Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Participants
2.2. NR3C1 Genotyping
2.3. Quantitative Pyrosequencing DNA Methylation Assay
2.4. RNA Extraction, cDNA Synthesis, and RT-qPCR
2.5. Statistical and Bioinformatic Analysis
3. Results
3.1. NR3C1 Polymorphisms and Susceptibility to Metabolic Syndrome
3.2. NR3C1 Methylation and Susceptibility to Metabolic Syndrome
3.3. NR3C1 mRNA Expression Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakka, H.-M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The Metabolic Syndrome and Total and Cardiovascular Disease Mortality in Middle-Aged Men. JAMA 2002, 288, 2709. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Noncommunicable Diseases Data Portal; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Moraitis, A.G.; Block, T.; Nguyen, D.; Belanoff, J.K. The Role of Glucocorticoid Receptors in Metabolic Syndrome and Psychiatric Illness. J. Steroid Biochem. Mol. Biol. 2017, 165, 114–120. [Google Scholar] [CrossRef]
- Bellavance, M.-A.; Rivest, S. The HPA—Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front. Immunol. 2014, 5, 136. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.L.; Hou, L.; Boldt, A.B.W.; Kassem, L.; Alves, V.M.; Nardi, A.E.; McMahon, F.J. Finding Rare, Disease-Associated Variants in Isolated Groups: Potential Advantages of Mennonite Populations. Hum. Biol. 2016, 88, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.; Dornelles, A.C.; Nisihara, R.M.; Bruginski, E.R.D.; dos Santos, P.I.; Cipolla, G.A.; Boschmann, S.E.; Messias-Reason, I.J.d.; Campos, F.R.; Petzl-Erler, M.L.; et al. The Second Highest Prevalence of Celiac Disease Worldwide: Genetic and Metabolic Insights in Southern Brazilian Mennonites. Genes 2023, 14, 1026. [Google Scholar] [CrossRef]
- Argentieri, M.A.; Nagarajan, S.; Seddighzadeh, B.; Baccarelli, A.A.; Shields, A.E. Epigenetic Pathways in Human Disease: The Impact of DNA Methylation on Stress-Related Pathogenesis and Current Challenges in Biomarker Development. eBioMedicine 2017, 18, 327–350. [Google Scholar] [CrossRef]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef]
- Gerber, A.N.; Newton, R.; Sasse, S.K. Repression of Transcription by the Glucocorticoid Receptor: A Parsimonious Model for the Genomics Era. J. Biol. Chem. 2021, 296, 100687. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- De Siqueira Valadares, L.T.; De Souza, L.S.B.; Salgado Júnior, V.A.; De Freitas Bonomo, L.; De Macedo, L.R.; Silva, M. Prevalence of Metabolic Syndrome in Brazilian Adults in the Last 10 Years: A Systematic Review and Meta-Analysis. BMC Public Health 2022, 22, 327. [Google Scholar] [CrossRef]
- Martins, C.S.; Elias, D.; Colli, L.M.; Couri, C.E.; Souza, M.C.L.A.; Moreira, A.C.; Foss, M.C.; Elias, L.L.K.; De Castro, M. HPA Axis Dysregulation, NR3C1 Polymorphisms and Glucocorticoid Receptor Isoforms Imbalance in Metabolic Syndrome. Diabetes Metab. Res. Rev. 2017, 33, e2842. [Google Scholar] [CrossRef] [PubMed]
- Michailidou, Z.; Carter, R.N.; Marshall, E.; Sutherland, H.G.; Brownstein, D.G.; Owen, E.; Cockett, K.; Kelly, V.; Ramage, L.; Al-Dujaili, E.a.S.; et al. Glucocorticoid Receptor Haploinsufficiency Causes Hypertension and Attenuates Hypothalamic-Pituitary-Adrenal Axis and Blood Pressure Adaptions to High-Fat Diet. FASEB J. 2008, 22, 3896–3907. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The Hypothalamic-Pituitary-Adrenal Axis Activity in Obesity and the Metabolic Syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 111–128. [Google Scholar] [CrossRef]
- Motavalli, R.; Majidi, T.; Pourlak, T.; Abediazar, S.; Shoja, M.M.; Zununi Vahed, S.; Etemadi, J. The Clinical Significance of the Glucocorticoid Receptors: Genetics and Epigenetics. J. Steroid Biochem. Mol. Biol. 2021, 213, 105952. [Google Scholar] [CrossRef] [PubMed]
- Wadji, D.L.; Tandon, T.; Ketcha Wanda, G.J.M.; Wicky, C.; Dentz, A.; Hasler, G.; Morina, N.; Martin-Soelch, C. Child Maltreatment and NR3C1 Exon 1F Methylation, Link with Deregulated Hypothalamus-Pituitary-Adrenal Axis and Psychopathology: A Systematic Review. Child Abus. Negl. 2021, 122, 105304. [Google Scholar] [CrossRef] [PubMed]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid Receptor Signaling in Health and Disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef]
- Turner, J.D.; Muller, C.P. Structure of the Glucocorticoid Receptor (NR3C1) Gene 5′ Untranslated Region: Identification, and Tissue Distribution of Multiple New Human Exon 1. J. Mol. Endocrinol. 2005, 35, 283–292. [Google Scholar] [CrossRef]
- Cao-Lei, L.; Leija, S.C.; Kumsta, R.; Wüst, S.; Meyer, J.; Turner, J.D.; Muller, C.P. Transcriptional Control of the Human Glucocorticoid Receptor: Identification and Analysis of Alternative Promoter Regions. Hum. Genet. 2011, 129, 533–543. [Google Scholar] [CrossRef]
- Palma-Gudiel, H.; Córdova-Palomera, A.; Leza, J.C.; Fañanás, L. Glucocorticoid Receptor Gene (NR3C1) Methylation Processes as Mediators of Early Adversity in Stress-Related Disorders Causality: A Critical Review. Neurosci. Biobehav. Rev. 2015, 55, 520–535. [Google Scholar] [CrossRef]
- Holmes, L.; Shutman, E.; Chinaka, C.; Deepika, K.; Pelaez, L.; Dabney, K.W. Aberrant Epigenomic Modulation of Glucocorticoid Receptor Gene (NR3C1) in Early Life Stress and Major Depressive Disorder Correlation: Systematic Review and Quantitative Evidence Synthesis. Int. J. Environ. Res. Public Health 2019, 16, 4280. [Google Scholar] [CrossRef]
- Vidrascu, E.M.; Bashore, A.C.; Howard, T.D.; Moore, J.B. Effects of Early- and Mid-Life Stress on DNA Methylation of Genes Associated with Subclinical Cardiovascular Disease and Cognitive Impairment: A Systematic Review. BMC Med. Genet. 2019, 20, 39. [Google Scholar] [CrossRef]
- Berretta, E.; Guida, E.; Forni, D.; Provenzi, L. Glucocorticoid Receptor Gene (NR3C1) Methylation during the First Thousand Days: Environmental Exposures and Developmental Outcomes. Neurosci. Biobehav. Rev. 2021, 125, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic Programming by Maternal Behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Leenen, F.A.D.; Muller, C.P.; Turner, J.D. DNA Methylation: Conducting the Orchestra from Exposure to Phenotype? Clin. Epigenet. 2016, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Wüst, S.; Zhao, S.; Pawlikowska, L.; Kwok, P.-Y.; Whooley, M.A. Glucocorticoid Receptor Gene and Depression in Patients with Coronary Heart Disease: The Heart and Soul Study—2009 Curt Richter Award Winner. Psychoneuroendocrinology 2009, 34, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guo, Y.; Shi, H.; Liu, C.-L.; Panganiban, R.A.; Chung, W.; O’Connor, L.J.; Himes, B.E.; Gazal, S.; Hasegawa, K.; et al. Shared Genetic and Experimental Links between Obesity-Related Traits and Asthma Subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020, 145, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Christakoudi, S.; Evangelou, E.; Riboli, E.; Tsilidis, K.K. GWAS of Allometric Body-Shape Indices in UK Biobank Identifies Loci Suggesting Associations with Morphogenesis, Organogenesis, Adrenal Cell Renewal and Cancer. Sci. Rep. 2021, 11, 10688. [Google Scholar] [CrossRef]
- van Rossum, E.F.C.; Koper, J.W.; van den Beld, A.W.; Uitterlinden, A.G.; Arp, P.; Ester, W.; Janssen, J.A.M.J.L.; Brinkmann, A.O.; de Jong, F.H.; Grobbee, D.E.; et al. Identification of the BclI Polymorphism in the Glucocorticoid Receptor Gene: Association with Sensitivity to Glucocorticoids in Vivo and Body Mass Index. Clin. Endocrinol. 2003, 59, 585–592. [Google Scholar] [CrossRef]
- Srivastava, N.; Prakash, J.; Lakhan, R.; Agarwal, C.G.; Pant, D.C.; Mittal, B. Influence of Bcl-1 Gene Polymorphism of Glucocorticoid Receptor Gene (NR3C1, Rs41423247) on Blood Pressure, Glucose in Northern Indians. Ind. J. Clin. Biochem. 2011, 26, 125–130. [Google Scholar] [CrossRef]
- Moreira, R.P.P.; Gomes, L.G.; Mendonca, B.B.; Bachega, T.A.S.S. Impact of Glucocorticoid Receptor Gene Polymorphisms on the Metabolic Profile of Adult Patients with the Classical Form of 21-Hydroxylase Deficiency. PLoS ONE 2012, 7, e44893. [Google Scholar] [CrossRef]
- Kaya, Z.; Caglayan, S.; Akkiprik, M.; Aral, C.; Ozisik, G.; Ozata, M.; Ozer, A. Impact of Glucocorticoid Receptor Gene (NR3C1) Polymorphisms in Turkish Patients with Metabolic Syndrome. J. Endocrinol. Investig. 2016, 39, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-X.; Dong, J.; Zhang, J.; Liu, F.; Wang, W.; Zhang, L.; He, Y. Polymorphisms in NR3C1 Gene Associated with Risk of Metabolic Syndrome in a Chinese Population. Endocrine 2014, 47, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Rosmond, R.; Holm, G. A 5-Year Follow-up Study of 3 Polymorphisms in the Human Glucocorticoid Receptor Gene in Relation to Obesity, Hypertension, and Diabetes. J. Cardiometab. Syndr. 2008, 3, 132–135. [Google Scholar] [CrossRef]
- Instituto Brasileiro De Geografia E Estatística (IBGE). Pesquisa Nacional de Saúde 2013: Percepção Do Estado de Saúde, Estilos de Vida e Doenças Crônicas; Instituto Brasileiro De Geografia E Estatística (IBGE): Rio de Janeiro, Brazil, 2014. [Google Scholar]
- The 1000 Genomes Project Consortium. A Map of Human Genome Variation from Population-Scale Sequencing. Nature 2010, 467, 1061–1073. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Tost, J.; Gut, I.G. DNA Methylation Analysis by Pyrosequencing. Nat. Protoc. 2007, 2, 2265–2275. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. JR Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Li, J.; Jew, B.; Zhan, L.; Hwang, S.; Coppola, G.; Freimer, N.B.; Sul, J.H. ForestQC: Quality Control on Genetic Variants from next-Generation Sequencing Data Using Random Forest. PLoS Comput. Biol. 2019, 15, e1007556. [Google Scholar] [CrossRef]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The Structure of Haplotype Blocks in the Human Genome. Science 2002, 296, 2225–2229. [Google Scholar] [CrossRef]
- Barrett, J.; Fry, B.; Maller, J.; Daly, M. HAPLOVIEW: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Naslavsky, M.S.; Scliar, M.O.; Yamamoto, G.L.; Wang, J.Y.T.; Zverinova, S.; Karp, T.; Nunes, K.; Ceroni, J.R.M.; de Carvalho, D.L.; da Silva Simões, C.E.; et al. Whole-Genome Sequencing of 1,171 Elderly Admixed Individuals from Brazil. Nat. Commun. 2022, 13, 1004. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A Web-Based Application for Exploring Population-Specific Haplotype Structure and Linking Correlated Alleles of Possible Functional Variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- De Assis Pinheiro, J.; Freitas, F.V.; Borçoi, A.R.; Mendes, S.O.; Conti, C.L.; Arpini, J.K.; Dos Santos Vieira, T.; De Souza, R.A.; Dos Santos, D.P.; Barbosa, W.M.; et al. Alcohol Consumption, Depression, Overweight and Cortisol Levels as Determining Factors for NR3C1 Gene Methylation. Sci. Rep. 2021, 11, 6768. [Google Scholar] [CrossRef]
- Ullah, Z.; Oscanoa, J.; Wang, J.; Nagano, A.; Lemoine, N.; Chelala, C. SNPnexus: Assessing the Functional Relevance of Genetic Variation to Facilitate the Promise of Precision Medicine. Nucleic Acids Res. 2018, 46, W109–W113. [Google Scholar] [CrossRef]
- Kumsta, R.; Moser, D.; Streit, F.; Koper, J.W.; Meyer, J.; Wüst, S. Characterization of a Glucocorticoid Receptor Gene (GR, NR3C1) Promoter Polymorphism Reveals Functionality and Extends a Haplotype with Putative Clinical Relevance. Am. J. Med. Genet. 2009, 150B, 476–482. [Google Scholar] [CrossRef]
- Myer, V.E. Identification of HuR as a Protein Implicated in AUUUA-Mediated MRNA Decay. EMBO J. 1997, 16, 2130–2139. [Google Scholar] [CrossRef]
- Lai, W.S.; Carballo, E.; Strum, J.R.; Kennington, E.A.; Phillips, R.S.; Blackshear, P.J. Evidence That Tristetraprolin Binds to AU-Rich Elements and Promotes the Deadenylation and Destabilization of Tumor Necrosis Factor alpha MRNA. Mol. Cell. Biol. 1999, 19, 4311–4323. [Google Scholar] [CrossRef]
- Wilson, G.M.; Brewer, G. Identification and Characterization of Proteins Binding A + U-Rich Elements. Methods 1999, 17, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Xi, Q.; He, C.; Schneider, R.J. Selective Degradation of AU-Rich MRNAs Promoted by the P37 AUF1 Protein Isoform. Mol. Cell. Biol. 2003, 23, 6685–6693. [Google Scholar] [CrossRef] [PubMed]
- Gherzi, R.; Lee, K.-Y.; Briata, P.; Wegmüller, D.; Moroni, C.; Karin, M.; Chen, C.-Y. A KH Domain RNA Binding Protein, KSRP, Promotes ARE-Directed MRNA Turnover by Recruiting the Degradation Machinery. Mol. Cell 2004, 14, 571–583. [Google Scholar] [CrossRef]
- Sun, G.; Li, H.; Rossi, J.J. Sequence Context Outside the Target Region Influences the Effectiveness of MiR-223 Target Sites in the RhoB 3′UTR. Nucleic Acids Res. 2010, 38, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.E.; Li, L.; Kalabus, J.L.; Pan, Y.; Yu, A.; Hu, Z. MiRdSNP: A Database of Disease-Associated SNPs and MicroRNA Target Sites on 3′UTRs of Human Genes. BMC Genom. 2012, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Derijk, R.H.; Schaaf, M.J.M.; Turner, G.; Datson, N.A.; Vreugdenhil, E.; Cidlowski, J.; Kloet, E.R.D.; Emery, P.; Sternberg, E.M.; Detera-Wadleigh, S.D. A Human Glucocorticoid Receptor Gene Variant That Increases the Stability of the Glucocorticoid Receptor SS-Isoform MRNA Is Associated with Rheumatoid Arthritis. J. Rheumatol. 2001, 28, 2383–2388. [Google Scholar]
- Schaaf, M.J.M.; Cidlowski, J.A. AUUUA Motifs in the 3′UTR of Human Glucocorticoid Receptor α and β MRNA Destabilize MRNA and Decrease Receptor Protein Expression. Steroids 2002, 67, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.M.; Bamberger, A.M.; De Castro, M.; Chrousos, G.P. Glucocorticoid Receptor beta, a Potential Endogenous Inhibitor of Glucocorticoid Action in Humans. J. Clin. Investig. 1995, 95, 2435–2441. [Google Scholar] [CrossRef]
- Charmandari, E.; Chrousos, G.P.; Ichijo, T.; Bhattacharyya, N.; Vottero, A.; Souvatzoglou, E.; Kino, T. The Human Glucocorticoid Receptor (HGR) β Isoform Suppresses the Transcriptional Activity of HGRα by Interfering with Formation of Active Coactivator Complexes. Mol. Endocrinol. 2005, 19, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ramírez, P.; Tliba, O. Glucocorticoid Receptor β (GRβ): Beyond Its Dominant-Negative Function. Int. J. Mol. Sci. 2021, 22, 3649. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; An, Q.; Goldberg, J.; Quyyumi, A.A.; Vaccarino, V. Promoter Methylation of Glucocorticoid Receptor Gene Is Associated with Subclinical Atherosclerosis: A Monozygotic Twin Study. Atherosclerosis 2015, 242, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-J.; Stewart, R.; Kim, J.-W.; Kim, S.-W.; Shin, I.-S.; Kim, M.-C.; Hong, Y.J.; Ahn, Y.; Shin, M.-G.; Jeong, M.H.; et al. Synergistic Effects of Depression and NR3C1 Methylation on Prognosis of Acute Coronary Syndrome. Sci. Rep. 2020, 10, 5519. [Google Scholar] [CrossRef]
- Li-Tempel, T.; Larra, M.F.; Sandt, E.; Mériaux, S.B.; Schote, A.B.; Schächinger, H.; Muller, C.P.; Turner, J.D. The Cardiovascular and Hypothalamus-Pituitary-Adrenal Axis Response to Stress Is Controlled by Glucocorticoid Receptor Sequence Variants and Promoter Methylation. Clin. Epigenet. 2016, 8, 12. [Google Scholar] [CrossRef]
- de Souza, M.L.M.; Borçoi, A.R.; Dutra, B.A.B.; Dos Santos Vieira, T.; Mendes, S.O.; Moreno, I.A.A.; Quaioto, B.R.; Olinda, A.S.; Cunha, E.R.; Freitas, F.V.; et al. Lifestyle and NR3C1 Exon 1F Gene Methylation Is Associated with Changes in Glucose Levels and Insulin Resistance. Life Sci. 2022, 309, 120940. [Google Scholar] [CrossRef]
Components | Criteria | |
---|---|---|
Waist circumference | Male | ≥94 cm |
Female | ≥80 cm | |
Triglycerides a | ≥150 mg/dL | |
HDL cholesterol a | Male | <40 mg/dL |
Female | <50 mg/dL | |
Blood pressure a,b | Systolic and/or | ≥130 mm Hg |
Diastolic | ≥85 mm Hg | |
Type 2 diabetes mellitus a | Self-reported medical diagnostic |
Controls | Individuals with MetS | |||||||
---|---|---|---|---|---|---|---|---|
Total | CWB | CWI | CON | Total | CWB | CWI | CON | |
N | 237 | 91 | 65 | 81 | 112 | 35 | 19 | 58 |
Gender (M/F) | 91/146 | 35/56 | 25/40 | 31/50 | 57/55 | 21/14 | 11/8 | 25/33 |
Average age | 44.70 | 41.50 | 40.68 | 51.51 | 59.85 | 57.00 | 54.13 | 63.41 |
(min–max) (years) | (12.30–92.07) | (12.30–89.00) | (14.42–92.07) | (16.41–83.37) | (19.96–85.91) | (29.00–82.30) | (19.96–77.77) | (36.56–85.91) |
Prevalence | - | - | - | - | 32.09 | 27.77 | 22.62 | 41.72 |
% | % | % | % | % | % | % | % | |
Waist circumference: male ≥ 94 cm/female ≥ 80 cm | 78.51 | 78.73 | 69.38 | 85.71 | 100 | 100 | 100 | 100 |
Triglycerides ≥ 150 mg/dL | 23.21 | 31.19 | 20.54 | 16.32 | 90.99 | 91.17 | 100 | 87.93 |
HDL cholesterol: male < 40 mg/dL/female < 50 mg/dL | 8.92 | 9.17 | 4.10 | 12.24 | 59.80 | 45.71 | 42.10 | 50.00 |
Blood pressure Systolic ≥ 130 mm Hg/Diastolic ≥ 85 mm Hg | 22.46 | 19.13 | 14.66 | 33.72 | 81.98 | 77.14 | 68.42 | 89.47 |
Type 2 DM | 1.09 | 2.72 | 0 | 0 | 20.72 | 14.70 | 21.05 | 24.13 |
Moderate/vigorous physical activity | 70.28 | 77.41 | 65.33 | 66.66 | 56.63 | 51.42 | 60.00 | 56.66 |
Family environment during childhood | ||||||||
Cold | 10.12 | 10.86 | 2.73 | 15.85 | 20.00 | 25.71 | 10.00 | 20.00 |
Moderate | 47.36 | 38.04 | 58.90 | 47.56 | 56.52 | 57.14 | 65.00 | 53.33 |
Warm | 42.51 | 51.86 | 38.35 | 36.58 | 23.47 | 17.14 | 25.00 | 26.66 |
Polymorphism | Position | HGVS Description | Location |
---|---|---|---|
rs1192533423 | 5:143404595 | ENST00000343796.6:c.-13-3743T>G | Regulatory region |
rs3806855 | 5:143404564 | ENST00000343796.6:c.-13-3712T>G | Regulatory region |
rs3806854 | 5:143404562 | ENST00000343796.6:c.-13-3710T>C | Regulatory region |
rs5871845 | 5:143404390 | ENST00000343796.6:c.-13-3533_-13-3532insC | Regulatory region |
rs10482605 | 5:143403956 | ENST00000343796.6:c.-13-3104T>C | Regulatory region |
rs10482606 | 5: 143403703 | ENST00000343796.6:c.-13-2851T>C | Regulatory region |
rs571795102 | 5:143403515 | ENST00000343796.6:c.-13-2663A>G | Regulatory region |
rs10482614 | 5:143402837 | ENST00000343796.6:c.-13-1985G>A | Regulatory region |
rs192978343 | 5:143402635 | ENST00000343796.6:c.-13-1783T>G | Regulatory region |
rs6189 | 5:143400774 | ENST00000343796.6:c.66G>A | Exon 2 |
rs6190 | 5:143400772 | ENST00000343796.6:c.68G>A | Exon 2 |
rs56149945 | 5:143399752 | ENST00000343796.6:c.1088A>G | Exon 2 |
rs6188 | 5:143300779 | ENST00000343796.6:c.1469-16G>T | Intron 4 |
rs761295829 | 5:143300547 | ENST00000343796.6:c.1685C>T | Exon 5 |
rs258813 | 5:143295125 | ENST00000343796.6:c.2023+335C>T | Intron 7 |
rs33944801 | 5:143294377 | ENST00000343796.6:c.2023+1083G>C | Intron 7 |
rs34176759 | 5:143294375 | ENST00000343796.6:c.2023+1085del | Intron 7 |
rs17209258 | 5:143293832 | ENST00000343796.6:c.2023+1628T>C | Intron 7 |
rs926407137 | 5:143282772 | ENST00000343796.6:c.2024-47G>A | Intron 7 |
rs6196 | 5:143281925 | ENST00000343796.6:c.2298T>C | Exon 9 |
Polymorphism | Reference Allele | Controls | MetS Individuals | Dominant Model | Additive Model | Recessive Model | |||
---|---|---|---|---|---|---|---|---|---|
N/N Total (Frequency) | N/N Total (Frequency) | OR [CI 95%] | pcorr | OR [CI 95%] | pcorr | OR [CI 95%] | pcorr | ||
rs72802813 C>t | T | 60/326 (0.18) | 30/140 (0.21) | 1.22 [0.65–2.26] | 0.60 | 1.17 [0.68–2.02] | 0.61 | 1.08 [0.18–6.44] | |
rs7701443 T>c | C | 137/324 (0.42) | 54/134 (0.40) | 0.70 [0.36–1.33] | 0.23 | 0.81 [0.53–1.25] | 0.38 | 0.85 [0.38–1.86] | 0.85 |
rs1192533423 T>g | G | 11/276 (0.039) | 5/148 (0.033) | 1.08 [0.32–3.71] | 0.91 | 1.08 [0.32–3.71] | 0.91 | n.d. | n.d. |
rs3806855 T>g | G | 58/274 (0.21) | 28/148 (0.18) | 0.67 [0.33–1.36] | 0.28 | 0.68 [0.39–1.21] | 0.19 | 0.42 [0.09–1.91] | 0.25 |
rs3806854 T>c | C | 58/274 (0.21) | 28/148 (0.18) | 0.67 [0.33–1.36] | 0.28 | 0.68 [0.39–1.21] | 0.19 | 0.42 [0.09–1.91] | 0.25 |
rs5871845 G>gc | GC | 11/276 (0.03) | 10/148 (0.06) | 1.49 [0.53–4.22] | 0.46 | 1.49 [0.53–4.22] | 0.46 | n.d. | n.d. |
rs10482605 T>c | C | 54/276 (0.19) | 38/148 (0.25) | 1.19 [0.61–2.31] | 0.62 | 1.42 [0.83–2.43] | 0.2 | 4.74 [1.11–20.29] | 0.024 |
rs10482606 T>c | C | 2/276 (0.006) | 1/148 (0.007) | 5.44 [0.34–87.96] | 0.11 | 5.44 [0.34–87.96] | 0.11 | n.d. | n.d. |
rs571795102 A>g | G | 6/276 (0.02) | 6/148 (0.04) | 1.63 [0.42–6.25] | 0.48 | 1.63 [0.42–6.25] | 0.48 | n.d. | n.d. |
rs10482614 G>a | A | 60/276 (0.21) | 30/148 (0.20) | 0.74 [0.37–1.47] | 0.37 | 0.72 [0.41–1.25] | 0.22 | 0.39 [0.09–1.75] | 0.23 |
rs41423247 C>g | G | 123/324 (0.37) | 43/140 (0.30) | 0.65 [0.35–1.20] | 0.22 | 0.82 [0.52–1.29] | 0.42 | 1.14 [0.47–2.74] | 0.70 |
rs6877893 C>t | T | 143/322 (0.44) | 66/140 (0.47) | 0.95 [0.49–1.84] | 0.85 | 1.03 [0.68–1.56] | 0.85 | 1.17 [0.57–2.39] | 0.70 |
rs192978343 T>g | G | 3/276 (0.01) | 1/148 (0.006) | 3.95 [0.3–52.72] | 0.14 | 3.95 [0.3–52.72] | 0.14 | n.d. | n.d. |
rs6189 G>a | A | 15/276 (0.05) | 7/148 (0.04) | 0.83 [0.29–2.37] | 0.76 | 0.83 [0.29–2.37] | 0.76 | n.d. | n.d. |
rs6190 G>a | A | 15/276 (0.05) | 7/148 (0.04) | 0.83 [0.29–2.37] | 0.76 | 0.83 [0.29–2.37] | 0.76 | n.d. | n.d. |
rs56149945 A>g | G | 10/276(0.036) | 5/148 (0.033) | 0.94 [0.28–3.15] | 0.78 | 0.94 [0.28–3.15] | 0.78 | n.d. | n.d. |
rs6188 G>t | T | 114/276 (0.41) | 68/148 (0.45) | 1.32 [0.65–2.66] | 0.45 | 1.02 [0.65–1.6] | 0.92 | 0.74 [0.33–1.67] | 0.46 |
rs761295829 C>t | T | 1/276 (0.003) | 1/148 (0.006) | 0.71 [0.04–12.69] | 0.87 | 0.71 [0.04–12.69] | 0.87 | n.d. | n.d. |
rs258813 C>t | T | 114/276 (0.41) | 68/148 (0.45) | 1.32 [0.65–2.66] | 0.45 | 1.02 [0.65–1.6] | 0.92 | 0.74 [0.33–1.67] | 0.46 |
rs33944801 G>c | C | 32/272 (0.11) | 11/146 (0.07) | 0.6 [0.24–1.47] | 0.27 | 0.68 [0.31–1.52] | 0.32 | 1.16 [0.11–11.66] | 0.94 |
rs34176759 A>t | T | 32/272 (0.11) | 11/146 (0.07) | 0.6 [0.24–1.47] | 0.27 | 0.68 [0.31–1.52] | 0.32 | 1.16 [0.11–11.66] | 0.94 |
rs17209258 T>c | C | 54/276 (0.19) | 21/148 (0.14) | 0.71 [0.34–1.44] | 0.34 | 0.79 [0.42–1.47] | 0.45 | 1.19 [0.2–6.98] | 0.88 |
rs926407137 G>a | A | 3/276 (0.01) | 1/148 (0.006) | 0.45 [0.04–4.69] | 0.33 | 0.45 [0.04–4.69] | 0.33 | n.d. | n.d. |
rs6196 T>c | C | 60/276 (0.21) | 30/148 (0.20) | 0.74 [0.37–1.47] | 0.37 | 0.72 [0.41–1.25] | 0.22 | 0.39 [0.09–1.75] | 0.23 |
rs258763 a>T | A | 142/326 (0.43) | 58/138 (0.42) | 0.85 [0.45–1.63] | 0.70 | 0.87 [0.57–1.33] | 0.47 | 0.80 [0.37–1.72] | 0.75 |
Haplotype | Dominant Model | Additive Model | Recessive Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Controls N/N Total | Patients N/N Total | OR | CI 95% | pcorr | OR | CI 95% | pcorr | OR | CI 95% | pcorr | |
rs41423247/rs6877893/rs258763 | |||||||||||
Cta | 141/324 | 58/138 | 0.81 | 0.43–1.53 | 0.532 | 0.85 | 0.56–1.30 | 0.468 | 0.79 | 0.37–1.71 | 0.565 |
gCT | 122/324 | 41/138 | 0.61 | 0.33–1.13 | 0.117 | 0.76 | 0.48–1.20 | 0.251 | 0.99 | 0.40–2.45 | 0.986 |
CCT | 56/324 | 33/138 | 1.09 | 0.58–2.04 | 0.782 | 1.36 | 0.81–2.26 | 0.236 | 6.02 | 1.41–25.62 | 0.015 (0.030) |
rs72802813/rs7701443 | |||||||||||
Cc | 135/318 | 54/134 | 0.69. | 0.36–1.32 | 0.271 | 0.81 | 0.52–1.24 | 0.613 | 0.84 | 0.38–1.84 | 0.669 |
CT | 124/318 | 52/134 | 1.04 | 0.54–1.99 | 0.903 | 1.21 | 0.75–1.94 | 0.339 | 1.81 | 0.75–4.36 | 0.183 |
tT | 58/322 | 28/136 | 1.17 | 0.62–2.19 | 0.613 | 1.25 | 0.68–2.28 | 0.429 | 0.61 | 0.05–6.55 | 0.688 |
TTTGGCGATT * | 101/256 | 52/132 | 1.18 | 0.60–2.31 | 0.615 | 1.07 | 0.67–1.68 | 0.770 | 0.95 | 0.39–2.31 | 0.918 |
TTcGttGATT * | 50/256 | 36/132 | 1.18 | 0.61–2.30 | 0.614 | 1.47 | 0.86–2.52 | 0.155 | 4.74 | 1.10–20.28 | 0.036 (0.048) |
gcTattGATc * | 52/256 | 23/132 | 0.67 | 0.33–1.37 | 0.282 | 0.68 | 0.38–1.21 | 0.195 | 0.41 | 0.09–1.91 | 0.262 |
CpG Site | Unmethylated n (%) | n | p-Value * | ||
---|---|---|---|---|---|
Controls | MetS Individuals | Controls | MetS Individuals | ||
35 | 55 (41) | 23 (39) | 131 | 58 | 0.82 |
36 | 71 (54) | 26 (44) | 131 | 58 | 0.52 |
37 | 95 (72) | 40 (68) | 131 | 58 | 0.76 |
38 | 115 (90) | 56 (96) | 127 | 58 | 0.13 |
39 | 119 (90) | 55 (94) | 131 | 58 | 0.34 |
40 | 65 (05) | 28 (45) | 130 | 61 | 0.89 |
43 | 110 (86) | 52 (86) | 127 | 60 | 0.94 |
44 | 100 (78) | 47 (78) | 127 | 60 | 0.89 |
45 | 117 (92) | 53 (88) | 127 | 60 | 0.38 |
46 | 124 (97) | 59 (98) | 127 | 60 | 0.75 |
47 | 127 (99) | 58 (98) | 128 | 59 | 0.58 |
Median overall methylation | - | - | 111 | 51 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolb, K.L.; Mira, A.L.S.; Auer, E.D.; Bucco, I.D.; de Lima e Silva, C.E.; dos Santos, P.I.; Hoch, V.B.-B.; Oliveira, L.C.; Hauser, A.B.; Hundt, J.E.; et al. Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes 2023, 14, 1805. https://doi.org/10.3390/genes14091805
Kolb KL, Mira ALS, Auer ED, Bucco ID, de Lima e Silva CE, dos Santos PI, Hoch VB-B, Oliveira LC, Hauser AB, Hundt JE, et al. Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes. 2023; 14(9):1805. https://doi.org/10.3390/genes14091805
Chicago/Turabian StyleKolb, Kathleen Liedtke, Ana Luiza Sprotte Mira, Eduardo Delabio Auer, Isabela Dall’Oglio Bucco, Carla Eduarda de Lima e Silva, Priscila Ianzen dos Santos, Valéria Bumiller-Bini Hoch, Luana Caroline Oliveira, Aline Borsato Hauser, Jennifer Elisabeth Hundt, and et al. 2023. "Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population" Genes 14, no. 9: 1805. https://doi.org/10.3390/genes14091805
APA StyleKolb, K. L., Mira, A. L. S., Auer, E. D., Bucco, I. D., de Lima e Silva, C. E., dos Santos, P. I., Hoch, V. B.-B., Oliveira, L. C., Hauser, A. B., Hundt, J. E., Shuldiner, A. R., Lopes, F. L., Boysen, T.-J., Franke, A., Pinto, L. F. R., Soares-Lima, S. C., Kretzschmar, G. C., & Boldt, A. B. W. (2023). Glucocorticoid Receptor Gene (NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes, 14(9), 1805. https://doi.org/10.3390/genes14091805