Comparative Analysis of Transcriptome Profiles in Patients with Thromboangiitis Obliterans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Specimens
2.2. RNA Isolation
2.3. Affymetrix Microarray Hybridization Analysis
2.4. Gene Ontology (GO) Enrichment Analysis
3. Results
3.1. Features of Differentially Expressed Genes (DEGs)
3.2. Gene Ontology (GO) Enrichment Analysis for the 28 DEGs
3.3. Network of DEG Protein–Protein Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavoshan, A.; Sharebiani, H.; Taheri, H.; Fazeli, B. Antiphospholipid antibodies in Buerger’s disease. Thromb. Res. 2019, 181, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, B. Need for changes in clinical criteria for diagnosing Buerger’s disease. Vascular 2013, 21, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Miyata, T.; Shigematsu, K.; Tanemoto, K.; Nakaoka, Y.; Harigai, M.; Japan Research Committee of the Ministry of Health, L.; Welfare for Intractable, V. Current Trends in Epidemiology and Clinical Features of Thromboangiitis Obliterans in Japan—A Nationwide Survey Using the Medical Support System Database. Circ. J. 2020, 84, 1786–1796. [Google Scholar] [CrossRef] [PubMed]
- Abeles, A.M.; Nicolescu, M.; Pinchover, Z.; Abeles, M. Thromboangiitis obliterans successfully treated with phosphodiesterase type 5 inhibitors. Vascular 2014, 22, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, B.; Keramat, S.; Assadi, L.; Taheri, H. Angiogenesis induction in Buerger’s disease: A disease management double-edged sword? Orphanet J. Rare Dis. 2019, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Arkkila, P.E. Thromboangiitis obliterans (Buerger’s disease). Orphanet J. Rare Dis. 2006, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Del Conde, I.; Pena, C. Buerger disease (thromboangiitis obliterans). Tech. Vasc. Interv. Radiol. 2014, 17, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Klein-Weigel, P.F.; Richter, J.G. Thromboangiitis obliterans (Buerger’s disease). Vasa 2014, 43, 337–346. [Google Scholar] [CrossRef]
- Sun, X.L.; Law, B.Y.; de Seabra Rodrigues Dias, I.R.; Mok, S.W.F.; He, Y.Z.; Wong, V.K. Pathogenesis of thromboangiitis obliterans: Gene polymorphism and immunoregulation of human vascular endothelial cells. Atherosclerosis 2017, 265, 258–265. [Google Scholar] [CrossRef]
- Malecki, R.; Zdrojowy, K.; Adamiec, R. Thromboangiitis obliterans in the 21st century—A new face of disease. Atherosclerosis 2009, 206, 328–334. [Google Scholar] [CrossRef]
- Igari, K.; Kudo, T.; Toyofuku, T.; Inoue, Y. Endothelial dysfunction in patients with Buerger disease. Vasc. Health Risk Manag. 2017, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Jiang, W.; Wang, H.; Li, H.; Tang, B.; Liu, B.; Jiang, H.; Sun, X. The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in thromboangiitis obliterans. Cell Signal 2018, 44, 118–126. [Google Scholar] [CrossRef]
- Olin, J.W. Thromboangiitis obliterans (Buerger’s disease). N. Engl. J. Med. 2000, 343, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Shionoya, S. What is Buerger’s disease? World J. Surg. 1983, 7, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Behera, A.; Khandelwal, N.; Bapuraj, J.R.; Vasishta, R.K. Improvement in Blood Supply After “Heparin-Dextran” Therapy in Patients of Buerger’s Disease with Critical Limb Ischemia. Indian. J. Surg. 2013, 75, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Nas, O.F.; Kandemirli, S.G.; Erdemli Gursel, B.; Bilgin, C.; Korkmaz, B.; Yolgosteren, A.; Inecikli, M.F. Diagnostic utility of superb microvascular imaging in depiction of corkscrew collaterals in Buerger’s disease. J. Clin. Ultrasound 2021, 49, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.Z.; Rabi, I.; Adar, R. A point scoring system for the clinical diagnosis of Buerger’s disease. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Miyachi, H.; Morimae, H.; Kodama, A.; Narita, H.; Banno, H.; Yamamoto, K.; Komori, K. Fate of ischemic limbs in patients with Buerger’s disease based on our 30-year experience: Does smoking have a definitive impact on the late loss of limbs? Surg. Today 2015, 45, 466–470. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sugimoto, M.; Komori, K. Endarteritis obliterans in the pathogenesis of Buerger’s disease from the pathological and immunohistochemical points of view. Circ. J. 2014, 78, 2819–2826. [Google Scholar] [CrossRef]
- Mills, J.L., Sr. Buerger’s disease in the 21st century: Diagnosis, clinical features, and therapy. Semin. Vasc. Surg. 2003, 16, 179–189. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Tiwari, R.; Prabhuswamy, V.K. Thromboangiitis Obliterans (Buerger’s Disease)—Current Practices. Int. J. Inflam. 2013, 2013, 156905. [Google Scholar] [CrossRef] [PubMed]
- Ketha, S.S.; Cooper, L.T. The role of autoimmunity in thromboangiitis obliterans (Buerger’s disease). Ann. N. Y. Acad. Sci. 2013, 1285, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Morofuji, Y.; Nakagawa, S.; Ujifuku, K.; Fujimoto, T.; Otsuka, K.; Niwa, M.; Tsutsumi, K. Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals 2022, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Yoshino, S.; Furuyama, T.; Morisaki, K.; Nakano, K.; Koga, J.I.; Maehara, Y.; Komori, K.; Mori, M.; Egashira, K. Pitavastatin-Incorporated Nanoparticles for Chronic Limb Threatening Ischemia: A Phase I/IIa Clinical Trial. J. Atheroscler. Thromb. 2022, 29, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Annapurna, S.D.; Pasumarthi, D.; Pasha, A.; Doneti, R.; Sheela, B.; Botlagunta, M.; Vijaya, L.B.; Pawar, S.C. Identification of Differentially Expressed Genes in Cervical Cancer Patients by Comparative Transcriptome Analysis. Biomed. Res. Int. 2021, 2021, 8810074. [Google Scholar] [CrossRef]
- Dimmick, S.J.; Goh, A.C.; Cauzza, E.; Steinbach, L.S.; Baumgartner, I.; Stauffer, E.; Voegelin, E.; Anderson, S.E. Imaging appearances of Buerger’s disease complications in the upper and lower limbs. Clin. Radiol. 2012, 67, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Chavarria, I.J.; Brenes-Gutierrez, J.D. Thromboangiitis obliterans (Buerger’s disease). Ann. Med. Surg. 2016, 7, 79–82. [Google Scholar] [CrossRef]
- Olin, J.W.; Shih, A. Thromboangiitis obliterans (Buerger’s disease). Curr. Opin. Rheumatol. 2006, 18, 18–24. [Google Scholar] [CrossRef]
- Chen, Z.; Takahashi, M.; Naruse, T.; Nakajima, T.; Chen, Y.W.; Inoue, Y.; Ishikawa, I.; Iwai, T.; Kimura, A. Synergistic contribution of CD14 and HLA loci in the susceptibility to Buerger disease. Hum. Genet. 2007, 122, 367–372. [Google Scholar] [CrossRef]
- Brodmann, M.; Renner, W.; Stark, G.; Seinost, G.; Pilger, E. C 677T methylentetrahydrofolate reductase (MTHFR) polymorphism and thrombangiitis obliterans. Int. J. Cardiol. 2002, 83, 275–276. [Google Scholar] [CrossRef]
- Shi, S.; Song, L.; Liu, Y.; He, Y. Cotinine aggravates inflammatory response in thromboangiitis obliterans through TLR-4/MyD88/NF-kappaB inflammatory signaling pathway. Int. Angiol. 2020, 39, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.F.; Fang, Q.B.; Limu, S.; Jiareke, T.; Ge, X.H. Association Between Three SNPs and Thromboangiitis Obliterans in Xinjiang Uyghur Population. Genet. Test. Mol. Biomark. 2016, 20, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Nakajima, T.; Inoue, Y.; Kudo, T.; Jibiki, M.; Iwai, T.; Kimura, A. A single nucleotide polymorphism in the 3’-untranslated region of MyD88 gene is associated with Buerger disease but not with Takayasu arteritis in Japanese. J. Hum. Genet. 2011, 56, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, L.R. Buerger’s disease: Thromboangiitis obliterans 100 years after the initial description. Am. J. Med. Sci. 2009, 337, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Masoudian, M.; Fazeli, B.; Sharebiani, H.; Rajabnejad, A.; Ravari, H.; Akbarin, M.M.; Dadgarmoghaddam, M. Association of the five gene related endothelial cell dysfunction polymorphisms with Buerger’s disease development. Int. Angiol. 2016, 35, 205–211. [Google Scholar] [PubMed]
- Wang, C.; Zhang, Y.; Jiang, Z.; Bai, H.; Du, Z. miR-100 alleviates the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting MMP9. Vascular 2022, 30, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Creager, M.A. Thromboangiitis obliterans. Circulation 2010, 121, 1858–1861. [Google Scholar] [CrossRef]
- Farzadnia, M.; Ravari, H.; Masoudian, M.; Valizadeh, N.; Fazeli, B. Unexpected Inflammation in the Sympathetic Ganglia in Thromboangiitis Obliterans. Int. J. Angiol. 2017, 26, 212–217. [Google Scholar] [CrossRef]
- Paraskevas, K.I.; Liapis, C.D.; Briana, D.D.; Mikhailidis, D.P. Thromboangiitis obliterans (Buerger’s disease): Searching for a therapeutic strategy. Angiology 2007, 58, 75–84. [Google Scholar] [CrossRef]
- Kacmaz, F.; Kaya, A.; Keskin, M.; Keceoglu, S.; Algin, I.H.; Yilmazkaya, B.; Ilkay, E. Clinical outcomes of extended endovascular recanalization of 16 consecutive Buerger’s disease patients. Vascular 2019, 27, 233–241. [Google Scholar] [CrossRef]
- Kawarada, O.; Sakamoto, S.; Harada, K.; Noguchi, T.; Ogawa, H.; Yasuda, S. Below-the-elbow intervention for Buerger’s disease. Cardiovasc. Interv. Ther. 2015, 30, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Cacione, D.G.; do Carmo Novaes, F.; Moreno, D.H. Stem cell therapy for treatment of thromboangiitis obliterans (Buerger’s disease). Cochrane Database Syst. Rev. 2018, 10, CD012794. [Google Scholar] [CrossRef] [PubMed]
- Donas, K.P.; Schulte, S.; Ktenidis, K.; Horsch, S. The role of epidural spinal cord stimulation in the treatment of Buerger’s disease. J. Vasc. Surg. 2005, 41, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Puechal, X.; Fiessinger, J.N. Thromboangiitis obliterans or Buerger’s disease: Challenges for the rheumatologist. Rheumatology 2007, 46, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Makino, H.; Aoki, M.; Hashiya, N.; Yamasaki, K.; Azuma, J.; Sawa, Y.; Kaneda, Y.; Ogihara, T.; Morishita, R. Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2503–2509. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhou, H.C.; Yang, X.L.; Zhao, Y.P.; Luo, H.P.; He, C.W.; Wan, X.B. Embolus-carried vascular endothelial cell growth factor 165 improves angiogenesis in thromboangiitis obliterans. Genet. Mol. Res. 2014, 13, 1744–1752. [Google Scholar] [CrossRef]
- Moghaddam, A.S.; Modaghegh, M.H.S.; Rahimi, H.R.; Ehteshamfar, S.M.; Afshari, J.T. Molecular mechanisms regulating immune responses in thromboangiitis obliterans: A comprehensive review. Iran. J. Basic Med. Sci. 2019, 22, 215–224. [Google Scholar] [CrossRef]
- Tamai, H.; Kobayashi, M.; Takeshita, K.; Kodama, A.; Banno, H.; Narita, H.; Yamamoto, K.; Komori, K. Possible involvement of Notch signaling in the pathogenesis of Buerger’s disease. Surg. Today 2014, 44, 307–313. [Google Scholar] [CrossRef]
- Sharebiani, H.; Fazeli, B.; Maniscalco, R.; Ligi, D.; Mannello, F. The Imbalance among Oxidative Biomarkers and Antioxidant Defense Systems in Thromboangiitis Obliterans (Winiwarter-Buerger Disease). J. Clin. Med. 2020, 9, 1036. [Google Scholar] [CrossRef]
- Arvind, P.; Jayashree, S.; Jambunathan, S.; Nair, J.; Kakkar, V.V. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes. J. Genet. 2015, 94, 601–610. [Google Scholar] [CrossRef]
- Chang, T.T.; Yang, H.Y.; Chen, C.; Chen, J.W. CCL4 Inhibition in Atherosclerosis: Effects on Plaque Stability, Endothelial Cell Adhesiveness, and Macrophages Activation. Int. J. Mol. Sci. 2020, 21, 6567. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.B.; Sandor, A.M.; Lui, V.; Chung, J.W.; Waldman, M.M.; Long, R.A.; Estin, M.L.; Matsuda, J.L.; Friedman, R.S.; Jacobelli, J. Formin-like 1 mediates effector T cell trafficking to inflammatory sites to enable T cell-mediated autoimmunity. eLife 2020, 9, e58046. [Google Scholar] [CrossRef] [PubMed]
- Karthikkeyan, G.; Nareshkumar, R.N.; Aberami, S.; Sulochana, K.N.; Vedantham, S.; Coral, K. Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvasc. Res. 2018, 117, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cheyou, E.R.S.; Youreva, V.; Srivastava, A.K. Involvement of the early growth response protein 1 in vascular pathophysiology: An overview. Indian. J. Biochem. Biophys. 2014, 51, 457–466. [Google Scholar] [PubMed]
- Hassan, F.M.; Alsultan, A.; Alzehrani, F.; Albuali, W.; Bubshait, D.; Abass, E.; Elbasheer, M.; Alkhanbashi, A. Genetic Variants of RPL5 and RPL9 Genes among Saudi Patients Diagnosed with Thrombosis. Med. Arch. 2021, 75, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.L.; Febbraio, M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 1992, 80, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Teimouri, M.; Shabani, P.; Zali, F.; Najafi, M.; Shateri, H.; Asadnia, M.; Vatannejad, A.; Najafi, M.; Doosti, M. Circulating Levels of LAMP2 in Coronary Artery Disease: Association with Serum Lipid Profile. Horm. Metab. Res. 2017, 49, 109–114. [Google Scholar] [CrossRef]
- Jiménez, A.Q.; Gregersen, I.; Segers, F.M.; Skarpengland, T.; Kroustallaki, P.; Yang, K.; Kong, X.Y.; Lauritzen, K.H.; Olsen, M.B.; Karlsen, T.R.; et al. DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis 2021, 324, 123–132. [Google Scholar] [CrossRef]
- Cheng, X.; Ferino, E.; Hull, H.; Jickling, G.C.; Ander, B.P.; Stamova, B.; Sharp, F.R. Smoking affects gene expression in blood of patients with ischemic stroke. Ann. Clin. Transl. Neurol. 2019, 6, 1748–1756. [Google Scholar] [CrossRef]
- Lim, W.C.; Chow, V.T. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie 2006, 88, 367–377. [Google Scholar] [CrossRef]
- Chen, K.; Xi, M.; Huang, Q.; Wu, H.; Lu, G.; Song, S.; Shi, W. Long non-coding RNA MCM3AP antisense RNA 1 silencing upregulates microRNA-24-3p to accelerate proliferation and migration of vascular endothelial cells in myocardial infarction rats by reducing EIF4G2. Cell Cycle 2022, 21, 674–684. [Google Scholar] [CrossRef]
- Eyster, K.M.; Appt, S.E.; Mark-Kappeler, C.J.; Chalpe, A.; Register, T.C.; Clarkson, T.B. Gene expression signatures differ with extent of atherosclerosis in monkey iliac artery. Menopause 2011, 18, 1087–1095. [Google Scholar] [CrossRef]
- Zhong, A.; Cai, Y.; Zhou, Y.; Ding, N.; Yang, G.; Chai, X. Identification and Analysis of Hub Genes and Immune Cells Associated with the Formation of Acute Aortic Dissection. Comput. Math. Methods Med. 2023, 2023, 8072369. [Google Scholar] [CrossRef]
Mean (SD) | Median (Min–Max) | |
---|---|---|
Age (Year) | 45.47 (6.94) | 44.00 (31–57) |
Age at diagnosis (Year) | 37.4 (9.80) | 36.00 (23–56) |
Smoking (pack/year) | 23.2 (5.44) | 24 (15–33) |
Patients who quit smoking (year of quitting) (n = 7) | 6.43 (6.45) | 4 (1–18) |
Patients who continue to smoke (pieces/day) (n = 8) | 11.75 (8.05) | 12.5 (2–20) |
Lower ABI | 76.00 (9.86) | 80.00 (60–100) |
Upper ABI | 119.33 (19.44) | 120.00 (90–160) |
Prothrombin activity | 101.01 (18.77) | 102.50 (41.30–127.20) |
Factor V | 116.71 (29.04) | 122.50 (71–157) |
Blood glucose (mg/dL) | 101.80 (33.10) | 92.00 (81–208) |
LDL (mg/dL) | 130.00 (29.74) | 130.00 (78–186) |
HDL (mg/dL) | 38.27 (11.15) | 35.2 (15.9–57) |
TG (mg/dL) | 190.09 (108.52) | 160.50 (68.8–432.5) |
Proteins S | 89.02 (32.47) | 80.40 (46.4–148.5) |
Protein C | 108.61 (26.43) | 119.10 (40.9–137.20) |
Cardiovascular risk percentage | 7.80 (5.36) | 6 (3–18) |
ID | Patient Avg (log2) | Control Avg (log2) | Fold Change (FC) | p-Value | FDR p-Value | Gene Symbol | Description |
---|---|---|---|---|---|---|---|
11723032_a_at | 4.22 | 7.82 | −12.08 | 8.70 × 105 | 0.0409 | PLP2 | proteolipid protein 2 (colonic epithelium-enriched) |
11757158_x_at | 6.69 | 2.81 | 14.68 | 0.0001 | 0.0460 | RPL27A; SNORA3A | ribosomal protein L27a; small nucleolar RNA, H/ACA box 3A |
11718982_s_at | 3.83 | 7.98 | −17.75 | 0.0004 | 0.0604 | CCL4; CCL4L1; CCL4L2 | chemokine (C-C motif) ligand 4; chemokine (C-C motif) ligand 4-like 1; chemokine (C-C motif) ligand 4-like 2 |
11757157_at | 7.79 | 3.8 | 15.8 | 0.0009 | 0.0714 | RPL27A; SNORA3A | ribosomal protein L27a; small nucleolar RNA, H/ACA box 3A |
11763689_x_at | 9.64 | 4.82 | 28.22 | 0.0019 | 0.0841 | FMNL1 | formin like 1 |
11752940_a_at | 3.34 | 6.8 | −10.97 | 0.0024 | 0.0864 | EGR1 | early growth response 1 |
11748875_a_at | 8.92 | 5.28 | 12.48 | 0.0026 | 0.0881 | EIF4A1; SNORD10 | eukaryotic translation initiation factor 4A1; small nucleolar RNA, C/D box 10 |
11715238_x_at | 4.93 | 8.88 | −15.45 | 0.0029 | 0.0893 | RPL9 | ribosomal protein L9 |
11717479_at | 3.96 | 7.28 | −10.04 | 0.0032 | 0.0905 | LAMP2 | lysosomal-associated membrane protein 2 |
11717860_a_at | 3.48 | 7.34 | −14.5 | 0.0040 | 0.0938 | EGR1 | early growth response 1 |
11763688_at | 10.11 | 5.13 | 31.65 | 0.0041 | 0.0942 | FMNL1 | formin like 1 |
11757177_s_at | 12.12 | 7.57 | 23.4 | 0.0042 | 0.0946 | RNF149; SNORD89 | ring finger protein 149; small nucleolar RNA, C/D box 89 |
11757169_x_at | 8.09 | 4.37 | 13.18 | 0.0042 | 0.0947 | EIF4G2; SNORD97 | eukaryotic translation initiation factor 4 γ, 2; small nucleolar RNA, C/D box 97 |
11757881_s_at | 4.27 | 7.78 | −11.39 | 0.0052 | 0.1002 | PRKACA | protein kinase, cAMP-dependent, catalytic, α |
11716247_s_at | 3.44 | 6.87 | −10.8 | 0.0053 | 0.1003 | TOP2B | topoisomerase (DNA) II β |
11757121_x_at | 11.32 | 7.03 | 19.58 | 0.0063 | 0.1044 | EIF4A2; SNORA63 | eukaryotic translation initiation factor 4A2; small nucleolar RNA, H/ACA box 63 |
11757168_at | 8.38 | 4.54 | 14.3 | 0.0063 | 0.1044 | EIF4G2; SNORD97 | eukaryotic translation initiation factor 4 γ, 2; small nucleolar RNA, C/D box 97 |
11731346_a_at | 3.69 | 7.52 | −14.2 | 0.0069 | 0.1066 | DGKZ | diacylglycerol kinase, zeta |
11757163_at | 7.54 | 4.11 | 10.74 | 0.0071 | 0.1074 | SNORA54 | small nucleolar RNA, H/ACA box 54 |
11717127_a_at | 3.84 | 7.28 | −10.86 | 0.0073 | 0.1080 | ANPEP | alanyl (membrane) aminopeptidase |
11757120_at | 11.06 | 6.34 | 26.28 | 0.0073 | 0.1080 | EIF4A2; SNORA63 | eukaryotic translation initiation factor 4A2; small nucleolar RNA, H/ACA box 63 |
11755105_a_at | 3.95 | 7.59 | −12.49 | 0.0076 | 0.1091 | DGKZ | diacylglycerol kinase, zeta |
11722281_a_at | 8.11 | 4.51 | 12.11 | 0.0077 | 0.1094 | PHC3 | polyhomeotic homolog 3 (Drosophila) |
11740012_a_at | 7.64 | 4.03 | 12.16 | 0.0099 | 0.1171 | NEIL3 | nei-like DNA glycosylase 3 |
11744180_a_at | 3.78 | 7.28 | −11.29 | 0.0104 | 0.1179 | TCIRG1 | T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3 |
11753867_a_at | 4.56 | 8.25 | −12.92 | 0.0130 | 0.1254 | NDUFA1 | NADH dehydrogenase (ubiquinone) 1 α subcomplex, 1, 7.5kDa |
11715347_s_at | 9.28 | 12.94 | −12.63 | 0.0174 | 0.1378 | HBB | hemoglobin, β |
11744336_s_at | 7.16 | 10.72 | −11.83 | 0.0258 | 0.1573 | RPL32 | ribosomal protein L32 |
node1 | node2 | node1 Accession | node2 Accession | Score |
---|---|---|---|---|
RPL9 | RPL27A | ENSP00000400467 | ENSP00000346015 | 0.999 |
RPL9 | RPL32 | ENSP00000400467 | ENSP00000416429 | 0.999 |
RPL32 | RPL27A | ENSP00000416429 | ENSP00000346015 | 0.999 |
EIF4G2 | EIF4A1 | ENSP00000433664 | ENSP00000293831 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztan, G.; Bozbuğa, N.; İşsever, H.; Oğuz, F.; Canıaz, İ.; Yazıksız, N.; Ertan, M.; Alpagut, İ.U. Comparative Analysis of Transcriptome Profiles in Patients with Thromboangiitis Obliterans. Genes 2024, 15, 19. https://doi.org/10.3390/genes15010019
Öztan G, Bozbuğa N, İşsever H, Oğuz F, Canıaz İ, Yazıksız N, Ertan M, Alpagut İU. Comparative Analysis of Transcriptome Profiles in Patients with Thromboangiitis Obliterans. Genes. 2024; 15(1):19. https://doi.org/10.3390/genes15010019
Chicago/Turabian StyleÖztan, Gözde, Nilgün Bozbuğa, Halim İşsever, Fatma Oğuz, İrem Canıaz, Nilgün Yazıksız, Melike Ertan, and İbrahim Ufuk Alpagut. 2024. "Comparative Analysis of Transcriptome Profiles in Patients with Thromboangiitis Obliterans" Genes 15, no. 1: 19. https://doi.org/10.3390/genes15010019
APA StyleÖztan, G., Bozbuğa, N., İşsever, H., Oğuz, F., Canıaz, İ., Yazıksız, N., Ertan, M., & Alpagut, İ. U. (2024). Comparative Analysis of Transcriptome Profiles in Patients with Thromboangiitis Obliterans. Genes, 15(1), 19. https://doi.org/10.3390/genes15010019