Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. General Description
4.2. Major Sub-Groups Specificity
4.3. Rare Variants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef]
- Petrova, N.V.; Kashirskaya, N.Y.; Vasilyeva, T.A.; Kondratyeva, E.I.; Zhekaite, E.K.; Voronkova, A.Y.; Sherman, V.D.; Galkina, V.A.; Ginter, E.K.; Kutsev, S.I.; et al. Analysis of CFTR Mutation Spectrum in Ethnic Russian Cystic Fibrosis Patients. Genes 2020, 11, 554. [Google Scholar] [CrossRef]
- Bienvenu, T.; Lopez, M.; Girodon, E. Molecular Diagnosis and Genetic Counseling of Cystic Fibrosis and Related Disorders: New Challenges. Genes 2020, 11, 619. [Google Scholar] [CrossRef]
- Petrovski, S.; Goldstein, D.B. Unequal representation of genetic variation across ancestry groups creates healthcare inequality in the application of precision medicine. Genome Biol. 2016, 17, 157. [Google Scholar] [CrossRef]
- Bell, C.J.; Dinwiddie, D.L.; Miller, N.A.; Hateley, S.L.; Ganusova, E.E.; Mudge, J.; Langley, R.J.; Zhang, L.; Lee, C.C.; Schilkey, F.D.; et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 2011, 3, 65ra4. [Google Scholar] [CrossRef]
- Beauchamp, K.A.; Johansen Taber, K.A.; Grauman, P.V.; Spurka, L.; Lim-Harashima, J.; Svenson, A.; Goldberg, J.D.; Muzzey, D. Sequencing as a first-line methodology for cystic fibrosis carrier screening. Genet. Med. 2019, 21, 2569–2576. [Google Scholar] [CrossRef]
- Baker, M.W.; Atkins, A.E.; Cordovado, S.K.; Hendrix, M.; Earley, M.C.; Farrell, P.M. Improving newborn screening for cystic fibrosis using next-generation sequencing technology: A technical feasibility study. Genet. Med. 2016, 18, 231–238. [Google Scholar] [CrossRef]
- Chamayou, S.; Sicali, M.; Lombardo, D.; Alecci, C.; Ragolia, C.; Maglia, E.; Liprino, A.; Cardea, C.; Storaci, G.; Romano, S.; et al. Universal strategy for preimplantation genetic testing for cystic fibrosis based on next-generation sequencing. J. Assist. Reprod. Genet. 2020, 37, 213–222. [Google Scholar] [CrossRef]
- da Silva Filho, L.; Marostica, P.J.C.; Athanazio, R.A.; Reis, F.J.C.; Damaceno, N.; Paes, A.T.; Hira, A.Y.; Schlesinger, D.; Kok, F.; Amaral, M.D.; et al. Extensive CFTR sequencing through NGS in Brazilian individuals with cystic fibrosis: Unravelling regional discrepancies in the country. J. Cyst. Fibros. 2021, 20, 473–484. [Google Scholar] [CrossRef]
- Chamayou, S.; Sicali, M.; Lombardo, D.; Maglia, E.; Liprino, A.; Cardea, C.; Fichera, M.; Venti, E.; Guglielmino, A. The true panel of cystic fibrosis mutations in the Sicilian population. BMC Med. Genet. 2020, 21, 89. [Google Scholar] [CrossRef]
- Tambets, K.; Yunusbayev, B.; Hudjashov, G.; Ilumae, A.M.; Rootsi, S.; Honkola, T.; Vesakoski, O.; Atkinson, Q.; Skoglund, P.; Kushniarevich, A.; et al. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol. 2018, 19, 139. [Google Scholar] [CrossRef]
- Yunusbayev, B.; Metspalu, M.; Metspalu, E.; Valeev, A.; Litvinov, S.; Valiev, R.; Akhmetova, V.; Balanovska, E.; Balanovsky, O.; Turdikulova, S.; et al. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet. 2015, 11, e1005068. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Sondo, E.; Cresta, F.; Pastorino, C.; Tomati, V.; Capurro, V.; Pesce, E.; Lena, M.; Iacomino, M.; Baffico, A.M.; Coviello, D.; et al. The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. Int. J. Mol. Sci. 2022, 23, 3175. [Google Scholar] [CrossRef]
- Terlizzi, V.; Centrone, C.; Ferrari, B.; Castellani, C.; Gunawardena, T.N.A.; Taccetti, G.; Laselva, O. Modulator Therapy in Cystic Fibrosis Patients with cis Variants in F508del Complex Allele: A Short-Term Observational Case Series. J. Pers. Med. 2022, 12, 1421. [Google Scholar] [CrossRef]
- All-Russian Public Organization. All-Russian Association of Patients with Cystic Fibrosis. Available online: https://mukoviscidoz.org/mukovistsidoz-v-rossii.html (accessed on 10 August 2024).
- Castellani, C.; Cuppens, H.; Macek, M., Jr.; Cassiman, J.J.; Kerem, E.; Durie, P.; Tullis, E.; Assael, B.M.; Bombieri, C.; Brown, A.; et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J. Cyst. Fibros. 2008, 7, 179–196. [Google Scholar] [CrossRef]
- European Cystic Fibrosis Society. Available online: https://www.ecfs.eu/projects/ecfs-patient-registry/annual-reports (accessed on 22 August 2024).
- Hosseini Nami, A.; Kabiri, M.; Zafarghandi Motlagh, F.; Shirzadeh, T.; Fakhari, N.; Karimi, A.; Bagherian, H.; Jamali, M.; Younesikhah, S.; Shadman, S.; et al. Genetic attributes of Iranian cystic fibrosis patients: The diagnostic efficiency of CFTR mutations in over a decade. Front. Genet. 2023, 14, 1140034. [Google Scholar] [CrossRef]
- Petrova, N.V.; Kashirskaya, N.Y.; Vasilyeva, T.A.; Balinova, N.V.; Marakhonov, A.V.; Kondratyeva, E.I.; Zhekaite, E.K.; Voronkova, A.Y.; Kutsev, S.I.; Zinchenko, R.A. High frequency of complex CFTR alleles associated with c.1521_1523delCTT (F508del) in Russian cystic fibrosis patients. BMC Genom. 2022, 23, 252. [Google Scholar] [CrossRef]
- Van Goor, F.; Yu, H.; Burton, B.; Hoffman, B.J. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J. Cyst. Fibros. 2014, 13, 29–36. [Google Scholar] [CrossRef]
- Sosnay, P.R.; Siklosi, K.R.; Van Goor, F.; Kaniecki, K.; Yu, H.; Sharma, N.; Ramalho, A.S.; Amaral, M.D.; Dorfman, R.; Zielenski, J.; et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 2013, 45, 1160–1167. [Google Scholar] [CrossRef]
- Stepanova, A.A.; Abrukova, A.V.; Savaskina, E.N.; Poliakov, A.V. Mutation p.E92K is the primary cause of cystic fibrosis in Chuvashes. Genetika 2012, 48, 863–871. [Google Scholar] [CrossRef]
- Civan, H.A.; Seyhan, S. Molecular Heterogeneity in Cystic Fibrosis. J. Pediatr. Genet. 2020, 9, 171–176. [Google Scholar] [CrossRef]
- Cystic Fibrosis. Register of Patients with Cystic Fibrosis in the Russian Federation. 2021. Available online: https://ostrovaru.com/wp-content/uploads/2023/11/systicfibrosis_brochure_2021-dlya-sajta.pdf (accessed on 1 August 2024).
- Dugueperoux, I.; De Braekeleer, M. The CFTR 3849+10kbC->T and 2789+5G->A alleles are associated with a mild CF phenotype. Eur. Respir. J. 2005, 25, 468–473. [Google Scholar] [CrossRef]
- Maule, G.; Casini, A.; Montagna, C.; Ramalho, A.S.; De Boeck, K.; Debyser, Z.; Carlon, M.S.; Petris, G.; Cereseto, A. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat. Commun. 2019, 10, 3556. [Google Scholar] [CrossRef]
- Watson, M.S.; Cutting, G.R.; Desnick, R.J.; Driscoll, D.A.; Klinger, K.; Mennuti, M.; Palomaki, G.E.; Popovich, B.W.; Pratt, V.M.; Rohlfs, E.M.; et al. Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel. Genet. Med. 2004, 6, 387–391. [Google Scholar] [CrossRef]
- Brennan, M.L.; Schrijver, I. Cystic Fibrosis: A Review of Associated Phenotypes, Use of Molecular Diagnostic Approaches, Genetic Characteristics, Progress, and Dilemmas. J. Mol. Diagn. JMD 2016, 18, 3–14. [Google Scholar] [CrossRef]
- Cystic Fibrosis Foundation. Available online: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2019-Patient-Registry-Annual-Data-Report.pdf (accessed on 20 August 2024).
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic fibrosis: A worldwide analysis of CFTR mutations--correlation with incidence data and application to screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef]
- Dork, T.; Macek, M., Jr.; Mekus, F.; Tummler, B.; Tzountzouris, J.; Casals, T.; Krebsova, A.; Koudova, M.; Sakmaryova, I.; Macek, M., Sr.; et al. Characterization of a novel 21-kb deletion, CFTRdele2,3(21 kb), in the CFTR gene: A cystic fibrosis mutation of Slavic origin common in Central and East Europe. Hum. Genet. 2000, 106, 259–268. [Google Scholar] [CrossRef]
- Chernykh, V.; Krasovsky, S.; Solovova, O.; Adyan, T.; Stepanova, A.; Marnat, E.; Shtaut, M.; Sedova, A.; Sorokina, T.; Beskorovainaya, T.; et al. Pathogenic Variants and Genotypes of the CFTR Gene in Russian Men with Cystic Fibrosis and CBAVD Syndrome. Int. J. Mol. Sci. 2023, 24, 16287. [Google Scholar] [CrossRef]
- Dork, T.; Dworniczak, B.; Aulehla-Scholz, C.; Wieczorek, D.; Bohm, I.; Mayerova, A.; Seydewitz, H.H.; Nieschlag, E.; Meschede, D.; Horst, J.; et al. Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum. Genet. 1997, 100, 365–377. [Google Scholar] [CrossRef]
- Behar, D.M.; Inbar, O.; Shteinberg, M.; Gur, M.; Mussaffi, H.; Shoseyov, D.; Ashkenazi, M.; Alkrinawi, S.; Bormans, C.; Hakim, F.; et al. Nationwide genetic analysis for molecularly unresolved cystic fibrosis patients in a multiethnic society: Implications for preconception carrier screening. Mol. Genet. Genom. Med. 2017, 5, 223–236. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Csanady, L.; Gadsby, D.C.; Chen, J. Molecular Structure of the Human CFTR Ion Channel. Cell 2017, 169, 85–95 e88. [Google Scholar] [CrossRef]
- Han, S.T.; Rab, A.; Pellicore, M.J.; Davis, E.F.; McCague, A.F.; Evans, T.A.; Joynt, A.T.; Lu, Z.; Cai, Z.; Raraigh, K.S.; et al. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 2018, 3, e121159. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef]
- Zietkiewicz, E.; Rutkiewicz, E.; Pogorzelski, A.; Klimek, B.; Voelkel, K.; Witt, M. CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients. PLoS ONE 2014, 9, e89094. [Google Scholar] [CrossRef]
- Krasnov, K.V.; Tzetis, M.; Cheng, J.; Guggino, W.B.; Cutting, G.R. Localization studies of rare missense mutations in cystic fibrosis transmembrane conductance regulator (CFTR) facilitate interpretation of genotype-phenotype relationships. Hum. Mutat. 2008, 29, 1364–1372. [Google Scholar] [CrossRef]
- Korytina, G.F.; Viktorova, T.V.; Ivashchenko, T.E.; Baranov, V.S.; Khusnutdinova, E.K. The mutation spectrum of the CFTR gene in mucoviscidosis patients from Bashkortostan. Mol. Biol. 2003, 37, 61–67. [Google Scholar]
- Schaedel, C.; Hjelte, L.; de Monestrol, I.; Johannesson, M.; Kollberg, H.; Kornfalt, R.; Holmberg, L. Three common CFTR mutations should be included in a neonatal screening programme for cystic fibrosis in Sweden. Clin. Genet. 1999, 56, 318–322. [Google Scholar] [CrossRef]
- Kahre, T.; Teder, M.; Panov, M.; Metspalu, A. Severe CF manifestation with anaemia and failure to thrive in a 394delTT homozygous patient. J. Cyst. Fibros. 2004, 3, 58–60. [Google Scholar] [CrossRef]
- Zacarias, S.; Batista, M.S.P.; Ramalho, S.S.; Victor, B.L.; Farinha, C.M. Rescue of Rare CFTR Trafficking Mutants Highlights a Structural Location-Dependent Pattern for Correction. Int. J. Mol. Sci. 2023, 24, 3211. [Google Scholar] [CrossRef]
- Ong, T.; Marshall, S.; Karczeski, B. Cystic fibrosis and congenital absence of the vas deferens. N. Engl. J. Med. 1991, 325, 64–65. [Google Scholar]
- Cystic Fibrosis Mutation Database. Available online: http://www.genet.sickkids.on.ca/cftr/Home.html (accessed on 1 August 2024).
- Steiner, B.; Rosendahl, J.; Witt, H.; Teich, N.; Keim, V.; Schulz, H.U.; Pfutzer, R.; Lohr, M.; Gress, T.M.; Nickel, R.; et al. Common CFTR haplotypes and susceptibility to chronic pancreatitis and congenital bilateral absence of the vas deferens. Hum. Mutat. 2011, 32, 912–920. [Google Scholar] [CrossRef]
- Tomaiuolo, R.; Fausto, M.; Elce, A.; Strina, I.; Ranieri, A.; Amato, F.; Castaldo, G.; De Placido, G.; Alviggi, C. Enhanced frequency of CFTR gene variants in couples who are candidates for assisted reproductive technology treatment. Clin. Chem. Lab. Med. 2011, 49, 1289–1293. [Google Scholar] [CrossRef]
- Hamoir, C.; Pepermans, X.; Piessevaux, H.; Jouret-Mourin, A.; Weynand, B.; Habyalimana, J.B.; Leal, T.; Geubel, A.; Gigot, J.F.; Deprez, P.H. Clinical and morphological characteristics of sporadic genetically determined pancreatitis as compared to idiopathic pancreatitis: Higher risk of pancreatic cancer in CFTR variants. Digestion 2013, 87, 229–239. [Google Scholar] [CrossRef]
- Premchandar, A.; Ming, R.; Baiad, A.; Da Fonte, D.F.; Xu, H.; Faubert, D.; Veit, G.; Lukacs, G.L. Readthrough-induced misincorporated amino acid ratios guide mutant-specific therapeutic approaches for two CFTR nonsense mutations. Front. Pharmacol. 2024, 15, 1389586. [Google Scholar] [CrossRef]
- White, M.B.; Krueger, L.J.; Holsclaw, D.S., Jr.; Gerrard, B.C.; Stewart, C.; Quittell, L.; Dolganov, G.; Baranov, V.; Ivaschenko, T.; Kapronov, N.I.; et al. Detection of three rare frameshift mutations in the cystic fibrosis gene in an African-American (CF444delA), an Italian (CF2522insC), and a Soviet (CF3821delT). Genomics 1991, 10, 266–269. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y.; Yang, J.; Wang, H.; Liu, T.; Xu, W.; Li, X.; Zhu, Y.; Xu, K.F.; Zhang, X. p.G970D is the most frequent CFTR mutation in Chinese patients with cystic fibrosis. Hum. Genome Var. 2016, 3, 15063. [Google Scholar] [CrossRef]
- Petrova, N.V.; Marakhonov, A.V.; Vasilyeva, T.A.; Kashirskaya, N.Y.; Ginter, E.K.; Kutsev, S.I.; Zinchenko, R.A. Comprehensive genotyping reveals novel CFTR variants in cystic fibrosis patients from the Russian Federation. Clin. Genet. 2019, 95, 444–447. [Google Scholar] [CrossRef]
- Raraigh, K.S.; Lewis, M.H.; Collaco, J.M.; Corey, M.; Penland, C.M.; Stephenson, A.L.; Rommens, J.M.; Castellani, C.; Cutting, G.R. Caution advised in the use of CFTR modulator treatment for individuals harboring specific CFTR variants. J. Cyst. Fibros. 2022, 21, 856–860. [Google Scholar] [CrossRef]
- Mukoviszidose e.V. Available online: https://www.muko.info/englisch-version (accessed on 15 August 2024).
- Kondratyeva, E.; Melyanovskaya, Y.; Efremova, A.; Krasnova, M.; Mokrousova, D.; Bulatenko, N.; Petrova, N.; Polyakov, A.; Adyan, T.; Kovalskaia, V.; et al. Clinical and Genetic Characteristics of a Patient with Cystic Fibrosis with a Complex Allele [E217G;G509D] and Functional Evaluation of the CFTR Channel. Genes 2023, 14, 1705. [Google Scholar] [CrossRef]
- Auzenbaha, M.; Aleksejeva, E.; Taurina, G.; Kornejeva, L.; Kempa, I.; Svabe, V.; Gailite, L. Clinical and Genetic Characterisation of Cystic Fibrosis Patients in Latvia: A Twenty-Five-Year Experience. Diagnostics 2022, 12, 2893. [Google Scholar] [CrossRef]
- Cuppens, H.; Lin, W.; Jaspers, M.; Costes, B.; Teng, H.; Vankeerberghen, A.; Jorissen, M.; Droogmans, G.; Reynaert, I.; Goossens, M.; et al. Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J. Clin. Investig. 1998, 101, 487–496. [Google Scholar] [CrossRef]
- Groman, J.D.; Hefferon, T.W.; Casals, T.; Bassas, L.; Estivill, X.; Des Georges, M.; Guittard, C.; Koudova, M.; Fallin, M.D.; Nemeth, K.; et al. Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am. J. Hum. Genet. 2004, 74, 176–179. [Google Scholar] [CrossRef]
- Radpour, R.; Salahshourifar, I.; Gourabi, H.; AN Sadighi Gilani, M.; Vosough Dizaj, A. CFTR mutations in congenital absence of vas deferens. Int. J. Fertil. Steril. 2007, 1, 1–10. [Google Scholar]
- Chillon, M.; Casals, T.; Mercier, B.; Bassas, L.; Lissens, W.; Silber, S.; Romey, M.C.; Ruiz-Romero, J.; Verlingue, C.; Claustres, M.; et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N. Engl. J. Med. 1995, 332, 1475–1480. [Google Scholar] [CrossRef]
- Moskowitz, S.M.; Chmiel, J.F.; Sternen, D.L.; Cheng, E.; Cutting, G. CFTR-related disorders. In GeneReviews [Internet]; University of Washington: Seattle, WA, USA, 2001. [Google Scholar]
- Sermet-Gaudelus, I.; Girodon, E.; Sands, D.; Stremmler, N.; Vavrova, V.; Deneuville, E.; Reix, P.; Bui, S.; Huet, F.; Lebourgeois, M.; et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am. J. Respir. Crit. Care Med. 2010, 182, 929–936. [Google Scholar] [CrossRef]
- Pepermans, X.; Mellado, S.; Chialina, S.; Wagener, M.; Gallardo, L.; Lande, H.; Bordino, W.; Baran, D.; Bours, V.; Leal, T. Identification and frequencies of cystic fibrosis mutations in central Argentina. Clin. Biochem. 2016, 49, 154–160. [Google Scholar] [CrossRef]
- Terlizzi, V.; Di Lullo, A.M.; Comegna, M.; Centrone, C.; Pelo, E.; Castaldo, G.; Raia, V.; Braggion, C. S737F is a new CFTR mutation typical of patients originally from the Tuscany region in Italy. Ital. J. Pediatr. 2018, 44, 2. [Google Scholar] [CrossRef]
- Raynal, C.; Baux, D.; Theze, C.; Bareil, C.; Taulan, M.; Roux, A.F.; Claustres, M.; Tuffery-Giraud, S.; des Georges, M. A classification model relative to splicing for variants of unknown clinical significance: Application to the CFTR gene. Hum. Mutat. 2013, 34, 774–784. [Google Scholar] [CrossRef]
- Girardet, A.; Guittard, C.; Altieri, J.P.; Templin, C.; Stremler, N.; Beroud, C.; des Georges, M.; Claustres, M. Negative genetic neonatal screening for cystic fibrosis caused by compound heterozygosity for two large CFTR rearrangements. Clin. Genet. 2007, 72, 374–377. [Google Scholar] [CrossRef]
- Atag, E.; Bas Ikizoglu, N.; Ergenekon, A.P.; Gokdemir, Y.; Eralp, E.E.; Ata, P.; Ersu, R.; Karakoc, F.; Karadag, B. Novel mutations and deletions in cystic fibrosis in a tertiary cystic fibrosis center in Istanbul. Pediatr. Pulmonol. 2019, 54, 743–750. [Google Scholar] [CrossRef]
- Erdogan, M.; Kose, M.; Pekcan, S.; Hangul, M.; Balta, B.; Kiraz, A.; Akinci Gonen, G.; Zamani, A.G.; Yildirim, M.S.; Ramasli Gursoy, T.; et al. The Genetic Analysis of Cystic Fibrosis Patients with Seven Novel Mutations in the CFTR Gene in the Central Anatolian Region of Turkey. Balk. Med. J. 2021, 38, 357–364. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Castellani, C.; Keenan, K.; Avolio, J.; Volpi, S.; Boland, M.; Kovesi, T.; Bjornson, C.; Chilvers, M.A.; Morgan, L.; et al. Inconclusive diagnosis of cystic fibrosis after newborn screening. Pediatrics 2015, 135, e1377–e1385. [Google Scholar] [CrossRef]
- Gonska, T.; Keenan, K.; Au, J.; Dupuis, A.; Chilvers, M.A.; Burgess, C.; Bjornson, C.; Fairservice, L.; Brusky, J.; Kherani, T.; et al. Outcomes of Cystic Fibrosis Screening-Positive Infants with Inconclusive Diagnosis at School Age. Pediatrics 2021, 148, e2021051740. [Google Scholar] [CrossRef]
- Dayangac, D.; Erdem, H.; Yilmaz, E.; Sahin, A.; Sohn, C.; Ozguc, M.; Dork, T. Mutations of the CFTR gene in Turkish patients with congenital bilateral absence of the vas deferens. Hum. Reprod. 2004, 19, 1094–1100. [Google Scholar] [CrossRef]
- Tsui, L.C.; Dorfman, R. The cystic fibrosis gene: A molecular genetic perspective. Cold Spring Harb. Perspect. Med. 2013, 3, a009472. [Google Scholar] [CrossRef]
- Li, H.; Wen, Q.; Li, H.; Zhao, L.; Zhang, X.; Wang, J.; Cheng, L.; Yang, J.; Chen, S.; Ma, X.; et al. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) in Chinese patients with congenital bilateral absence of vas deferens. J. Cyst. Fibros. 2012, 11, 316–323. [Google Scholar] [CrossRef]
- Sedova, A.O.; Shtaut, M.I.; Bragina, E.E.; Sorokina, T.M.; Shmarina, G.V.; Andreeva, M.V.; Kurilo, L.F.; Krasovskiy, S.A.; Polyakov, A.V.; Chernykh, V.B. Comprehensive semen examination in patients with pancreatic-sufficient and pancreatic-insufficient cystic fibrosis. Asian J. Androl. 2023, 25, 591–597. [Google Scholar] [CrossRef]
- Liu, K.; Xu, W.; Xiao, M.; Zhao, X.; Bian, C.; Zhang, Q.; Song, J.; Chen, K.; Tian, X.; Liu, Y.; et al. Characterization of clinical and genetic spectrum of Chinese patients with cystic fibrosis. Orphanet J. Rare Dis. 2020, 15, 150. [Google Scholar] [CrossRef]
# | Ethnic Groups | Language Affiliation | n | Frequency, % |
---|---|---|---|---|
1 | Russians | Slavic | 56 | 43.4 |
2 | Tatars | Turkic | 38 | 29.5 |
3 | Bashkirs | Turkic | 7 | 5.4 |
4 | Ukrainians | Slavic | 4 | 3.1 |
5 | Chuvashes | Turkic | 1 | 0.8 |
6 | Armenians | Armenian | 1 | 0.8 |
7 | Karachays | Turkic | 1 | 0.8 |
8 | Admixed | 21 | 16.3 | |
Total | 100 |
Legacy Name | cDNA | Protein | RB | RF ** | p | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
1 | F508del | c.1521_1523del | p.Phe508del | 141 | 54.65 | 3829 | 51.55 | <0.001 |
2 | E92K | c.274G>A | p.Glu92Lys | 34 | 13.18 | 257 | 3.46 | <0.001 |
3 | 3849+10kbC>T | c.3718-2477C>T | - | 12 | 4.64 | 165 | 2.22 | 0.495 |
4 | CFTRdele2.3 | c.54-5940_270+10250del21kb | p.Ser18ArgfsX16 | 9 | 3.48 | 454 | 6.11 | <0.001 |
5 | L138ins | c.413_415dupTAC | p.Leu138dup | 7 | 2.71 | 122 | 1.64 | 0.745 |
6 | N1303K | c.3909C>G | p.Asn1303Lys | 4 | 1.55 | 113 | 1.52 | 0.301 * |
7 | 394delTT | c.262_263del | p.Leu88IlefsTer22 | 4 | 1.55 | 63 | 0.85 | 0.833 * |
8 | p.[G509D; E217G] | [c.1526G>A; c.650A>G] | p. [Gly509Asp; p.Glu217Gly] | 3 | 1.16 | 1 | 0.01 | <0.001 |
9 | 2143delT | c.2012del | p.Leu671Ter | 3 | 1.16 | 147 | 1.98 | 0.050 * |
10 | p. [S466X; R1070Q] | [c.1397C>G; c.3209G>A] | [p.Ser466Ter; p.Arg1070Gln] | 3 | 1.16 | 34 | 0.46 | 0.609 * |
11 | S1196X | c.3587C>G | p.Ser1196Ter | 3 | 1.16 | 32 | 0.43 | 0.797 * |
12 | W1282X | c.3846G>A | p.Trp1282Ter | 3 | 1.16 | 128 | 1.72 | 0.096 * |
13 | Y84X | c.252T>A | p.Tyr84Ter | 3 | 1.16 | 4 | 0.05 | 0.002 * |
14 | G194R | c.580G>A | p.Gly194Arg | 2 | 0.77 | 5 | 0.07 | 0.091 * |
15 | 1525-1G>A | c.1393-1G>A | - | 2 | 0.77 | 1 | 0.01 | 0.002 * |
16 | G551D | c.1652G>A | p.Gly551Asp | 1 | 0.39 | 3 | 0.04 | 0.593 * |
17 | 2184delA | c.2052delA | p.Lys684Asnfs*38 | 1 | 0.39 | 2 | 0.03 | 0.445 * |
18 | 621+1G>T | c.489+1G>T | - | 1 | 0.39 | 14 | 0.19 | 0.654 * |
19 | L1335P (4136T>C) | c.4004T>C | p.Leu1335Pro | 1 | 0.39 | 13 | 0.18 | 0.692 * |
20 | R117C (481C>T) | c.349C>T | p.Arg117Cys | 1 | 0.39 | 7 | 0.09 | 0.987 * |
21 | 4061G>A (W1310X) | c.3929G>A | p.Trp1310Ter | 1 | 0.39 | 23 | 0.31 | 0.977 * |
22 | D1152H (3586G>C) | c.3454G>C | p.Asp1152His | 1 | 0.39 | 9 | 0.12 | 0.884 * |
23 | 1717-1G>A | c.1585-1G>A | - | 1 | 0.39 | 4 | 0.05 | 0.716 * |
24 | 1367del5 | c.1243_1247delAACAA | p.Asn415Ter | 1 | 0.39 | 31 | 0.42 | 0.737 * |
25 | 3821delT (S1231fs) | c.3691delT | p.Ser1231ProfsX4 | 1 | 0.39 | 38 | 0.51 | 0.555 * |
26 | 4015delA | c.3883delA | p.Ile1295PhefsX33 | 1 | 0.39 | 13 | 0.18 | 0.692 * |
27 | 2184insA | c.2052_2053insA | p.Gln685ThrfsX4 | 1 | 0.39 | 144 | 1.94 | 0.010 * |
28 | W1282R | c.3844T>C | p.Trp1282Arg | 1 | 0.39 | 128 | 1.72 | 0.018 * |
29 | CFTRdup6b-10 | c.(743+1_744-1)_(1584+1_1585-1)dup | - | 1 | 0.39 | 10 | 0.13 | 0.829 * |
30 | 2485C>T (R785X) | c.2353C>T | p.Arg785X | 1 | 0.39 | 12 | 0.16 | 0.734 * |
31 | S737F | c.2210C>T | p.Ser737Phe | 1 | 0.39 | - | - | 0.067 * |
32 | - | c.3883_3888dup | p.Ile1295_Phe1296dup | 1 | 0.39 | - | - | 0.067 * |
33 | 3041-15T>G | c.2909-15T>G | - | 1 | 0.39 | - | - | 0.067 * |
34 | 12TG5T | c.1210-11T>G | - | 1 | 0.39 | - | - | 0.067 * |
35 | W19G | c.55T>G | p.Trp19Gly | 1 | 0.39 | - | - | 0.067 * |
36 | Not identified (X) | 5 | 1.94 | 377 | 9.5% | <0.001 | ||
Number of chromosomes | 258 | 100 |
z | Mutation | Russians 126 | Tatars 92 | Bashkirs 20 | Ukrainians 8 | Chuvashes 4 | Armenians 2 | Uzbeks 2 | Belorussian 1 | Karachays 2 | Poles 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | F508del | 79 | 0.627 | 43 | 0.467 | 8 | 0.400 | 7 | 0.875 | 1 | 0.250 | 1 | 0.500 | 1 | 0.500 | 1 | 1.000 | 0 | 0.000 | 0 | 0.000 |
2 | E92K | 10 | 0.079 | 15 | 0.163 | 6 | 0.300 | 0 | 0.000 | 3 | 0.750 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
3 | CFTRdele2-3 | 9 | 0.071 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
4 | 3849+10kbC>T | 1 | 0.008 | 9 | 0.098 | 2 | 0.100 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
5 | L138ins | 5 | 0.040 | 2 | 0.022 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
6 | N1303K | 4 | 0.032 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
7 | S1196X | 3 | 0.024 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
8 | 394delTT | 0 | 0.000 | 4 | 0.043 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
9 | S466X(C>G), R1070Q | 0 | 0.000 | 3 | 0.033 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
10 | G194R | 0 | 0.000 | 2 | 0.022 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
11 | G551D | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
12 | G509D | 0 | 0.000 | 2 | 0.022 | 1 | 0.050 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
13 | 2184delA | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 1 | 0.125 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
14 | 621+1G>T | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
15 | L1335P(c.4004T>C) | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
16 | R117C | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
17 | W19G | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
18 | S737F | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
19 | 2143delT | 2 | 0.016 | 0 | 0.000 | 1 | 0.050 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
20 | D1152H | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
21 | 1717-1G>A | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
22 | 1525-1G>A | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 1 | 0.500 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
23 | 1367del5 | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
24 | 4015delA | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 1 | 0.500 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
25 | 2184insA | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
26 | Y84X | 2 | 0.016 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
27 | c.3883_3888dup | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 1 | 1.000 |
28 | 3041-15T>G | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
29 | W1282X | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 2 | 1.000 | 0 | 0.000 |
30 | 12TG5T | 0 | 0.000 | 0 | 0.000 | 1 | 0.050 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
31 | W1310X | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
32 | W1282R | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
33 | 3821delT | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
34 | CFTRdup6b-10 | 0 | 0.000 | 1 | 0.011 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
35 | c.2353C>T | 1 | 0.008 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
36 | x | 1 | 0.008 | 3 | 0.033 | 1 | 0.050 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 | 0 | 0.000 |
37 | n | 126 | 1.000 | 92 | 1.000 | 20 | 1.000 | 8 | 1.000 | 4 | 1.000 | 2 | 1.000 | 2 | 1.000 | 1 | 1.000 | 2 | 1.000 | 1 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayupova, G.; Litvinov, S.; Akhmetova, V.; Minniakhmetov, I.; Mokrysheva, N.; Khusainova, R. Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes 2024, 15, 1335. https://doi.org/10.3390/genes15101335
Ayupova G, Litvinov S, Akhmetova V, Minniakhmetov I, Mokrysheva N, Khusainova R. Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes. 2024; 15(10):1335. https://doi.org/10.3390/genes15101335
Chicago/Turabian StyleAyupova, Guzel, Sergey Litvinov, Vita Akhmetova, Ildar Minniakhmetov, Natalia Mokrysheva, and Rita Khusainova. 2024. "Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia)" Genes 15, no. 10: 1335. https://doi.org/10.3390/genes15101335
APA StyleAyupova, G., Litvinov, S., Akhmetova, V., Minniakhmetov, I., Mokrysheva, N., & Khusainova, R. (2024). Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes, 15(10), 1335. https://doi.org/10.3390/genes15101335