The Pathophysiology of Inherited Renal Cystic Diseases
Abstract
:1. Introduction
2. Renal Embryology
3. Genetic Testing and Patient Counseling
3.1. Genetic Testing and Possible Outcomes
3.2. Implications of Possible Results for Patient and Family
3.3. Testing Other Family Members
4. Dysplasias
4.1. Multicystic Dysplastic Kidney
4.1.1. Genetics/Pathophysiology
4.1.2. Presentation and Diagnosis
4.1.3. Management
4.2. Cystic Dysplasia
4.2.1. Genetics/Pathophysiology
4.2.2. Presentation and Diagnosis
4.2.3. Management
4.3. Zellweger Syndrome
4.3.1. Genetics/Pathophysiology
4.3.2. Clinical Presentation and Diagnosis
4.3.3. Management
4.4. Calyceal Diverticula
4.4.1. Genetics/Pathophysiology
4.4.2. Clinical Presentation and Diagnosis
4.4.3. Management
5. Hepatorenal Fibrocystic Diseases (HRFCDs)
5.1. Autosomal Dominant Polycystic Kidney Disease
5.1.1. Genetics/Pathophysiology
5.1.2. Signaling Pathways
5.1.3. Mechanisms of Pathogenesis
5.1.4. Clinical Presentation/Diagnosis
5.1.5. Management
5.2. Autosomal Recessive Polycystic Kidney Disease
5.2.1. Genetics
5.2.2. PKHD1 Gene and Fibrocystin Product
5.2.3. DZIP1L Gene and DZIP1L Product
5.2.4. Pathophysiology
5.2.5. EGFR Axis Expression and Epithelial Secretion
5.2.6. cAMP Pathway
5.2.7. Cilia
5.2.8. Clinical Presentation
5.2.9. Diagnosis
5.2.10. Management
5.3. Nephronophthisis
5.4. Bardet–Biedl Syndrome
5.5. Meckel–Gruber Syndrome
5.6. Autosomal Dominant Tubulointerstitial Kidney Disease
5.6.1. Genetics and Pathophysiology
5.6.2. ADTKD-UMOD
Pathophysiology
Clinical Presentation
Diagnosis
Management
5.6.3. ADTKD-MUC1
Pathophysiology
Clinical Manifestations
Diagnosis
Management
5.6.4. ADTKD-REN
Pathophysiology
Clinical Manifestations
Diagnosis
Management
5.6.5. ADTKD-HNF1B
Pathophysiology
Clinical Manifestations
Diagnosis
Management
5.6.6. ADTKD-SEC61A1
Pathophysiology
Clinical Manifestations
Diagnosis
Management
5.6.7. ADTKD-DNAJB11
Pathophysiology
Clinical Manifestations
Diagnosis
5.6.8. Genetic Counseling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raina, R.; Chakraborty, R.; Sethi, S.K.; Kumar, D.; Gibson, K.; Bergmann, C. Diagnosis and Management of Renal Cystic Disease of the Newborn: Core Curriculum 2021. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2021, 78, 125–141. [Google Scholar] [CrossRef]
- Stonebrook, E.; Hoff, M.; Spencer, J.D. Congenital Anomalies of the Kidney and Urinary Tract: A Clinical Review. Curr. Treat. Options Pediatr. 2019, 5, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Marsick, R.; Limwongse, C.; Kodish, E. Genetic testing for renal diseases: Medical and ethical considerations. Am. J. Kidney Dis. 1998, 32, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.S.; McGuire, A.L.; Wittenberg, E.; Lavelle, T.A. Family-level impact of genetic testing: Integrating health economics and ethical, legal, and social implications. Pers. Med. 2021, 18, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Dukhovny, S.; Norton, M.E. What are the goals of prenatal genetic testing? Semin. Perinatol. 2018, 42, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Pettit, S.; Chalmers, D. Neonatal multicystic dysplastic kidney with mass effect: A systematic review. J. Pediatr. Urol. 2021, 17, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.L.; Treece, A.L.; Brown, B.P.; Vemulakonda, V.M. Imaging of fetal cystic kidney disease: Multicystic dysplastic kidney versus renal cystic dysplasia. Pediatr. Radiol. 2020, 50, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, T.; Garola, R.E.; Hellerstein, S. Autosomal dominant inheritance of multicystic dysplastic kidney. Pediatr. Nephrol. 1999, 13, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Chaubal, R.; Pokhriyal, S.C.; Deshmukh, A.; Gupta, U.; Chaubal, N. Multicystic Dysplastic Kidney Disease: An In-Utero Diagnosis. Cureus 2023, 15, e37786. [Google Scholar] [CrossRef]
- Sharada, S.; Vijayakumar, M.; Nageswaran, P.; Ekambaram, S.; Udani, A. Multicystic dysplastic kidney: A retrospective study. Indian Pediatr. 2014, 51, 641–643. [Google Scholar] [CrossRef]
- Society for Maternal-Fetal Medicine (SMFM); Chetty, S. Multicystic dysplastic kidney. Am. J. Obstet. Gynecol. 2021, 225, B21–B22. [Google Scholar] [CrossRef]
- Zamani, M.; Seifi, T.; Sedighzadeh, S.; Negahdari, S.; Zeighami, J.; Sedaghat, A.; Yadegari, T.; Saberi, A.; Hamid, M.; Shariati, G.; et al. Whole-Exome Sequencing Application for Genetic Diagnosis of Kidney Diseases: A Study from Southwest of Iran. Kidney360 2021, 2, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Ferro, F.; Vezzali, N.; Comploj, E.; Pedron, E.; Di Serafino, M.; Esposito, F.; Pelliccia, P.; Rossi, E.; Zeccolini, M.; Vallone, G. Pediatric cystic diseases of the kidney. J. Ultrasound 2019, 22, 381–393. [Google Scholar] [CrossRef]
- Elumalai, V.; Pasrija, D. Zellweger Spectrum Disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK560676/ (accessed on 5 December 2023).
- Cheillan, D. Zellweger Syndrome Disorders: From Severe Neonatal Disease to Atypical Adult Presentation. Adv. Exp. Med. Biol. 2020, 1299, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.N.; Ammous, Z.; Eroglu, Y.; Hernandez, E.; Heubi, J.; Himes, R.; Palle, S. Cholbam® and Zellweger spectrum disorders: Treatment implementation and management. Orphanet J. Rare Dis. 2021, 16, 388. [Google Scholar] [CrossRef] [PubMed]
- Waingankar, N.; Hayek, S.; Smith, A.D.; Okeke, Z. Calyceal diverticula: A comprehensive review. Rev. Urol. 2014, 16, 29–43. [Google Scholar]
- Kurkov, A.V.; Pominalnaya, V.M.; Nechay, V.V.; Ratke, I.A.; Mishugin, S.V.; Drobyazko, A.A.; Butenko, A.V.; Fayzullin, A.L.; Gomzikova, E.A. A Case Report of Calyceal Diverticulum: Differential Diagnosis for Organ-Preserving Operations. Front. Surg. 2021, 8, 731796. [Google Scholar] [CrossRef]
- Abushamma, F.; Ito, H.; Aboumarzouk, O.; Timoney, A.; Collin, N.; Keeley, F.X. Calyceal Diverticula Disease: Diagnosis and Management Options in the Era of Non-Contrast CT Scan. Urol. Int. 2022, 106, 688–692. [Google Scholar] [CrossRef]
- Gimpel, C.; Bergmann, C.; Bockenhauer, D.; Breysem, L.; Cadnapaphornchai, M.A.; Cetiner, M.; Dudley, J.; Emma, F.; Konrad, M.; Harris, T.; et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat. Rev. Nephrol. 2019, 15, 713–726. [Google Scholar] [CrossRef]
- Senum, S.R.; Li, Y.S.M.; Benson, K.A.; Joli, G.; Olinger, E.; Lavu, S.; Madsen, C.D.; Gregory, A.V.; Neatu, R.; Kline, T.L.; et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am. J. Hum. Genet. 2022, 109, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Park, J.H. Genetic Mechanisms of ADPKD. Adv. Exp. Med. Biol. 2016, 933, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, S.; Könecke, V.; Osten, L.; Witzgall, R. PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J. Biol. Chem. 2004, 279, 35009–35016. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Rossetti, S.; Jiang, L.; Harris, P.C.; Brown-Glaberman, U.; Wandinger-Ness, A.; Bacallao, R.; Alper, S.L. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am. J. Physiol. Ren. Physiol. 2007, 292, F930–F945. [Google Scholar] [CrossRef]
- Nair, N.; Chakraborty, R.; Mahajan, Z.; Sharma, A.; Sethi, S.K.; Raina, R. Renal Manifestations of Tuberous Sclerosis Complex. J. Kidney Cancer VHL 2020, 7, 5–19. [Google Scholar] [CrossRef]
- Dere, R.; Wilson, P.D.; Sandford, R.N.; Walker, C.L. Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR. PLoS ONE 2010, 5, e9239. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.R.; Maheshwar, M.M.; Aspinwall, R.; Thompson, P.; Cheadle, J.P.; Ravine, D.; Roy, S.; Haan, E.; Bernstein, J.; Harris, P.C. Renal Cystic Disease in Tuberous Sclerosis: Role of the Polycystic Kidney Disease 1 Gene. Am. J. Hum. Genet. 1997, 61, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Qian, D.; Shen, H.; Gong, D. Structure of the human Meckel-Gruber protein Meckelin. Sci. Adv. 2021, 7, eabj9748. [Google Scholar] [CrossRef]
- De Rechter, S.; Breysem, L.; Mekahli, D. Is Autosomal Dominant Polycystic Kidney Disease Becoming a Pediatric Disorder? Front. Pediatr. 2017, 5, 272. [Google Scholar] [CrossRef]
- Krishnappa, V.; Vinod, P.; Deverakonda, D.; Raina, R. Autosomal dominant polycystic kidney disease and the heart and brain. Clevel. Clin. J. Med. 2017, 84, 471–481. [Google Scholar] [CrossRef]
- Pei, Y.; Obaji, J.; Dupuis, A.; Paterson, A.D.; Magistroni, R.; Dicks, E.; Parfrey, P.; Cramer, B.; Coto, E.; Torra, R.; et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. JASN 2009, 20, 205–212. [Google Scholar] [CrossRef]
- Raina, R.; Houry, A.; Rath, P.; Mangat, G.; Pandher, D.; Islam, M.; Khattab, A.G.; Kalout, J.K.; Bagga, S. Clinical Utility and Tolerability of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Drug Healthc. Patient Saf. 2022, 14, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Chakraborty, R.; DeCoy, M.E.; Kline, T. Autosomal-dominant polycystic kidney disease: Tolvaptan use in adolescents and young adults with rapid progression. Pediatr. Res. 2021, 89, 894–899. [Google Scholar] [CrossRef]
- Goggolidou, P.; Richards, T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166348. [Google Scholar] [CrossRef]
- Cordido, A.; Vizoso-Gonzalez, M.; Garcia-Gonzalez, M.A. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 6523. [Google Scholar] [CrossRef]
- Bergmann, C. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses. Front. Pediatr. 2017, 5, 221. [Google Scholar] [CrossRef] [PubMed]
- Ilatovskaya, D.V.; Levchenko, V.; Pavlov, T.S.; Isaeva, E.; Klemens, C.A.; Johnson, J.; Liu, P.; Kriegel, A.J.; Staruschenko, A. Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC). EBioMedicine 2019, 40, 663–674. [Google Scholar] [CrossRef]
- Kaimori, J.; Lin, C.-C.; Outeda, P.; Garcia-Gonzalez, M.A.; Menezes, L.F.; Hartung, E.A.; Li, A.; Wu, G.; Fujita, H.; Sato, Y.; et al. NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology. Sci. Rep. 2017, 7, 7733. [Google Scholar] [CrossRef]
- Saternos, H.; Ley, S.; Abou Alaiwi, W. Primary Cilia and Calcium Signaling Interactions. Int. J. Mol. Sci. 2020, 21, 7109. [Google Scholar] [CrossRef]
- Ma, M.; Gallagher, A.-R.; Somlo, S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a028209. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.T.F.; Bonsib, S.M.; Larsen, C.P.; Hildebrandt, F. Nephronophthisis: A pathological and genetic perspective. In Pediatric Nephrology; Springer: Berlin/Heildelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Stokman, M.F.; Saunier, S.; Benmerah, A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front. Cell Dev. Biol. 2021, 9, 653138. [Google Scholar] [CrossRef]
- Elawad, O.A.M.A.; Dafallah, M.A.; Ahmed, M.M.M.; Albashir, A.A.D.; Abdalla, S.M.A.; Yousif, H.H.M.; Daw Elbait, A.A.E.; Mohammed, M.E.; Ali, H.I.H.; Ahmed, M.M.M.; et al. Bardet-Biedl syndrome: A case series. J. Med. Case Rep. 2022, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; D’Acierno, M.; Zona, E.; Capasso, G.; Zacchia, M. Bardet-Biedl syndrome: The pleiotropic role of the chaperonin-like BBS6, 10, and 12 proteins. Am. J. Med. Genetics. Part C Semin. Med. Genet. 2022, 190, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Tandon, A. A case of prenatal diagnosis of meckel-gruber syndrome in one of the dizygotic twin of a naturally conceived pregnancy. BJR Case Rep. 2022, 8, 20210097. [Google Scholar] [CrossRef]
- Devuyst, O.; Olinger, E.; Weber, S.; Eckardt, K.-U.; Kmoch, S.; Rampoldi, L.; Bleyer, A.J. Autosomal dominant tubulointerstitial kidney disease. Nat. Rev. Dis. Primers 2019, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Olinger, E.; Hofmann, P.; Kidd, K.; Dufour, I.; Belge, H.; Schaeffer, C.; Kipp, A.; Bonny, O.; Deltas, C.; Demoulin, N.; et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 2020, 98, 717–731. [Google Scholar] [CrossRef]
- Lhotta, K.; Piret, S.E.; Kramar, R.; Thakker, R.V.; Sunder-Plassmann, G.; Kotanko, P. Epidemiology of uromodulin-associated kidney disease—Results from a nation-wide survey. Nephron. Extra 2012, 2, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Econimo, L.; Schaeffer, C.; Zeni, L.; Cortinovis, R.; Alberici, F.; Rampoldi, L.; Scolari, F.; Izzi, C. Autosomal Dominant Tubulointerstitial Kidney Disease: An Emerging Cause of Genetic CKD. Kidney Int. Rep. 2022, 7, 2332–2344. [Google Scholar] [CrossRef] [PubMed]
- Micanovic, R.; Chitteti, B.R.; Dagher, P.C.; Srour, E.F.; Khan, S.; Hato, T.; Lyle, A.; Tong, Y.; Wu, X.-R.; El-Achkar, T.M. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis. J. Am. Soc. Nephrol. 2015, 26, 2172–2182. [Google Scholar] [CrossRef]
- Scolari, F.; Caridi, G.; Rampoldi, L.; Tardanico, R.; Izzi, C.; Pirulli, D.; Amoroso, A.; Casari, G.; Ghiggeri, G.M. Uromodulin storage diseases: Clinical aspects and mechanisms. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2004, 44, 987–999. [Google Scholar] [CrossRef]
- Bernascone, I.; Janas, S.; Ikehata, M.; Trudu, M.; Corbelli, A.; Schaeffer, C.; Rastaldi, M.P.; Devuyst, O.; Rampoldi, L. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 2010, 19, 2998–3010. [Google Scholar] [CrossRef]
- Raffi, H.; Bates, J.M.; Laszik, Z.; Kumar, S. Tamm–Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int. 2006, 69, 1914–1915. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.G.; Dang, L.T.; Marsh, G.; Roach, A.M.; Levine, Z.G.; Monti, A.; Reyon, D.; Feigenbaum, L.; Duffield, J.S. Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J. Clin. Investig. 2017, 127, 3954–3969. [Google Scholar] [CrossRef]
- Dvela-Levitt, M.; Kost-Alimova, M.; Emani, M.; Kohnert, E.; Thompson, R.; Sidhom, E.-H.; Rivadeneira, A.; Sahakian, N.; Roignot, J.; Papagregoriou, G.; et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell 2019, 178, 521–535.e23. [Google Scholar] [CrossRef] [PubMed]
- Živná, M.; Hůlková, H.; Matignon, M.; Hodaňová, K.; Vylet’al, P.; Kalbáčová, M.; Barešová, V.; Sikora, J.; Blažková, H.; Živný, J.; et al. Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure. Am. J. Hum. Genet. 2009, 85, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Bockenhauer, D.; Jaureguiberry, G. HNF1B-associated clinical phenotypes: The kidney and beyond. Pediatr. Nephrol. 2016, 31, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Shamam, Y.M.; Hashmi, M.F. Autosomal Dominant Tubulointerstitial Kidney Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK568710/ (accessed on 5 December 2023).
- Sicking, M.; Živná, M.; Bhadra, P.; Barešová, V.; Tirincsi, A.; Hadzibeganovic, D.; Hodaňová, K.; Vyleťal, P.; Sovová, J.; Jedličková, I.; et al. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci. Alliance 2022, 5, e202101150. [Google Scholar] [CrossRef]
- Bolar, N.A.; Golzio, C.; Živná, M.; Hayot, G.; Van Hemelrijk, C.; Schepers, D.; Vandeweyer, G.; Hoischen, A.; Huyghe, J.R.; Raes, A.; et al. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. Am. J. Hum. Genet. 2016, 99, 174–187. [Google Scholar] [CrossRef]
- Schubert, D.; Klein, M.-C.; Hassdenteufel, S.; Caballero-Oteyza, A.; Yang, L.; Proietti, M.; Bulashevska, A.; Kemming, J.; Kühn, J.; Winzer, S.; et al. Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon α 1 subunit (SEC61A1). J. Allergy Clin. Immunol. 2018, 141, 1427–1438. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Olson, R.J.; Besse, W.; Heyer, C.M.; Gainullin, V.G.; Smith, J.M.; Audrézet, M.-P.; Hopp, K.; Porath, B.; Shi, B.; et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am. J. Hum. Genet. 2018, 102, 832–844. [Google Scholar] [CrossRef]
Disease Aspect | ADPKD | ARPKD |
---|---|---|
Mutated gene > encoded product | PKD1 > polycystin-1 (PC1) PKD2 > polycystin-2 (PC2) | PKHD1 > fibrocystin (FPC) |
Common age of onset | Adult | Neonate and childhood |
Inheritance | Autosomal dominant | Autosomal recessive |
Family history of PKD | Commonly present | Commonly absent |
Macroscopic cysts | Present | Few or none |
Other clinical symptoms | Hypertension, urinary concentrating defect, hematuria, cysts outside of kidney Less common symptoms: urolithiasis, flank pain, mitral valve prolapse, cerebral/aortic aneurysm | Hypertension, urinary concentrating defect, hepatosplenomegaly Less common symptoms: Portal hypertension |
Risk of end-stage renal disease (ESRD) | 50% lifetime risk | >60% by adulthood |
Genetic Disorder | Unique Clinical Manifestations | Diagnosis | Pathophysiology | Treatment | Other Notes |
---|---|---|---|---|---|
UMOD | Accumulation of intracellular deposits within the ER in the TAL. Gout and ESRD. | Genetic testing | Uromodulin accumulation | Management of Gout and CKD. Renal transplantation to prevent recurrence. BRD4780 TNFR:Fc. | Most common ADTKD |
MUC1 | Resembling ADTKD-UMOD, but exhibiting increased prevalence of ESRD at earlier age Gout is less common | Genetic testing for the heterozygous MUC1 variant | Buildup of MUC1-fs Typically 7 cytosine insertion stretch. | BRD4780 | Second most common ADTKD |
REN | Childhood onset vs. adult onset. Diminished renin immunostaining in the JGA. Reduced erythropoietin, elevated potassium levels | Genetic testing CKD, anemia, and gout manifesting n early childhood | Reduced renin and aldosterone levels. | Fludrocortisone and erythropoiesis-stimulating agents. | |
HNF1β | Variable renal and extrarenal manifestations: congenital kidney and urinary tract anomalies, pancreatic irregularities | Genetic testing, reduced magnesium and potassium, gout | Disrupted control of gene transcription for nephrogenesis, ion transport, cystic disease genes | Treat extrarenal anomalies | |
DNAJB11 | Anemia, low neutrophil levels, reoccurring respiratory tract infections | Genetic testing | Missense mutation, SEC61-channelopathy within ER | Sodium phenylbutyrate | Very rare |
SEC61A1 | Bilateral small renal cysts, liver cysts | Genetic testing | Disruption of GRP78/BiP cofactor. Possibly PKD1 protein | n/a | Very rare |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satariano, M.; Ghose, S.; Raina, R. The Pathophysiology of Inherited Renal Cystic Diseases. Genes 2024, 15, 91. https://doi.org/10.3390/genes15010091
Satariano M, Ghose S, Raina R. The Pathophysiology of Inherited Renal Cystic Diseases. Genes. 2024; 15(1):91. https://doi.org/10.3390/genes15010091
Chicago/Turabian StyleSatariano, Matthew, Shaarav Ghose, and Rupesh Raina. 2024. "The Pathophysiology of Inherited Renal Cystic Diseases" Genes 15, no. 1: 91. https://doi.org/10.3390/genes15010091
APA StyleSatariano, M., Ghose, S., & Raina, R. (2024). The Pathophysiology of Inherited Renal Cystic Diseases. Genes, 15(1), 91. https://doi.org/10.3390/genes15010091