 | 0.12 |
N | 320 | 219 | 92 | 9 | |
p-value | 1 × 10−17 | 4 × 10−11 | 3 × 10−8 | 0.76 | |
CLRDC | Correlation | 0.26 | 0.27 | 0.26 | −0.09 |
N | 767 | 506 | 228 | 33 | |
p-value | 1 × 10−13 | 1 × 10−10 | 6 × 10−6 | 0.61 | |
All Samples | Correlation | 0.45 | 0.44 | 0.41 | 0.18 |
N | 1711 | 886 | 434 | 71 | |
p-value | 3 × 10−85 | 1 × 10−41 | 1 × 10−18 | 0.13 |
Dataset | N | Permutation p-Value | Avg “val/val” | Avg “val/met” | Avg “met/met” |
---|---|---|---|---|---|
WRRP | 290 | 0.0023 | 0.356 | 0.355 | 0.349 |
NJLAGS | 334 | 0.0006 | 0.582 | 0.579 | 0.559 |
BLS | 320 | 0.0112 | 0.453 | 0.448 | 0.415 |
CLRDC | 767 | <0.0001 | 0.263 | 0.268 | 0.321 |
ALL | 1711 | 4 × 10−4 | 0.42 | 0.42 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrill, S.A.; Klamer, B.G.; Buyske, S.; Willcutt, E.G.; Gruen, J.R.; Francis, D.J.; Flax, J.F.; Brzustowicz, L.M.; Bartlett, C.W. The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait. Genes 2023, 14, 1748. https://doi.org/10.3390/genes14091748
Petrill SA, Klamer BG, Buyske S, Willcutt EG, Gruen JR, Francis DJ, Flax JF, Brzustowicz LM, Bartlett CW. The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait. Genes. 2023; 14(9):1748. https://doi.org/10.3390/genes14091748
Chicago/Turabian StylePetrill, Stephen A., Brett G. Klamer, Steven Buyske, Erik G. Willcutt, Jeffrey R. Gruen, David J. Francis, Judy F. Flax, Linda M. Brzustowicz, and Christopher W. Bartlett. 2023. "The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait" Genes 14, no. 9: 1748. https://doi.org/10.3390/genes14091748
APA StylePetrill, S. A., Klamer, B. G., Buyske, S., Willcutt, E. G., Gruen, J. R., Francis, D. J., Flax, J. F., Brzustowicz, L. M., & Bartlett, C. W. (2023). The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait. Genes, 14(9), 1748. https://doi.org/10.3390/genes14091748