Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Biochemical Analyses
2.3. Genetic Techniques
2.4. Assessment of Pathogenicity of DNA Variants
2.5. Assay for Effects on Splicing of ARSA Variant c.854+1dup
3. Results
3.1. Clinical Data
3.2. Genetic Analysis by NGS
3.3. Functional Analysis of ARSA Variant c.854+1dup
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mistry, P.K.; Sadan, S.; Yang, R.; Yee, J.; Yang, M. Consequences of diagnostic delays in type 1 Gaucher disease: The need for greater awareness among hematologists-oncologists and an opportunity for early diagnosis and intervention. Am. J. Hematol. 2007, 82, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Rohani-Montez, S.C.; Bomberger, J.; Zhang, C.; Cohen, J.; McKay, L.; Evans, W.R.H. Educational needs in diagnosing rare diseases: A multinational, multispecialty clinician survey. Genet. Med. Open 2023, 1, 100808. [Google Scholar] [CrossRef]
- Jo, A.; Larson, S.; Carek, P.; Peabody, M.R.; Peterson, L.E.; Mainous, A.G. Prevalence and practice for rare diseases in primary care: A national cross-sectional study in the USA. BMJ Open 2019, 9, e027248. [Google Scholar] [CrossRef] [PubMed]
- Baynam, G.; Hartman, A.L.; Letinturier, M.C.V.; Bolz-Johnson, M.; Carrion, P.; Grady, A.C.; Dong, X.; Dooms, M.; Dreyer, L.; Graessner, H.; et al. Global health for rare diseases through primary care. Lancet Glob. Health 2024, 12, e1192–e1199. [Google Scholar] [CrossRef]
- Global Commision to End the Diagnostic Odyssey for Children with a Rare Disease. Ending the Diagnostic Odyssey for Children with a Rare Disease: Year One Report. 2019. Available online: https://globalrarediseasecommission.com/our-work/ (accessed on 2 September 2024).
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef]
- Platt, F.M. Emptying the stores: Lysosomal diseases and therapeutic strategies. Nat. Rev. Drug Discov. 2018, 17, 133–150. [Google Scholar] [CrossRef]
- Hartley, T.; Lemire, G.; Kernohan, K.D.; Howley, H.E.; Adams, D.R.; Boycott, K.M. New diagnostic approaches for undiagnosed rare genetic diseases. Annu. Rev. Genomics Hum. Genet. 2020, 21, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, G.; García-Seisdedos, D.; Ciubotariu, C.; Piris-Villaespesa, M.; Gandía, M.; Martín-Moro, F.; Gutiérrez-Solana, L.G.; Morado, M.; López-Jiménez, J.; Sánchez-Herranz, A.; et al. Early detection of lysosomal diseases by screening of cases of idiopathic splenomegaly and/or thrombocytopenia with a next-generation sequencing gene panel. JIMD Rep. 2019, 51, 53–61. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Solovyeva, V.V.; Mullagulova, A.I.; Kitaeva, K.V.; Allegrucci, C.; Rizvanov, A.A. Metachromatic leukodystrophy: Diagnosis, modeling, and treatment approaches. Front. Med. 2020, 7, 576221. [Google Scholar] [CrossRef]
- Hammoud, M.; Rodrigues, A.M.S.; Assiri, I.; Sabir, E.; Lafhal, K.; Najeh, S.; Jakani, M.; Imad, N.; Bourrahouat, A.; Ait Sab, I.; et al. Sphingolipidoses in Morocco: Chemical profiling for an affordable and rapid diagnosis strategy. Prostaglandins Other Lipid Mediat. 2023, 168, 106751. [Google Scholar] [CrossRef]
- Christopher, R.; Narayanan, C.P.; Arunodaya, G.R.; Taranath Shetty, K. Serum arylsulfatase A assay in metachromatic leukodystrophy: An experience in a neuropsychiatric set-up. Indian J. Clin. Biochem. 1995, 10, 89–92. [Google Scholar] [CrossRef]
- Beratis, N.G.; Aaron, A.M.; Hirschhorn, K. Metachromatic leukodystrophy: Detection in serum. J. Pediatr. 1973, 83, 824–827. [Google Scholar] [CrossRef]
- Spacil, Z.; Babu Kumar, A.; Liao, H.C.; Auray-Blais, C.; Stark, S.; Suhr, T.R.; Scott, C.R.; Turecek, F.; Gelb, M.H. Sulfatide analysis by mass spectrometry for screening of metachromatic leukodystrophy in dried blood and urine samples. Clin. Chem. 2016, 62, 279–286. [Google Scholar] [CrossRef]
- Hong, X.; Daiker, J.; Sadilek, M.; Ruiz-Schultz, N.; Kumar, A.B.; Norcross, S.; Dansithong, W.; Suhr, T.; Escolar, M.L.; Scott, C.R.; et al. Toward newborn screening of metachromatic leukodystrophy: Results from analysis of over 27,000 newborn dried blood spots. Genet. Med. 2021, 23, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Kumar, A.B.; Daiker, J.; Yi, F.; Sadilek, M.; De Mattia, F.; Fumagalli, F.; Calbi, V.; Damiano, R.; Della Bona, M.; et al. Leukocyte and dried blood spot arylsulfatase A assay by tandem mass spectrometry. Anal. Chem. 2020, 92, 6341–6348. [Google Scholar] [CrossRef] [PubMed]
- del Castillo, F.J.; Muñoz, G.; Gandía, M.; Ciubotariu, C.; García-Seisdedos, D.; Piris-Villaespesa, M.; Domínguez-Ruiz, M.; Calderón, E.; González-Meneses, A.; López-Jiménez, J.; et al. Genetic screening of lysosomal disorders: An account of five years’ experience with NGS-based resequencing panels. Mol. Genet. Metab. 2022, 135, S36. [Google Scholar] [CrossRef]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E.; et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- VarSome: The Human Genomic Variant Search Engine. Available online: https://varsome.com/ (accessed on 20 September 2024).
- Laugwitz, L.; Schoenmakers, D.H.; Adang, L.A.; Beck-Woedl, S.; Bergner, C.; Bernard, G.; Bley, A.; Boyer, A.; Calbi, V.; Dekker, H.; et al. Newborn screening in metachromatic leukodystrophy—European consensus-based recommendations on clinical management. Eur. J. Paediatr. Neurol. 2024, 49, 141–154. [Google Scholar] [CrossRef]
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 9 October 2024).
- Online Mendelian Inheritance in Man (OMIM). Available online: https://omim.org/ (accessed on 9 October 2024).
- Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 1997, 4, 311–323. [Google Scholar] [CrossRef]
- Yeo, G.; Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004, 11, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Steinhaus, R.; Proft, S.; Schuelke, M.; Cooper, D.N.; Schwarz, J.M.; Seelow, D. MutationTaster2021. Nucl. Acids Res. 2021, 49, W446–W451. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2024, 625, 92–100. [Google Scholar] [CrossRef] [PubMed]
- IGSR: The International Genome Sample Resource and the 1000 Genomes Project. Available online: https://www.internationalgenome.org (accessed on 8 October 2024).
- Chen, L.; Yan, H.; Cao, B.; Wu, Y.; Gu, Q.; Xiao, J.; Yang, Y.; Yang, H.; Shi, Z.; Yang, Z.; et al. Identification of Novel ARSA Mutations in Chinese Patients with Metachromatic Leukodystrophy. Int. J. Genomics 2018, 2018, 2361068. [Google Scholar] [CrossRef] [PubMed]
- Velho, R.V.; De Pace, R.; Klünder, S.; Sperb-Ludwig, F.; Lourenço, C.M.; Schwartz, I.V.; Braulke, T.; Pohl, S. Analyses of disease-related GNPTAB mutations define a novel GlcNAc-1-phosphotransferase interaction domain and an alternative site-1 protease cleavage site. Hum. Mol. Genet. 2015, 24, 3497–3505. [Google Scholar] [CrossRef]
- Labauge, P.; Renard, D.; Castelnovo, G.; Sabourdy, F.; de Champfleur, N.; Levade, T. β-mannosidosis: A new cause of spinocerebellar ataxia. Clin. Neurol. Neurosurg. 2009, 111, 109–110. [Google Scholar] [CrossRef]
- Gieselmann, V.; Polten, A.; Kreysing, J.; von Figura, K. Arylsulfatase A pseudodeficiency: Loss of a polyadenylylation signal and N-glycosylation site. Proc. Natl. Acad. Sci. USA 1989, 86, 9436–9440. [Google Scholar] [CrossRef]
- Laugwitz, L.; Santhanakumaran, V.; Spieker, M.; Boehringer, J.; Bender, B.; Gieselmann, V.; Beck-Woedl, S.; Bruchelt, G.; Harzer, K.; Kraegeloh-Mann, I.; et al. Extremely low arylsulfatase a enzyme activity does not necessarily cause symptoms: A long-term follow-up and review of the literature. JIMD Rep. 2022, 63, 292–302. [Google Scholar] [CrossRef]
- Santhanakumaran, V.; Groeschel, S.; Harzer, K.; Kehrer, C.; Elgün, S.; Beck-Wödl, S.; Hengel, H.; Schöls, L.; Haack, T.B.; Krägeloh-Mann, I.; et al. Predicting clinical phenotypes of metachromatic leukodystrophy based on the arylsulfatase A activity and the ARSA genotype?—Chances and challenges. Mol. Genet. Metab. 2022, 137, 273–282. [Google Scholar] [CrossRef]
- Khan, S.A.; Tomatsu, S.C. Mucolipidoses overview: Past, present, and future. Int. J. Mol. Sci. 2020, 21, 6812. [Google Scholar] [CrossRef]
- Straniero, L.; Rimoldi, V.; Monfrini, E.; Bonvegna, S.; Melistaccio, G.; Lake, J.; Soldà, G.; Aureli, M.; Shankaracharya; Keagle, P.; et al. Role of lysosomal gene variants in modulating GBA-associated Parkinson’s disease risk. Mov. Disord. 2022, 37, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ye, H.; De-Paula, R.B.; Mangleburg, C.G.; Wu, T.; Lee, T.V.; Li, Y.; Duong, D.; Phillips, B.; Cruchaga, C.; et al. Functional screening of lysosomal storage disorder genes identifies modifiers of α-synuclein neurotoxicity. PLoS Genet. 2023, 19, e1010760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ham, A.; Ma, T.C.; Kuo, S.H.; Kanter, E.; Kim, D.; Ko, H.S.; Quan, Y.; Sardi, S.P.; Li, A.; et al. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 2019, 15, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA variants and Parkinson disease: Mechanisms and treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Root, J.; Merino, P.; Nuckols, A.; Johnson, M.; Kukar, T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol. Dis. 2021, 154, 105360. [Google Scholar] [CrossRef]
- Linscott, K.B.; Cassady, J.A.; Robin, N.H. Occam’s razor dulled: The occurrence of multiple genetic diagnoses. Curr. Opin. Pediatr. 2021, 33, 545–548. [Google Scholar] [CrossRef]
Target 1 | Exons | Primer Sequences (5′-3′) | Annealing T (°C) | Amplicon (bp) |
---|---|---|---|---|
gDNA, ARSA | 3–4 | Upper: CCATCGATTTCTAGGCATCCC | 64 | 708 |
Lower: TCACCCACTATGTTCTTGGCAA | ||||
cDNA, ARSA | 4–5 | Upper: FAM- CAGAGCTTTGCAGAGCGTTCA | 64 | 216 |
Lower: CTCGTAGGTCGTTCCCTTTCCA | ||||
gDNA, GNPTAB | 13 (part) | Upper: CTCAGACTCAAAGAATTAAAGGAA | 55 | 536 |
Lower: GGGCTCTCCTTGTTGAGTTA | ||||
gDNA, MANBA | 14 | Upper: CTTCTCTCATGCTAAGGGGCTAGT | 58 | 498 |
Lower: GAGTTGGGTGGCTGTAGTTCC |
Name | Primer Sequences (5′-3′) | Annealing T (°C) | Amplicon (bp) |
---|---|---|---|
D22S1169 | Upper: FAM- GCACACACATGCACATAATC | 56 | 118–138 |
Lower: AACAACTTCCAGCAGACG | |||
D22S1056 | Upper: HEX- CACCCCCCCAAAAAAGTGT | 56 | 90–100 |
Lower: ATGCTGTTTCTCACCCCAGT | |||
(TG)n195 | Upper: HEX- AAACGTTTGACTGAGCCAAGCA | 56 | ~135 |
Lower: GTCCACTCACCCACGCACAGA |
Gene 1 | Variant | Minor Allele Frequency (MAF) 2 | ACMG Criteria | Classification | Reference | |
---|---|---|---|---|---|---|
DNA | Protein | |||||
ARSA | c.640G>A | p.(Ala214Thr) | 4 × 10−6 (global) 1 × 10−5 (African) | PM1, PM2, PM5 | Likely pathogenic | [29] |
ARSA | c.854+1dup | p.(Pro286Thr*fs2) | 0 (global) | PVS1, PM2, PP3 | Pathogenic | This work |
GNPTAB | c.1931_1932inv | p.(Thr644Met) | 0 (global) | PS3, PS4, PM2, PM3 | Pathogenic | [30] |
MANBA | c.1922G>A | p.(Arg641His) | 7 × 10−5 (global) 4 × 10−5 (African) | PS3, PS4, PM2, PP3 | Pathogenic | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammoud, M.; Domínguez-Ruiz, M.; Assiri, I.; Rodrigues, D.; Aboussair, N.; Lanza, V.F.; Villarrubia, J.; Colón, C.; Fdil, N.; del Castillo, F.J. Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS). Genes 2024, 15, 1515. https://doi.org/10.3390/genes15121515
Hammoud M, Domínguez-Ruiz M, Assiri I, Rodrigues D, Aboussair N, Lanza VF, Villarrubia J, Colón C, Fdil N, del Castillo FJ. Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS). Genes. 2024; 15(12):1515. https://doi.org/10.3390/genes15121515
Chicago/Turabian StyleHammoud, Miloud, María Domínguez-Ruiz, Imane Assiri, Daniel Rodrigues, Nisrine Aboussair, Val F. Lanza, Jesús Villarrubia, Cristóbal Colón, Naima Fdil, and Francisco J. del Castillo. 2024. "Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS)" Genes 15, no. 12: 1515. https://doi.org/10.3390/genes15121515
APA StyleHammoud, M., Domínguez-Ruiz, M., Assiri, I., Rodrigues, D., Aboussair, N., Lanza, V. F., Villarrubia, J., Colón, C., Fdil, N., & del Castillo, F. J. (2024). Metachromatic Leukodystrophy in Morocco: Identification of Causative Variants by Next-Generation Sequencing (NGS). Genes, 15(12), 1515. https://doi.org/10.3390/genes15121515