Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases
Abstract
:1. Introduction
2. Cardiac Ion Channel Disease
2.1. Familial Long QT Syndrome
2.2. Familial Short QT Syndrome
Gene | Protein | Chromosomal Location | Pathogenic Mechanism and LQTS/SQTS | Other Related Diseases | |
---|---|---|---|---|---|
AKAP9 [28] | A-kinase anchor protein 9 | 7q21.2 | ↑IKs | RWS | BrS |
ANK2 [29] | Ankyrin-2 | 4q25-q26 | ↑INa ↑ICa | RWS | - |
CACNA1C [30] | Voltage-dependent L-type calcium channel subunit α-1C | 12p13.33 | ↑ICa | Timothy syndrome | BrS |
CACNA2D1 [31] | Voltage-dependent calcium channel subunit α-2/delta-1 | 7q21.11 | ↓ICa | SQTS | BrS |
CALM1 [32,33] | Calmodulin-1 | 14q32.11 | Multiple channel | RWS | CPVT |
CALM2 [32,33] | Calmodulin-2 | 2p21 | Multiple channel | RWS | BrS, CPVT |
CAV3 [34] | Caveolin-3 | 3p25.3 | ↑INa | RWS | - |
KCNE1 [35] | Potassium voltage-gated channel subfamily E member 1 | 21q22.12 | ↓IKs | JLNS/RWS | AF |
KCNE2 [36] | Potassium voltage-gated channel subfamily E member 2 | 21q22.11 | ↓IKr | RWS | AF |
KCNH2 [37,38] | Potassium voltage-gated channel subfamily H member 2 | 7q36.1 | ↓IKr | RWS | - |
↑IKr | SQTS | - | |||
KCNJ2 [38,39] | Inward rectifier potassium channel 2 | 17q24.3 | ↓IK1 | ATS | AF |
↑IK1 | SQTS | - | |||
KCNJ5 [40] | G protein-activated inward rectifier potassium channel 4 | 11q24.3 | ↓IKACh | ATS/RWS | - |
KCNQ1 [35,38,41] | Potassium voltage-gated channel subfamily KQT member 1 | 11p15.5-p15.4 | ↓IKs | JLNS/RWS | AF |
↑IKs | SQTS | - | |||
NOS1AP [42] | Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein | 1q23.3 | ↑ICa↓IKr | RWS | - |
SCN4B [43] | Sodium channel subunit β-4 | 11q23.3 | ↑INa | RWS | AF |
SCN5A [44] | Sodium channel protein type 5 subunit α | 3p22.2 | ↑INa | RWS | BrS, AF, AS, SSS, spontaneous ventricular fibrillation, PCCD |
SCN10A [45] | Sodium channel protein type 10 subunit α | 3p22.2 | ↑INa | RWS | BrS |
SNTA1 [46] | α-1-syntrophin | 20q11.21 | ↑INa | RWS | - |
TRDN [47] | Triadin | 6q22.31 | ↑ICa | RWS | CPVT |
2.3. Catecholaminergic Polymorphic Ventricular Tachycardia
Gene | Protein | Chromosomal Location | Other Heart-Related Diseases |
---|---|---|---|
RYR2 [52,53,54,55] | Ryanodine receptor 2 | 1q43 | Isolated arrhythmia ventricular dysplasia |
CASQ2 [56] | Calsequestrin-2 | 1p13.1 | - |
CALM1 [61] | Calmodulin-1 | 14q32.11 | RWS |
* CALM2 [61,62] | Calmodulin-2 | 2p21 | RWS, BrS |
* CALM3 [61] | Calmodulin-3 | 19q13.32 | - |
TECRL [60,63] | Trans-2,3-enoyl-CoA reductase-like | 4q13.1 | - |
TRDN [58] | Triadin | 6q22.31 | RWS |
2.4. Brugada Syndrome
Gene | Protein | Chromosomal Location | Pathogenic Mechanism | Other Heart-Related Diseases |
---|---|---|---|---|
CACNA1C | Voltage-dependent L-type calcium channel subunit α-1C | 12p13.33 | ↓ICa | Timothy syndrome |
CACNA2D1 [68] | Voltage-dependent calcium channel subunit α-2/delta-1 | 7q21.11 | ↓ICa | SQTS |
CACNB2 [69] | Voltage-dependent L-type calcium channel subunit β-2 | 10p12 | ↓ICa | - |
CALM2 [70] | Calmodulin-2 | 2p21 | ↓ICa | RWS, CPVT |
TRPM4 [71] | Transient receptor potential cation channel subfamily M member 4 | 19q13.3 | ↓INa | PCCD |
SCN5A [72] | Sodium channel protein type 5 subunit α | 3p22.2 | ↓INa | RWS, AF, AS, SSS, spontaneous ventricular fibrillation, PCCD |
SCN10A [73] | Sodium channel protein type 10 subunit α | 3p22.2 | ↓INa | RWS |
SCN1B [74] | Sodium channel subunit β-1 | 19q13.11 | ↓INa | PCCD, AF |
* SCN2B [75] | Sodium channel subunit β-2 | 11q23.3 | ↓INa | AF |
SCN3B [76] | Sodium channel regulatory subunit β-3 | 11q24.1 | ↓INa | AF |
GPD1L [77] | Glycerol-3-phosphate dehydrogenase 1-like protein | 3p22.3 | ↓INa | - |
* RANGRF [78] | Ran guanine nucleotide release factor | 17p13 | ↓INa | - |
SLMAP [79] | Sarcolemmal membrane-associated protein | 3p14.3 | ↓INa | - |
* PKP2 [80,81] | Plakophilin-2 | 12p11.21 | ↓INa | Isolated arrhythmic ventricular dysplasia, left ventricular insufficiency |
KCND3 [82] | A-type voltage-gated potassium channel KCND3 | 1p13.2 | ↑It0 | - |
KCNE3 [83] | Potassium voltage-gated channel subfamily E member 3 | 11q13.4 | ↑It0 | - |
* KCNE5 [84] | Potassium voltage-gated channel subfamily E regulatory β subunit 5 | Xq23 | ↑IK,slow | - |
KCNJ8 [85] | ATP-sensitive inward rectifier potassium channel 8 | 12p12.1 | ↑IK-ATP | - |
HCN4 [86] | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 | 15q24.1 | ↓If | SSS |
ABCC9 [87] | ATP-binding cassette subfamily C member 9 | 12p12.1 | ↑IK-ATP | AF, idiopathic dilated cardiomyopathy |
* AKAP9 [88] | A-kinase anchor protein 9 | 7q21.2 | - | RWS |
2.5. Familial Sick Sinus Syndrome (SSS)
2.6. Familial Atrial Fibrillation
Gene | Protein | Chromosomal Location | Pathogenic Mechanism | Other Heart-Related Diseases |
---|---|---|---|---|
KCNA5 [99] | Potassium voltage-gated channel subfamily A member 5 | 12p13.32 | ↑↓IKur | - |
KCNJ2 [107] | Inward rectifier potassium channel 2 | 17q24.3 | ↑IK1 | ATS, SQTS |
KCNQ1 [107,108] | Potassium voltage-gated channel subfamily KQT member 1 | 11p15.5-p15.4 | ↑IKs | RWS, JLNS, SQTS |
* KCNE1 [108] | Potassium voltage-gated channel subfamily E member 1 | 21q22.12 | ↑IKs | JLNS, RWS |
KCNE2 [107] | Potassium voltage-gated channel subfamily E member 2 | 21q22.11 | ↑IKr | RWS |
* SCN1B | Sodium channel subunit β-1 | 19q13.11 | ↑INa | BrS, PCCD |
SCN2B | Sodium channel subunit β-2 | 11q23.3 | ↑INa | BrS |
SCN3B | Sodium channel regulatory subunit β-3 | 11q24.1 | ↑INa | BrS |
SCN4B | Sodium channel subunit β-4 | 11q23.3 | ↑INa | RWS |
SCN5A [109] | Sodium channel protein type 5 subunit α | 3p22.2 | ↑INa | RWS, BrS, SSS, AS, spontaneous ventricular fibrillation, PCCD |
* ABCC9 [110] | ATP-binding cassette subfamily C member 9 | 12p12.1 | ↑IK-ATP | BrS, idiopathic dilated cardiomyopathy |
GATA4 [111] | Transcription factor GATA-4 | 8p23.1 | ↓Transcriptional activity | Tetralogy of fallot, etc. |
GATA5 [112] | Transcription factor GATA-5 | 20q13.33 | ↓Transcriptional activity | Tetralogy of fallot, etc. |
GATA6 [113] | Transcription factor GATA-6 | 18q11.2 | ↑Transcriptional activity | Tetralogy of fallot, etc. |
NKX2-5 [101] | Homeobox protein Nkx-2.5 | 5q34 | ↑HCN4 | PCCD, hypoplastic left heart syndrome, etc. |
NKX2-6 [114] | Homeobox protein Nkx-2.6 | 8p21.2 | Similar to NKX2-5 | Tetralogy of fallot, persistent truncus arteriosus |
PITX2 [101] | Pituitary homeobox 2 | 4q25 | ↓NKX2-5 | Axenfeld abnormal, Rieger abnormal, etc. |
MYL4 [115] | Myosin light chain 4 | 17q21.32 | Ligandin | - |
TTN [116,117] | Titin | 2q31.2 | - | Familial isolated dilated cardiomyopathy, early-onset myopathy with fatal cardiomyopathy, isolated arrhythmia ventricular dysplasia |
GJA5 [103] | Gap junction α-5 protein | 1q21.2 | Ligandin | Tetralogy of fallot |
NPPA [105] | Natriuretic peptides A | 1p36.22 | Channel remodeling | AS |
NUP155 [106] | Nuclear pore complex protein Nup155 | 5p13.2 | ↓Nuclear membrane permeability | - |
2.7. Idiopathic Ventricular Fibrillation (IVF)
2.8. Atrial Standstill (AS)
3. Heart Conduction Diseases
3.1. Progressive Cardiac Conduction Defect (PCCD)
3.2. Congenital Heart Block (CHB)
3.3. Lown–Ganong–Levine Syndrome (LGL)
3.4. Heart–Hand Syndrome (HHS)
3.5. Other Heart Conduction Disorders
4. Other Hereditary Arrhythmia Disorders
Disease | Hereditary Mode | Gene |
---|---|---|
Chronic atrial and intestinal dysrhythmia syndrome (CAID) | AD | SGOL1 |
Histiocytoid cardiomyopathy (HCM) | XD/AR | MT-CYB, NDUFB11 |
Limb girdle muscular dystrophy (LGMD) | AR | BVES |
Intellectual disability/arrhythmic syndrome | AR | GNB5 |
Intellectual disability/cardiac hypertrophy/congestive heart failure syndrome | XR | CLIC2 |
Recurrent metabolic myogenic brain crisis/rhabdomyolysis/arrhythmia/intellectual disability syndrome | AR | TANGO2 |
Progressive sensorineural hearing loss/hypertrophic cardiomyopathy syndrome | AD | MYO6 |
Sinoatrial node dysfunction and deafness (SANDD) | AR | CACNA1D |
5. Genome-Wide Association Study (GWAS) of Hereditary Arrhythmia Diseases
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwartz, P.J.; Ackerman, M.J.; Antzelevitch, C.; Bezzina, C.R.; Borggrefe, M.; Cuneo, B.F.; Wilde, A.A.M. Inherited cardiac arrhythmias. Nat. Rev. Dis. Primers 2020, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, B.M.; Pfeufer, A.; Kaab, S. Inherited cardiac arrhythmias: Diagnosis, treatment, and prevention. Dtsch. Arztebl. Int. 2011, 108, 623–633, quiz 634. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Remme, C.A. Inherited conditions of arrhythmia: Translating disease mechanisms to patient management. Cardiovasc. Res. 2020, 116, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Specterman, M.J.; Behr, E.R. Cardiogenetics: The role of genetic testing for inherited arrhythmia syndromes and sudden death. Heart 2023, 109, 434–441. [Google Scholar] [CrossRef]
- Bezzerides, V.J.; Prondzynski, M.; Carrier, L.; Pu, W.T. Gene therapy for inherited arrhythmias. Cardiovasc. Res. 2020, 116, 1635–1650. [Google Scholar] [CrossRef] [PubMed]
- Darrow, J.J. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov. Today 2019, 24, 949–954. [Google Scholar] [CrossRef]
- Moore, O.M.; Ho, K.S.; Copeland, J.S.; Parthasarathy, V.; Wehrens, X.H.T. Genome editing and cardiac arrhythmias. Cells 2023, 12, 1363. [Google Scholar] [CrossRef]
- Bongianino, R.; Denegri, M.; Mazzanti, A.; Lodola, F.; Vollero, A.; Boncompagni, S.; Fasciano, S.; Rizzo, G.; Mangione, D.; Barbaro, S.; et al. Allele-specific silencing of mutant mrna rescues ultrastructural and arrhythmic phenotype in mice carriers of the r4496c mutation in the ryanodine receptor gene (ryr2). Circ. Res. 2017, 121, 525–536. [Google Scholar] [CrossRef]
- Abriel, H.; Rougier, J.S.; Jalife, J. Ion channel macromolecular complexes in cardiomyocytes: Roles in sudden cardiac death. Circ. Res. 2015, 116, 1971–1988. [Google Scholar] [CrossRef]
- Garcia-Elias, A.; Benito, B. Ion channel disorders and sudden cardiac death. Int. J. Mol. Sci. 2018, 19, 692. [Google Scholar] [CrossRef]
- Brohus, M.; Arsov, T.; Wallace, D.A.; Jensen, H.H.; Nyegaard, M.; Crotti, L.; Adamski, M.; Zhang, Y.; Field, M.A.; Athanasopoulos, V.; et al. Infanticide vs. inherited cardiac arrhythmias. Europace 2021, 23, 441–450. [Google Scholar] [CrossRef]
- Lieve, K.V.; Wilde, A.A. Inherited ion channel diseases: A brief review. Europace 2015, 17 (Suppl. 2), ii1–ii6. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.; Howard, L.; Liu, M.; O’Brien, T.; Ward, D.; Shen, S.; Prendiville, T. Long qt syndrome: Genetics and future perspective. Pediatr. Cardiol. 2019, 40, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Ward, O.C. A new familial cardiac syndrome in children. J. Ir. Med. Assoc. 1964, 54, 103–106. [Google Scholar] [PubMed]
- Nguyen, H.L.; Pieper, G.H.; Wilders, R. Andersen-Tawil syndrome: Clinical and molecular aspects. Int. J. Cardiol. 2013, 170, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bezzina, C.R.; Lahrouchi, N.; Priori, S.G. Genetics of sudden cardiac death. Circ. Res. 2015, 116, 1919–1936. [Google Scholar] [CrossRef]
- Jervell, A.; Lange-Nielsen, F. Congenital deaf-mutism, functional heart disease with prolongation of the q-t interval and sudden death. Am. Heart J. 1957, 54, 59–68. [Google Scholar] [CrossRef]
- Abriel, H.; Zaklyazminskaya, E.V. Cardiac channelopathies: Genetic and molecular mechanisms. Gene 2013, 517, 1–11. [Google Scholar] [CrossRef]
- Kline, J.; Costantini, O. Inherited cardiac arrhythmias and channelopathies. Med. Clin. N. Am. 2019, 103, 809–820. [Google Scholar] [CrossRef]
- Bohnen, M.S.; Peng, G.; Robey, S.H.; Terrenoire, C.; Iyer, V.; Sampson, K.J.; Kass, R.S. ular pathophysiology of congenital long qt syndrome. Physiol. Rev. 2017, 97, 89–134. [Google Scholar] [CrossRef]
- Zhou, W.; Ye, D.; Tester, D.J.; Bains, S.; Giudicessi, J.R.; Haglund-Turnquist, C.M.; Orland, K.M.; January, C.T.; Eckhardt, L.L.; Maginot, K.R.; et al. Elucidation of ALG10B as a Novel Long-QT Syndrome-Susceptibility Gene. Circ. Genom. Precis. Med. 2023, 16, e003726. [Google Scholar] [CrossRef] [PubMed]
- Dewi, I.P.; Dharmadjati, B.B. Short QT syndrome: The current evidences of diagnosis and management. J. Arrhythm. 2020, 36, 962–966. [Google Scholar] [CrossRef]
- Walsh, R.; Adler, A.; Amin, A.S.; Abiusi, E.; Care, M.; Bikker, H.; Amenta, S.; Feilotter, H.; Nannenberg, E.A.; Mazzarotto, F.; et al. Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. Eur. Heart J. 2022, 43, 1500–1510. [Google Scholar] [CrossRef]
- Perike, S.; Mc, C.M. Molecular Insights into the Short QT Syndrome. J. Innov. Card. Rhythm. Manag. 2018, 2018, 3065–3070. [Google Scholar] [CrossRef]
- Chen, Y.; Barajas-Martinez, H.; Zhu, D.; Wang, X.; Chen, C.; Zhuang, R.; Shi, J.; Wu, X.; Tao, Y.; Jin, W.; et al. Novel trigenic CACNA1C/DES/MYPN mutations in a family of hypertrophic cardiomyopathy with early repolarization and short QT syndrome. J. Transl. Med. 2017, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, A.; Underwood, K.; Nevelev, D.; Kofman, S.; Priori, S.G. The new kids on the block of arrhythmogenic disorders: Short QT syndrome and early repolarization. J. Cardiovasc. Electrophysiol. 2017, 28, 1226–1236. [Google Scholar] [CrossRef]
- Thorsen, K.; Dam, V.S.; Kjaer-Sorensen, K.; Pedersen, L.N.; Skeberdis, V.A.; Jurevicius, J.; Treinys, R.; Petersen, I.; Nielsen, M.S.; Oxvig, C.; et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat. Commun. 2017, 8, 1696. [Google Scholar] [CrossRef]
- Chen, L.; Marquardt, M.L.; Tester, D.J.; Sampson, K.J.; Ackerman, M.J.; Kass, R.S. Mutation of an a-kinase-anchoring protein causes long-qt syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 20990–20995. [Google Scholar] [CrossRef] [PubMed]
- Mohler, P.J.; Schott, J.-J.; Gramolini, A.O.; Dilly, K.W.; Guatimosim, S.; duBell, W.H.; Song, L.-S.; Haurogné, K.; Kyndt, F.; Ali, M.E.; et al. Ankyrin-b mutation causes type 4 long-qt cardiac arrhythmia and sudden cardiac death. Nature 2003, 421, 634–639. [Google Scholar] [CrossRef]
- Wemhöner, K.; Friedrich, C.; Stallmeyer, B.; Coffey, A.J.; Grace, A.; Zumhagen, S.; Seebohm, G.; Ortiz-Bonnin, B.; Rinné, S.; Sachse, F.B.; et al. Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome. J. Mol. Cell. Cardiol. 2015, 80, 186–195. [Google Scholar] [CrossRef]
- Templin, C.; Ghadri, J.-R.; Rougier, J.-S.; Baumer, A.; Kaplan, V.; Albesa, M.; Sticht, H.; Rauch, A.; Puleo, C.; Hu, D.; et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 2011, 32, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Shamgar, L.; Ma, L.; Schmitt, N.; Haitin, Y.; Peretz, A.; Wiener, R.; Hirsch, J.; Pongs, O.; Attali, B. Calmodulin is essential for cardiac iks channel gating and assembly: Impaired function in long-qt mutations. Circ. Res. 2006, 98, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Boczek, N.J.; Gomez-Hurtado, N.; Ye, D.; Calvert, M.L.; Tester, D.J.; Kryshtal, D.; Hwang, H.S.; Johnson, C.N.; Chazin, W.J.; Loporcaro, C.G.; et al. Spectrum and prevalence of calm1-, calm2-, and calm3-encoded calmodulin variants in long qt syndrome and functional characterization of a novel long qt syndrome-associated calmodulin missense variant, e141g. Circ. Cardiovasc. Genet. 2016, 9, 136–146. [Google Scholar] [CrossRef]
- Vatta, M.; Ackerman, M.J.; Ye, B.; Makielski, J.C.; Ughanze, E.E.; Taylor, E.W.; Tester, D.J.; Balijepalli, R.C.; Foell, J.D.; Li, Z.; et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006, 114, 2104–2112. [Google Scholar] [CrossRef] [PubMed]
- Marx, S.O.; Kurokawa, J.; Reiken, S.; Motoike, H.; D’Armiento, J.; Marks, A.R.; Kass, R.S. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the kcnq1-kcne1 potassium channel. Science 2002, 295, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.A.; Andersen, P.S.; Kanters, J.; Svendsen, I.H.; Jacobsen, J.R.; Vuust, J.; Wettrell, G.; Tranebjaerg, L.; Bathen, J.; Christiansen, M. Screening for mutations and polymorphisms in the genes kcnh2 and kcne2 encoding the cardiac herg/mirp1 ion channel: Implications for acquired and congenital long q-t syndrome. Clin. Chem. 2001, 47, 1390–1395. [Google Scholar] [CrossRef]
- Crotti, L.; Lundquist, A.L.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; De Ferrari, G.M.; Vicentini, A.; Yang, P.; Roden, D.M.; George, A.L.; et al. Kcnh2-k897t is a genetic modifier of latent congenital long-qt syndrome. Circulation 2005, 112, 1251–1258. [Google Scholar] [CrossRef]
- Campuzano, O.; Fernandez-Falgueras, A.; Lemus, X.; Sarquella-Brugada, G.; Cesar, S.; Coll, M.; Mates, J.; Arbelo, E.; Jordà, P.; Perez-Serra, A.; et al. Short qt syndrome: A comprehensive genetic interpretation and clinical translation of rare variant. J. Clin. Med. 2019, 8, 1035. [Google Scholar] [CrossRef]
- Fodstad, H.; Swan, H.; Auberson, M.; Gautschi, I.; Loffing, J.; Schild, L.; Kontula, K. Loss-of-function mutations of the k(+) channel gene kcnj2 constitute a rare cause of long qt syndrome. J. Mol. Cell. Cardiol. 2004, 37, 593–602. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Liang, B.; Liu, J.; Li, J.; Grunnet, M.; Olesen, S.-P.; Rasmussen, H.B.; Ellinor, P.T.; Gao, L.; et al. Identification of a kir3.4 mutation in congenital long qt syndrome. Am. J. Hum. Genet. 2010, 86, 872–880. [Google Scholar] [CrossRef]
- Sanecka, A.; Biernacka, E.K.; Szperl, M.; Sosna, M.; Mueller-Malesińska, M.; Kozicka, U.; Baranowski, R.; Kosiec, A.; Łazarczyk, H.; Skarżyński, H.; et al. QTc prolongation in patients with hearing loss: Electrocardiographic and genetic study. Cardiol. J. 2016, 23, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Sasano, T.; Wang, Y.-C.; Huang, S.K.S. Nitric oxide synthase 1 adaptor protein, an emerging new genetic marker for qt prolongation and sudden cardiac death. Acta Cardiol. Sin. 2013, 29, 217–225. [Google Scholar]
- Medeiros-Domingo, A.; Kaku, T.; Tester, D.J.; Iturralde-Torres, P.; Itty, A.; Ye, B.; Valdivia, C.; Ueda, K.; Canizales-Quinteros, S.; Tusié-Luna, M.T.; et al. Scn4b-encoded sodium channel beta4 subunit in congenital long-qt syndrome. Circulation 2007, 116, 134–142. [Google Scholar] [CrossRef]
- Wei, J.; Wang, D.W.; Alings, M.; Fish, F.; Wathen, M.; Roden, D.M.; George, A.L. Congenital long-qt syndrome caused by a novel mutation in a conserved acidic domain of the cardiac na+ channel. Circulation 1999, 99, 3165–3171. [Google Scholar] [CrossRef]
- Aiba, T. Recent understanding of clinical sequencing and gene-based risk stratification in inherited primary arrhythmia syndrome. J. Cardiol. 2019, 73, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Valdivia, C.; Medeiros-Domingo, A.; Tester, D.J.; Vatta, M.; Farrugia, G.; Ackerman, M.J.; Makielski, J.C. Syntrophin mutation associated with long qt syndrome through activation of the nnos–scn5a macromolecular complex. Proc. Natl. Acad. Sci. USA 2008, 105, 9355–9360. [Google Scholar] [CrossRef]
- Chopra, N.; Yang, T.; Asghari, P.; Moore, E.D.; Huke, S.; Akin, B.; Cattolica, R.A.; Perez, C.F.; Hlaing, T.; Knollmann-Ritschel, B.E.C.; et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc. Natl. Acad. Sci. USA 2009, 106, 7636–7641. [Google Scholar] [CrossRef]
- Kim, C.W.; Aronow, W.S.; Dutta, T.; Frenkel, D.; Frishman, W.H. Catecholaminergic polymorphic ventricular tachycardia. Cardiol. Rev. 2020, 28, 325–331. [Google Scholar] [CrossRef]
- Perez, P.R.; Hylind, R.J.; Roston, T.M.; Bezzerides, V.J.; Abrams, D.J. Gene therapy for catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ. 2023, 32, 790–797. [Google Scholar] [CrossRef]
- Lederer, W.J.; Tsien, R.W. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J. Physiol. 1976, 263, 73–100. [Google Scholar] [CrossRef]
- Venetucci, L.A.; Trafford, A.W.; Eisner, D.A. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: Threshold sarcoplasmic reticulum calcium content is required. Circ. Res. 2007, 100, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Reiken, S.; Gaburjakova, M.; Guatimosim, S.; Gomez, A.M.; D’Armiento, J.; Burkhoff, D.; Wang, J.; Vassort, G.; Lederer, W.J.; Marks, A.R. Protein kinase a phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J. Biol. Chem. 2003, 278, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Lehnart, S.E.; Wehrens, X.H.; Laitinen, P.J.; Reiken, S.R.; Deng, S.X.; Cheng, Z.; Landry, D.W.; Kontula, K.; Swan, H.; Marks, A.R. Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 2004, 109, 3208–3214. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, R.; Xiao, B.; Kong, H.; Hunt, D.J.; Choi, P.; Zhang, L.; Chen, S.R. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of ryr2 mutations linked to ventricular tachycardia and sudden death. Circ. Res. 2005, 97, 1173–1181. [Google Scholar] [CrossRef]
- Suetomi, T.; Yano, M.; Uchinoumi, H.; Fukuda, M.; Hino, A.; Ono, M.; Xu, X.; Tateishi, H.; Okuda, S.; Doi, M.; et al. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca(2)(+)release leading to catecholaminergic polymorphic ventricular tachycardia. Circulation 2011, 124, 682–694. [Google Scholar] [CrossRef]
- Gyorke, I.; Hester, N.; Jones, L.R.; Gyorke, S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 2004, 86, 2121–2128. [Google Scholar] [CrossRef]
- Venetucci, L.; Denegri, M.; Napolitano, C.; Priori, S.G. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat. Rev. Cardiol. 2012, 9, 561–575. [Google Scholar] [CrossRef]
- Roux-Buisson, N.; Cacheux, M.; Fourest-Lieuvin, A.; Fauconnier, J.; Brocard, J.; Denjoy, I.; Durand, P.; Guicheney, P.; Kyndt, F.; Leenhardt, A.; et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 2012, 21, 2759–2767. [Google Scholar] [CrossRef]
- Marquez, M.F.; Totomoch-Serra, A.; Rueda, A.; Avelino-Cruz, J.E.; Gallegos-Cortez, A. Basic and clinical insights in catecholaminergic (familial) polymorphic ventricular tachycardia. Rev. Investig. Clin. 2019, 71, 226–236. [Google Scholar] [CrossRef]
- Devalla, H.D.; Gelinas, R.; Aburawi, E.H.; Beqqali, A.; Goyette, P.; Freund, C.; Chaix, M.A.; Tadros, R.; Jiang, H.; Le Bechec, A.; et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol. Med. 2016, 8, 1390–1408. [Google Scholar] [CrossRef]
- Crotti, L.; Spazzolini, C.; Tester, D.J.; Ghidoni, A.; Baruteau, A.-E.; Beckmann, B.-M.; Behr, E.R.; Bennett, J.S.; Bezzina, C.R.; A Bhuiyan, Z.; et al. Calmodulin mutations and life-threatening cardiac arrhythmias: Insights from the international calmodulinopathy registry. Eur. Heart J. 2019, 40, 2964–2975. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jáimez, J.; Doza, J.P.; Ortega, Á.; Macías-Ruiz, R.; Perin, F.; del Rey, M.M.R.-V.; Ortiz-Genga, M.; Monserrat, L.; Barriales-Villa, R.; Blanca, E.; et al. Calmodulin 2 mutation n98s is associated with unexplained cardiac arrest in infants due to low clinical penetrance electrical disorders. PLoS ONE 2016, 11, e0153851. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Hou, C.; Jiang, X.; Zhao, J.; Li, Y.; Xiao, T. A compound heterozygosity of Tecrl gene confirmed in a catecholaminergic polymorphic ventricular tachycardia family. Eur. J. Med. Genet. 2019, 62, 103631. [Google Scholar] [CrossRef] [PubMed]
- Brugada, J.; Campuzano, O.; Arbelo, E.; Sarquella-Brugada, G.; Brugada, R. PPresent status of brugada syndrome: Jacc state-of-the-art review. J. Am. Coll. Cardiol. 2018, 72, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, M.; Costa, S.; Delmar, M. The genetics of brugada syndrome. Annu. Rev. Genom. Hum. Genet. 2022, 23, 255–274. [Google Scholar] [CrossRef]
- Yan, G.X.; Antzelevitch, C. Cellular basis for the brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999, 100, 1660–1666. [Google Scholar] [CrossRef]
- Boukens, B.J.; Sylva, M.; de Gier-de Vries, C.; Remme, C.A.; Bezzina, C.R.; Christoffels, V.M.; Coronel, R. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ. Res. 2013, 113, 137–141. [Google Scholar] [CrossRef]
- Burashnikov, E.; Pfeiffer, R.; Barajas-Martinez, H.; Delpón, E.; Hu, D.; Desai, M.; Borggrefe, M.; Häissaguerre, M.; Kanter, R.; Pollevick, G.D.; et al. Mutations in the cardiac l-type calcium channel associated with inherited j-wave syndromes and sudden cardiac death. Heart Rhythm. 2010, 7, 1872–1882. [Google Scholar] [CrossRef]
- Cordeiro, J.M.; Marieb, M.; Pfeiffer, R.; Calloe, K.; Burashnikov, E.; Antzelevitch, C. Accelerated inactivation of the l-type calcium current due to a mutation in cacnb2b underlies brugada syndrome. J. Mol. Cell. Cardiol. 2009, 46, 695–703. [Google Scholar] [CrossRef]
- Simms, B.A.; Souza, I.A.; Zamponi, G.W. Effect of the brugada syndrome mutation a39v on calmodulin regulation of cav1.2 channels. Mol. Brain 2014, 7, 34. [Google Scholar] [CrossRef]
- Liu, H.; Chatel, S.; Simard, C.; Syam, N.; Salle, L.; Probst, V.; Morel, J.; Millat, G.; Lopez, M.; Abriel, H.; et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 2013, 8, e54131. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, J.M.; Barajas-Martinez, H.; Hong, K.; Burashnikov, E.; Pfeiffer, R.; Orsino, A.-M.; Wu, Y.S.; Hu, D.; Brugada, J.; Brugada, P.; et al. Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the brugada syndrome. Circulation 2006, 114, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Barajas-Martínez, H.; Pfeiffer, R.; Dezi, F.; Pfeiffer, J.; Buch, T.; Betzenhauser, M.J.; Belardinelli, L.; Kahlig, K.M.; Rajamani, S.; et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J. Am. Coll. Cardiol. 2014, 64, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Koopmann, T.T.; Le Scouarnec, S.; Yang, T.; Ingram, C.R.; Schott, J.-J.; Demolombe, S.; Probst, V.; Anselme, F.; Escande, D.; et al. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J. Clin. Investig. 2008, 118, 2260–2268. [Google Scholar] [CrossRef]
- Riuró, H.; Beltran-Alvarez, P.; Tarradas, A.; Selga, E.; Campuzano, O.; Vergés, M.; Pagans, S.; Iglesias, A.; Brugada, J.; Brugada, P.; et al. A missense mutation in the sodium channel β2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Hum. Mutat. 2013, 34, 961–966. [Google Scholar] [CrossRef]
- Ishikawa, T.; Takahashi, N.; Ohno, S.; Sakurada, H.; Nakamura, K.; On, Y.K.; Park, J.E.; Makiyama, T.; Horie, M.; Arimura, T.; et al. Novel SCN3B mutation associated with brugada syndrome affects intracellular trafficking and function of Nav1.5. Circ. J. 2013, 77, 959–967. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Fan, L.; Guo, S.; Li, J.; Jin, J.; Xiang, R. Whole-exome sequencing identifies a novel mutation of GPD1L (R189X) associated with familial conduction disease and sudden death. J. Cell. Mol. Med. 2018, 22, 1350–1354. [Google Scholar] [CrossRef]
- Olesen, M.S.; Jensen, N.F.; Holst, A.G.; Nielsen, J.B.; Tfelt-Hansen, J.; Jespersen, T.; Sajadieh, A.; Haunsø, S.; Lund, J.T.; Calloe, K.; et al. A novel nonsense variant in Nav1.5 cofactor MOG1 eliminates its sodium current increasing effect and may increase the risk of arrhythmias. Can. J. Cardiol. 2011, 27, 523.e17–523.e23. [Google Scholar] [CrossRef]
- Ishikawa, T.; Sato, A.; Marcou, C.A.; Tester, D.J.; Ackerman, M.J.; Crotti, L.; Schwartz, P.J.; On, Y.K.; Park, J.-E.; Nakamura, K.; et al. A novel disease gene for Brugada syndrome: Sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ. Arrhythmia Electrophysiol. 2012, 5, 1098–1107. [Google Scholar] [CrossRef]
- Sato, P.Y.; Musa, H.; Coombs, W.; Guerrero-Serna, G.; Patiño, G.A.; Taffet, S.M.; Isom, L.L.; Delmar, M. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 2009, 105, 523–526. [Google Scholar] [CrossRef]
- Campuzano, O.; Fernández-Falgueras, A.; Iglesias, A.; Brugada, R. Brugada Syndrome and PKP2: Evidences and uncertainties. Int. J. Cardiol. 2016, 214, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Giudicessi, J.R.; Ye, D.; Tester, D.J.; Crotti, L.; Mugione, A.; Nesterenko, V.V.; Albertson, R.M.; Antzelevitch, C.; Schwartz, P.J.; Ackerman, M.J. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm. 2011, 8, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Wu, J.; Kaneko, Y.; Ashihara, T.; Ohno, S.; Irie, T.; Ding, W.-G.; Matsuura, H.; Kurabayashi, M.; Horie, M. KCNE3 T4A as the genetic basis of brugada-pattern electrocardiogram. Circ. J. 2012, 76, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- David, J.-P.; Lisewski, U.; Crump, S.M.; Jepps, T.A.; Bocksteins, E.; Wilck, N.; Lossie, J.; Roepke, T.K.; Schmitt, N.; Abbott, G.W. Deletion in mice of x-linked, brugada syndrome–and atrial fibrillation–associated Kcne5 augments ventricular Kv currents and predisposes to ventricular arrhythmia. FASEB J. 2018, 33, 2537–2552. [Google Scholar] [CrossRef]
- Barajas-Martínez, H.; Hu, D.; Ferrer, T.; Onetti, C.G.; Wu, Y.; Burashnikov, E.; Boyle, M.; Surman, T.; Urrutia, J.; Veltmann, C.; et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012, 9, 548–555. [Google Scholar] [CrossRef]
- Biel, S.; Aquila, M.; Hertel, B.; Berthold, A.; Neumann, T.; DiFrancesco, D.; Moroni, A.; Thiel, G.; Kauferstein, S. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch. 2016, 468, 1663–1671. [Google Scholar] [CrossRef]
- Hu, D.; Barajas-Martínez, H.; Terzic, A.; Park, S.; Pfeiffer, R.; Burashnikov, E.; Wu, Y.; Borggrefe, M.; Veltmann, C.; Schimpf, R.; et al. ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. Int. J. Cardiol. 2014, 171, 431–442. [Google Scholar] [CrossRef]
- Allegue, C.; Coll, M.; Mates, J.; Campuzano, O.; Iglesias, A.; Sobrino, B.; Brion, M.; Amigo, J.; Carracedo, A.; Brugada, P.; et al. Genetic analysis of arrhythmogenic diseases in the era of NGS: The complexity of clinical decision-making in Brugada syndrome. PLoS ONE 2015, 10, e013303. [Google Scholar] [CrossRef]
- De Ponti, R.; Marazzato, J.; Bagliani, G.; Leonelli, F.M.; Padeletti, L. Sick Sinus Syndrome. Card Electrophysiol. Clin. 2018, 10, 183–195. [Google Scholar] [CrossRef]
- Hawks, M.K.; Paul, M.L.B.; Malu, O.O. Sinus Node Dysfunction. Am. Fam. Physician 2021, 104, 179–185. [Google Scholar]
- Dobrzynski, H.; Boyett, M.R.; Anderson, R.H. New insights into pacemaker activity: Promoting understanding of sick sinus syndrome. Circulation 2007, 115, 1921–1932. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.W.; Wang, D.W.; Dyment, M.; Knilans, T.K.; Fish, F.A.; Strieper, M.J.; Rhodes, T.H.; George, A.L., Jr. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Investig. 2003, 112, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bahr, E.; Neu, A.; Friederich, P.; Kaupp, U.B.; Breithardt, G.; Pongs, O.; Isbrandt, D. Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Investig. 2003, 111, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, T.M.; Lyashkov, A.E.; Zhu, W.; Ruknudin, A.M.; Sirenko, S.; Yang, D.; Deo, S.; Barlow, M.; Johnson, S.; Caffrey, J.L.; et al. High basal protein kinase a-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ. Res. 2006, 98, 505–514. [Google Scholar] [CrossRef]
- Ishikawa, T.; Jou, C.J.; Nogami, A.; Kowase, S.; Arrington, C.B.; Barnett, S.M.; Harrell, D.T.; Arimura, T.; Tsuji, Y.; Kimura, A.; et al. Novel mutation in the α-myosin heavy chain gene is associated with sick sinus syndrome. Circ. Arrhythm Electrophysiol. 2015, 8, 400–408. [Google Scholar] [CrossRef]
- Ding, Y.; Lang, D.; Yan, J.; Bu, H.; Li, H.; Jiao, K.; Yang, J.; Ni, H.; Morotti, S.; Le, T.; et al. A phenotype-based forward genetic screen identifies dnajb6 as a sick sinus syndrome gene. Elife 2022, 11, e77327. [Google Scholar] [CrossRef]
- Hayashi, K.; Tada, H.; Yamagishi, M. The genetics of atrial fibrillation. Curr. Opin. Cardiol. 2017, 32, 10–16. [Google Scholar] [CrossRef]
- Damani, S.B.; Topol, E.J. Molecular genetics of atrial fibrillation. Genome Med. 2009, 1, 54. [Google Scholar] [CrossRef]
- Christophersen, I.E.; Olesen, M.S.; Liang, B.; Andersen, M.N.; Larsen, A.P.; Nielsen, J.B.; Haunso, S.; Olesen, S.P.; Tveit, A.; Svendsen, J.H.; et al. Genetic variation in kcna5: Impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur. Heart J. 2013, 34, 1517–1525. [Google Scholar] [CrossRef]
- Makiyama, T.; Akao, M.; Shizuta, S.; Doi, T.; Nishiyama, K.; Oka, Y.; Ohno, S.; Nishio, Y.; Tsuji, K.; Itoh, H.; et al. A novel scn5a gain-of-function mutation m1875t associated with familial atrial fibrillation. J. Am. Coll. Cardiol. 2008, 52, 1326–1334. [Google Scholar] [CrossRef]
- Mommersteeg, M.T.; Brown, N.A.; Prall, O.W.; de Gier-de Vries, C.; Harvey, R.P.; Moorman, A.F.; Christoffels, V.M. Pitx2c and nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 2007, 101, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Furtado, M.B.; Wilmanns, J.C.; Chandran, A.; Tonta, M.; Biben, C.; Eichenlaub, M.; Coleman, H.A.; Berger, S.; Bouveret, R.; Singh, R.; et al. A novel conditional mouse model for nkx2-5 reveals transcriptional regulation of cardiac ion channels. Differentiation 2016, 91, 29–41. [Google Scholar] [CrossRef]
- Gollob, M.H.; Jones, D.L.; Krahn, A.D.; Danis, L.; Gong, X.Q.; Shao, Q.; Liu, X.; Veinot, J.P.; Tang, A.S.; Stewart, A.F.; et al. Somatic mutations in the connexin 40 gene (gja5) in atrial fibrillation. N. Engl. J. Med. 2006, 354, 2677–2688. [Google Scholar] [CrossRef]
- Ghazizadeh, Z.; Kiviniemi, T.; Olafsson, S.; Plotnick, D.; Beerens, M.E.; Zhang, K.; Gillon, L.; Steinbaugh, M.J.; Barrera, V.; Sui, S.H.; et al. Metastable atrial state underlies the primary genetic substrate for myl4 mutation-associated atrial fibrillation. Circulation 2020, 141, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Menon, A.; Hong, L.; Savio-Galimberti, E.; Sridhar, A.; Youn, S.W.; Zhang, M.; Kor, K.; Blair, M.; Kupershmidt, S.; Darbar, D. Electrophysiologic and molecular mechanisms of a frameshift nppa mutation linked with familial atrial fibrillation. J. Mol. Cell. Cardiol. 2019, 132, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Yoo, S.; Chakrabarti, S.; Zhang, T.; Ke, T.; Oberti, C.; Yong, S.L.; Fang, F.; Li, L.; et al. Mutation in nuclear pore component nup155 leads to atrial fibrillation and early sudden cardiac death. Cell 2008, 135, 1017–1027. [Google Scholar] [CrossRef]
- Tsai, C.-T.; Lai, L.-P.; Hwang, J.-J.; Lin, J.-L.; Chiang, F.-T. Molecular genetics of atrial fibrillation. J. Am. Coll. Cardiol. 2008, 52, 241–250. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Xu, S.-J.; Bendahhou, S.; Wang, X.-L.; Wang, Y.; Xu, W.-Y.; Jin, H.-W.; Sun, H.; Su, X.-Y.; Zhuang, Q.-N.; et al. Kcnq1 gain-of-function mutation in familial atrial fibrillation. Science 2003, 299, 251–254. [Google Scholar] [CrossRef]
- Darbar, D.; Kannankeril, P.J.; Donahue, B.S.; Kucera, G.; Stubblefield, T.; Haines, J.L.; George, A.L.; Roden, D.M. Cardiac sodium channel (scn5a) variants associated with atrial fibrillation. Circulation 2008, 117, 1927–1935. [Google Scholar] [CrossRef]
- Olson, T.M.; E Alekseev, A.; Moreau, C.; Liu, X.K.; Zingman, L.V.; Miki, T.; Seino, S.; Asirvatham, S.J.; Jahangir, A.; Terzic, A. Katp channel mutation confers risk for vein of marshall adrenergic atrial fibrillation. Nat. Clin. Pr. Cardiovasc. Med. 2007, 4, 110–116. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Wang, M.-Y.; Zhang, X.-L.; Tan, H.-W.; Shi, H.-F.; Jiang, W.-F.; Wang, X.-H.; Fang, W.-Y.; Liu, X. Gata4 loss-of-function mutations in familial atrial fibrillation. Clin. Chim. Acta 2011, 412, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Huang, C.-X.; Wang, Q.; Li, R.-G.; Xu, Y.-J.; Liu, X.; Fang, W.-Y.; Yang, Y.-Q. A novel gata5 loss-of-function mutation underlies lone atrial fibrillation. Int. J. Mol. Med. 2013, 31, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Tucker, N.R.; Mahida, S.; Ye, J.; Abraham, E.J.; Mina, J.A.; Parsons, V.A.; McLellan, M.A.; Shea, M.A.; Hanley, A.; Benjamin, E.J.; et al. Gain-of-function mutations in gata6 lead to atrial fibrillation. Heart Rhythm. 2017, 14, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, D.-F.; Sun, Y.-M.; Li, R.-G.; Qiu, X.-B.; Qu, X.-K.; Liu, X.; Fang, W.-Y.; Yang, Y.-Q. Nkx2-6 mutation predisposes to familial atrial fibrillation. Int. J. Mol. Med. 2014, 34, 1581–1590. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Holm, H.; Sulem, P.; Masson, G.; Oddsson, A.; Magnusson, O.T.; Saemundsdottir, J.; Helgadottir, H.T.; Helgason, H.; Johannsdottir, H.; et al. A frameshift deletion in the sarcomere gene myl4 causes early-onset familial atrial fibrillation. Eur. Heart J. 2017, 38, 27–34. [Google Scholar] [CrossRef]
- Haggerty, C.M.; Damrauer, S.M.; Levin, M.G.; Birtwell, D.; Carey, D.J.; Golden, A.M.; Hartzel, D.N.; Hu, Y.; Judy, R.; Kelly, M.A.; et al. Genomics-first evaluation of heart disease associated with titin-truncating variants. Circulation 2019, 140, 42–54. [Google Scholar] [CrossRef]
- Choi, S.H.; Weng, L.-C.; Roselli, C.; Lin, H.; Haggerty, C.M.; Shoemaker, M.B.; Barnard, J.; Arking, D.E.; Chasman, D.I.; Albert, C.M.; et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA 2018, 320, 2354–2364. [Google Scholar] [CrossRef]
- Conte, G.; Giudicessi, J.R.; Ackerman, M.J. Idiopathic ventricular fibrillation: The ongoing quest for diagnostic refinement. Europace 2021, 23, 4–10. [Google Scholar] [CrossRef]
- Xiao, L.; Koopmann, T.T.; Ordog, B.; Postema, P.G.; Verkerk, A.O.; Iyer, V.; Sampson, K.J.; Boink, G.J.; Mamarbachi, M.A.; Varro, A.; et al. Unique cardiac purkinje fiber transient outward current β-subunit composition: A potential molecular link to idiopathic ventricular fibrillation. Circ. Res. 2013, 112, 1310–1322. [Google Scholar] [CrossRef]
- Miles, C.; Boukens, B.J.; Scrocco, C.; Wilde, A.A.M.; Nademanee, K.; Haissaguerre, M.; Coronel, R.; Behr, E.R. Subepicardial cardiomyopathy: A disease underlying j-wave syndromes and idiopathic ventricular fibrillation. Circulation 2023, 147, 1622–1633. [Google Scholar] [CrossRef]
- Watanabe, H.; Nogami, A.; Ohkubo, K.; Kawata, H.; Hayashi, Y.; Ishikawa, T.; Makiyama, T.; Nagao, S.; Yagihara, N.; Takehara, N.; et al. Electrocardiographic characteristics and scn5a mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ. Arrhythm Electrophysiol. 2011, 4, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Marsman, R.F.; Barc, J.; Beekman, L.; Alders, M.; Dooijes, D.; van den Wijngaard, A.; Ratbi, I.; Sefiani, A.; Bhuiyan, Z.A.; Wilde, A.A.; et al. A mutation in calm1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J. Am. Coll. Cardiol. 2014, 63, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, M.; Thanassoulas, A.; Beck, K.; Vassilakopoulou, V.; Hu, H.; Calver, B.L.; Theodoridou, M.; Kashir, J.; Blayney, L.; Livaniou, E.; et al. Altered ryr2 regulation by the calmodulin f90l mutation associated with idiopathic ventricular fibrillation and early sudden cardiac death. FEBS Lett. 2014, 588, 2898–2902. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, A.A.; Rodriguez, S.Y. Atrial standstill. Int. J. Cardiol. 2013, 165, e47–e48. [Google Scholar] [CrossRef]
- Groenewegen, W.A.; Firouzi, M.; Bezzina, C.R.; Vliex, S.; van Langen, I.M.; Sandkuijl, L.; Smits, J.P.; Hulsbeek, M.; Rook, M.B.; Jongsma, H.J.; et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circ. Res. 2003, 92, 14–22. [Google Scholar] [CrossRef]
- Kang, D.S.; Khmao, P.; Oh, J.; Pak, H.N. A case of scn5a mutation-associated isolated left atrial standstill and ischemic stroke. Korean Circ. J. 2022, 52, 717–719. [Google Scholar] [CrossRef]
- Disertori, M.; Quintarelli, S.; Grasso, M.; Pilotto, A.; Narula, N.; Favalli, V.; Canclini, C.; Diegoli, M.; Mazzola, S.; Marini, M.; et al. Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor a. Circ. Cardiovasc. Genet. 2013, 6, 27–36. [Google Scholar] [CrossRef]
- Disertori, M.; Mase, M.; Marini, M.; Mazzola, S.; Cristoforetti, A.; Del Greco, M.; Kottkamp, H.; Arbustini, E.; Ravelli, F. Electroanatomic mapping and late gadolinium enhancement mri in a genetic model of arrhythmogenic atrial cardiomyopathy. J. Cardiovasc. Electrophysiol. 2014, 25, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Ren, M.; Xue, M.; Hu, C.; Hou, Y.; Li, Z.; Qu, H.; Moreira, P. Atrial standstill associated with lamin A/C mutation: A case report. SAGE Open Med. Case Rep. 2023, 11, 2050313X231179810. [Google Scholar] [CrossRef]
- Asatryan, B.; Medeiros-Domingo, A. Molecular and genetic insights into progressive cardiac conduction disease. Europace 2019, 21, 1145–1158. [Google Scholar] [CrossRef]
- Brugada, J.; Blom, N.; Sarquella-Brugada, G.; Blomstrom-Lundqvist, C.; Deanfield, J.; Janousek, J.; Abrams, D.; Bauersfeld, U.; Brugada, R.; Drago, F.; et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: Ehra and aepc-arrhythmia working group joint consensus statement. Europace 2013, 15, 1337–1382. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.L.; Bink-Boelkens, M.T.; Bezzina, C.R.; Viswanathan, P.C.; Beaufort-Krol, G.C.; van Tintelen, P.J.; van den Berg, M.P.; Wilde, A.A.; Balser, J.R. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001, 409, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Daumy, X.; Amarouch, M.Y.; Lindenbaum, P.; Bonnaud, S.; Charpentier, E.; Bianchi, B.; Nafzger, S.; Baron, E.; Fouchard, S.; Thollet, A.; et al. Targeted resequencing identifies trpm4 as a major gene predisposing to progressive familial heart block type I. Int. J. Cardiol. 2016, 207, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.W.; Silberbach, G.M.; Kavanaugh-McHugh, A.; Cottrill, C.; Zhang, Y.; Riggs, S.; Smalls, O.; Johnson, M.C.; Watson, M.S.; Seidman, J.G.; et al. Mutations in the cardiac transcription factor nkx2.5 affect diverse cardiac developmental pathways. J. Clin. Investig. 1999, 104, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, L. Congenital Heart Block. Cardiol. Clin. 2023, 41, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Fredi, M.; Argolini, L.M.; Angeli, F.; Trespidi, L.; Ramoni, V.; Zatti, S.; Vojinovic, T.; Donzelli, D.; Gazzola, F.G.; Xoxi, B.; et al. Anti-ssa/ro positivity and congenital heart block: Obstetric and foetal outcome in a cohort of anti-ssa/ro positive pregnant patients with and without autoimmune diseases. Clin. Exp. Rheumatol. 2023, 41, 685–693. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Melita, H.; Manolis, A.S. Congenital heart block: Pace earlier (childhood) than later (adulthood). Trends Cardiovasc. Med. 2020, 30, 275–286. [Google Scholar] [CrossRef]
- Wang, D.W.; Viswanathan, P.C.; Balser, J.R.; George, A.L., Jr.; Benson, D.W. Clinical, genetic, and biophysical characterization of scn5a mutations associated with atrioventricular conduction block. Circulation 2002, 105, 341–346. [Google Scholar] [CrossRef]
- Soos, M.P.; McComb, D. Lown Ganong Levine Syndrome; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ono, R.; Okada, S.; Kondo, Y.; Kobayashi, Y. Heart-hand syndrome. Intern. Med. 2021, 60, 1651–1652. [Google Scholar] [CrossRef]
- van Ouwerkerk, A.F.; Bosada, F.M.; van Duijvenboden, K.; Houweling, A.C.; Scholman, K.T.; Wakker, V.; Allaart, C.P.; Uhm, J.S.; Mathijssen, I.B.; Baartscheer, T.; et al. Patient-specific tbx5-g125r variant induces profound transcriptional deregulation and atrial dysfunction. Circulation 2022, 145, 606–619. [Google Scholar] [CrossRef]
- Bruneau, B.G.; Nemer, G.; Schmitt, J.P.; Charron, F.; Robitaille, L.; Caron, S.; Conner, D.A.; Gessler, M.; Nemer, M.; Seidman, C.E.; et al. A murine model of holt-oram syndrome defines roles of the t-box transcription factor tbx5 in cardiogenesis and disease. Cell 2001, 106, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, Y.; Zhang, Y.; Wang, Y.; Li, Z.; Zhu, Y.; Liu, H.; Ju, W.; Cui, C.; Chen, M. Familial atrial myopathy in a large multigenerational heart-hand syndrome pedigree carrying an lmna missense variant in rod 2b domain (p.r335w). Heart Rhythm. 2022, 19, 466–475. [Google Scholar] [CrossRef]
- Theis, J.L.; Zimmermann, M.T.; Larsen, B.T.; Rybakova, I.N.; Long, P.A.; Evans, J.M.; Middha, S.; de Andrade, M.; Moss, R.L.; Wieben, E.D.; et al. Tnni3k mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy. Hum. Mol. Genet. 2014, 23, 5793–5804. [Google Scholar] [CrossRef]
- Chetaille, P.; Preuss, C.; Burkhard, S.; Cote, J.M.; Houde, C.; Castilloux, J.; Piche, J.; Gosset, N.; Leclerc, S.; Wunnemann, F.; et al. Mutations in sgol1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat. Genet. 2014, 46, 1245–1249. [Google Scholar] [CrossRef]
- Piche, J.; Van Vliet, P.P.; Puceat, M.; Andelfinger, G. The expanding phenotypes of cohesinopathies: One ring to rule them all! Cell Cycle 2019, 18, 2828–2848. [Google Scholar] [CrossRef]
- Liu, D.; Song, A.T.; Qi, X.; van Vliet, P.P.; Xiao, J.; Xiong, F.; Andelfinger, G.; Nattel, S. Cohesin-protein Shugoshin-1 controls cardiac automaticity via hcn4 pacemaker channel. Nat. Commun. 2021, 12, 2551. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Histiocytoid cardiomyopathy: A mitochondrial disorder. Clin. Cardiol. 2008, 31, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Checcarelli, N.; Iwata, S.; Shanske, S.; DiMauro, S. A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr. Res. 2000, 48, 311–314. [Google Scholar] [CrossRef]
- Shehata, B.M.; Cundiff, C.A.; Lee, K.; Sabharwal, A.; Lalwani, M.K.; Davis, A.K.; Agrawal, V.; Sivasubbu, S.; Iannucci, G.J.; Gibson, G. Exome sequencing of patients with histiocytoid cardiomyopathy reveals a de novo ndufb11 mutation that plays a role in the pathogenesis of histiocytoid cardiomyopathy. Am. J. Med. Genet. A 2015, 167A, 2114–2121. [Google Scholar] [CrossRef]
- Johnson, N.E.; Statland, J.M. The limb-girdle muscular dystrophies. Continuum 2022, 28, 1698–1714. [Google Scholar] [CrossRef]
- Megarbane, A.; Bizzari, S.; Deepthi, A.; Sabbagh, S.; Mansour, H.; Chouery, E.; Hmaimess, G.; Jabbour, R.; Mehawej, C.; Alame, S.; et al. A 20-year clinical and genetic neuromuscular cohort analysis in lebanon: An international effort. J. Neuromuscul. Dis. 2022, 9, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Schindler, R.F.; Scotton, C.; Zhang, J.; Passarelli, C.; Ortiz-Bonnin, B.; Simrick, S.; Schwerte, T.; Poon, K.-L.; Fang, M.; Rinné, S.; et al. Popdc1s201f causes muscular dystrophy and arrhythmia by affecting protein trafficking. J. Clin. Investig. 2015, 126, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Lodder, E.M.; De Nittis, P.; Koopman, C.D.; Wiszniewski, W.; Moura de Souza, C.F.; Lahrouchi, N.; Guex, N.; Napolioni, V.; Tessadori, F.; Beekman, L.; et al. Gnb5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am. J. Hum. Genet. 2016, 99, 786. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Liu, D.; Tarpey, P.; Gallant, E.; Lam, A.; Witham, S.; Alexov, E.; Chaubey, A.; Stevenson, R.E.; Schwartz, C.E.; et al. An X-linked channelopathy with cardiomegaly due to a clic2 mutation enhancing ryanodine receptor channel activity. Hum. Mol. Genet. 2012, 21, 4497–4507. [Google Scholar] [CrossRef]
- Jennions, E.; Hedberg-Oldfors, C.; Berglund, A.K.; Kollberg, G.; Tornhage, C.J.; Eklund, E.A.; Oldfors, A.; Verloo, P.; Vanlander, A.V.; De Meirleir, L.; et al. Tango2 deficiency as a cause of neurodevelopmental delay with indirect effects on mitochondrial energy metabolism. J. Inherit. Metab. Dis. 2019, 42, 898–908. [Google Scholar] [CrossRef]
- Mohiddin, S.A.; Ahmed, Z.M.; Griffith, A.J.; Tripodi, D.; Friedman, T.B.; Fananapazir, L.; Morell, R.J. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin vi (myo6). J. Med. Genet. 2004, 41, 309–314. [Google Scholar] [CrossRef]
- Liaqat, K.; Schrauwen, I.; Raza, S.I.; Lee, K.; Hussain, S.; Chakchouk, I.; Nasir, A.; Acharya, A.; Abbe, I.; Umair, M.; et al. Identification of CACNA1D variants associated with sinoatrial node dysfunction and deafness in additional pakistani families reveals a clinical significance. J. Hum. Genet. 2019, 64, 153–160. [Google Scholar] [CrossRef]
- Rinne, S.; Stallmeyer, B.; Pinggera, A.; Netter, M.F.; Matschke, L.A.; Dittmann, S.; Kirchhefer, U.; Neudorf, U.; Opp, J.; Striessnig, J.; et al. Whole exome sequencing identifies a heterozygous variant in the cav1.3 gene cacna1d associated with familial sinus node dysfunction and focal idiopathic epilepsy. Int. J. Mol. Sci. 2022, 23, 14215. [Google Scholar] [CrossRef]
- Abdellaoui, A.; Yengo, L.; Verweij, K.J.H.; Visscher, P.M. 15 years of gwas discovery: Realizing the promise. Am. J. Hum. Genet. 2023, 110, 179–194. [Google Scholar] [CrossRef]
- Lahrouchi, N.; Tadros, R.; Crotti, L.; Mizusawa, Y.; Postema, P.G.; Beekman, L.; Walsh, R.; Hasegawa, K.; Barc, J.; Ernsting, M.; et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long qt syndrome. Circulation 2020, 142, 324–338. [Google Scholar] [CrossRef]
- Ishikawa, T.; Masuda, T.; Hachiya, T.; Dina, C.; Simonet, F.; Nagata, Y.; Tanck, M.W.T.; Sonehara, K.; Glinge, C.; Tadros, R.; et al. Brugada syndrome in Japan and Europe: A genome-wide association study reveals shared genetic architecture and new risk loci. Eur. Heart J. 2024, 45, 2320–2332. [Google Scholar] [CrossRef] [PubMed]
- Meisgen, S.; Hedlund, M.; Ambrosi, A.; Folkersen, L.; Ottosson, V.; Forsberg, D.; Thorlacius, G.E.; Biavati, L.; Strandberg, L.; Mofors, J.; et al. Auxilin is a novel susceptibility gene for congenital heart block which directly impacts fetal heart function. Ann. Rheum. Dis. 2022, 81, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zha, L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes 2024, 15, 1368. https://doi.org/10.3390/genes15111368
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes. 2024; 15(11):1368. https://doi.org/10.3390/genes15111368
Chicago/Turabian StyleGuo, Shuang, and Lingfeng Zha. 2024. "Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases" Genes 15, no. 11: 1368. https://doi.org/10.3390/genes15111368
APA StyleGuo, S., & Zha, L. (2024). Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes, 15(11), 1368. https://doi.org/10.3390/genes15111368