BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- VizHub—GBD Results. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 31 January 2024).
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia—An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef]
- WHO. Transforming Mental Health for All; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Smoller, J.W.; Andreassen, O.A.; Edenberg, H.J.; Faraone, S.V.; Glatt, S.J.; Kendler, K.S. Psychiatric Genetics and the Structure of Psychopathology. Mol. Psychiatry 2019, 24, 409–420. [Google Scholar] [CrossRef]
- Ruderfer, D.M.; Ripke, S.; McQuillin, A.; Boocock, J.; Stahl, E.A.; Pavlides, J.M.W.; Mullins, N.; Charney, A.W.; Ori, A.P.S.; Loohuis, L.M.O.; et al. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell 2018, 173, 1705–1715.e16. [Google Scholar] [CrossRef]
- Calabrò, M.; Porcelli, S.; Crisafulli, C.; Albani, D.; Kasper, S.; Zohar, J.; Souery, D.; Montgomery, S.; Mantovani, V.; Mendlewicz, J.; et al. Genetic Variants Associated with Psychotic Symptoms across Psychiatric Disorders. Neurosci. Lett. 2020, 720, 134754. [Google Scholar] [CrossRef]
- Owen, M.J.; Legge, S.E.; Rees, E.; Walters, J.T.R.; O’Donovan, M.C. Genomic Findings in Schizophrenia and Their Implications. Mol. Psychiatry 2023, 28, 3638–3647. [Google Scholar] [CrossRef] [PubMed]
- Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.R.; Farh, K.H.; Holmans, P.A.; Lee, P.; Bulik-Sullivan, B.; Collier, D.A.; Huang, H.; et al. Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef]
- Lam, M.; Chen, C.Y.; Li, Z.; Martin, A.R.; Bryois, J.; Ma, X.; Gaspar, H.; Ikeda, M.; Benyamin, B.; Brown, B.C.; et al. Comparative Genetic Architectures of Schizophrenia in East Asian and European Populations. Nat. Genet. 2019, 51, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Yu, X.; Zhang, D. Progress in Genome-Wide Association Studies of Schizophrenia in Han Chinese Populations. NPJ Schizophr. 2017, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Nesic, M.J.; Maric, N.P. Population-Based Differences in Immune System Response Contribute to an Increased Risk of Schizophrenia in African Migrants? Rev. Neurosci. 2018, 29, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-Wide Association Analyses Identify 44 Risk Variants and Refine the Genetic Architecture of Major Depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Morozova, A.Y.; Zubkov, E.A.; Zorkina, Y.A.; Reznik, A.M.; Kostyuk, G.P.; Chekhonin, V.P. [Genetic Aspects of Schizophrenia]. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2017, 117, 126–132. [Google Scholar] [CrossRef]
- Peng, S.; Li, W.; Lv, L.; Zhang, Z.; Zhan, X. BDNF as a Biomarker in Diagnosis and Evaluation of Treatment for Schizophrenia and Depression. Discov. Med. 2018, 26, 127–136. [Google Scholar] [PubMed]
- Ceccarini, M.R.; Tasegian, A.; Franzago, M.; Patria, F.F.; Albi, E.; Codini, M.; Conte, C.; Bertelli, M.; Dalla Ragione, L.; Stuppia, L.; et al. 5-HT2AR and BDNF Gene Variants in Eating Disorders Susceptibility. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2020, 183, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Rs6265 RefSNP Report—DbSNP—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs6265 (accessed on 31 January 2024).
- Karlsson Linnér, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-Wide Association Analyses of Risk Tolerance and Risky Behaviors in over 1 Million Individuals Identify Hundreds of Loci and Shared Genetic Influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, A.; Malov, S.; Antonik, A.; Protsvetkina, A.; Rybakova, K.V.; Kanapin, A.; Yakovlev, A.N.; Nenasteva, A.Y.; Nikolishin, A.E.; Cherkasov, N.; et al. A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines 2022, 10, 3007. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Smith, A.K.; Wang, Y.; Pan, Y.; Yang, J.; Chen, Q.; Pan, W.; Bao, F.; Zhao, L.; Tie, C.; et al. The Brain-Derived Neurotrophic-Factor (BDNF) Val66met Polymorphism Is Associated with Geriatric Depression: A Meta-Analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159B, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Rs10835210 RefSNP Report—DbSNP—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs10835210 (accessed on 31 January 2024).
- Zhang, X.Y.; Chen, D.C.; Tan, Y.L.; Tan, S.; Luo, X.; Zuo, L.; Soares, J.C. BDNF Polymorphisms Are Associated with Cognitive Performance in Schizophrenia Patients Versus Healthy Controls. J. Clin. Psychiatry 2016, 77, e1011–e1018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.C.; Tan, Y.L.; Tan, S.P.; Luo, X.; Zuo, L.; Soares, J.C. BDNF Polymorphisms Are Associated with Schizophrenia Onset and Positive Symptoms. Schizophr. Res. 2016, 170, 41–47. [Google Scholar] [CrossRef]
- Pae, C.U.; Chiesa, A.; Porcelli, S.; Han, C.; Patkar, A.A.; Lee, S.J.; Park, M.H.; Serretti, A.; De Ronchi, D. Influence of BDNF Variants on Diagnosis and Response to Treatment in Patients with Major Depression, Bipolar Disorder and Schizophrenia. Neuropsychobiology 2012, 65, 1–11. [Google Scholar] [CrossRef]
- Aureli, A.; Del Beato, T.; Sebastiani, P.; Marimpietri, A.; Melillo, C.V.; Sechi, E.; Di Loreto, S. Attention-Deficit Hyperactivity Disorder and Intellectual Disability: A Study of Association with Brain-Derived Neurotrophic Factor Gene Polymorphisms. Int. J. Immunopathol. Pharmacol. 2010, 23, 873–880. [Google Scholar] [CrossRef]
- Sinopoli, V.M.; Burton, C.L.; Kronenberg, S.; Arnold, P.D. A Review of the Role of Serotonin System Genes in Obsessive-Compulsive Disorder. Neurosci. Biobehav. Rev. 2017, 80, 372–381. [Google Scholar] [CrossRef]
- Soga, T.; Teo, C.H.; Parhar, I. Genetic and Epigenetic Consequence of Early-Life Social Stress on Depression: Role of Serotonin-Associated Genes. Front. Genet. 2021, 11, 601868. [Google Scholar] [CrossRef]
- Rs6313 RefSNP Report—DbSNP—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs6313 (accessed on 31 January 2024).
- Jakubczyk, A.; Wrzosek, M.; Lukaszkiewicz, J.; Sadowska-Mazuryk, J.; Matsumoto, H.; Śliwerska, E.; Glass, J.; Burmeister, M.; Brower, K.J.; Wojnar, M. The CC Genotype in HTR2A T102C Polymorphism Is Associated with Behavioral Impulsivity in Alcohol-Dependent Patients. J. Psychiatr. Res. 2012, 46, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Stackman, R.W. The Role of Serotonin 5-HT2A Receptors in Memory and Cognition. Front. Pharmacol. 2015, 6, 225. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Jiang, M.Y.; Kan, Z.M.; Chu, Y. Influence of 5-HTR2A Genetic Polymorphisms on the Efficacy of Antidepressants in the Treatment of Major Depressive Disorder: A Meta-Analysis. J. Affect. Disord. 2014, 168, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Gressier, F.; Porcelli, S.; Calati, R.; Serretti, A. Pharmacogenetics of Clozapine Response and Induced Weight Gain: A Comprehensive Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2016, 26, 163–185. [Google Scholar] [CrossRef] [PubMed]
- Maffioletti, E.; Valsecchi, P.; Minelli, A.; Magri, C.; Bonvicini, C.; Barlati, S.; Sacchetti, E.; Vita, A.; Gennarelli, M. Association Study between HTR2A Rs6313 Polymorphism and Early Response to Risperidone and Olanzapine in Schizophrenia Patients. Drug Dev. Res. 2020, 81, 754–761. [Google Scholar] [CrossRef]
- Gilsbach, S.; Neufang, S.; Scherag, S.; Vloet, T.D.; Fink, G.R.; Herpertz-Dahlmann, B.; Konrad, K. Effects of the DRD4 Genotype on Neural Networks Associated with Executive Functions in Children and Adolescents. Dev. Cogn. Neurosci. 2012, 2, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Rs1800955 RefSNP Report—DbSNP—NCBI. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1800955 (accessed on 31 January 2024).
- Ptáček, R.; Kuželová, H.; Stefano, G.B. Dopamine D4 Receptor Gene DRD4 and Its Association with Psychiatric Disorders. Med. Sci. Monit. 2011, 17, RA215–RA220. [Google Scholar] [CrossRef]
- Haghighatfard, A.; Ghaderi, A.H.; Mostajabi, P.; Kashfi, S.S.; Mohabati somehsarayee, H.; Shahrani, M.; Mehrasa, M.; Haghighat, S.; Farhadi, M.; Momayez sefat, M.; et al. The First Genome-Wide Association Study of Internet Addiction; Revealed Substantial Shared Risk Factors with Neurodevelopmental Psychiatric Disorders. Res. Dev. Disabil. 2023, 133, 104393. [Google Scholar] [CrossRef]
- Balestri, M.; Calati, R.; Serretti, A.; De Ronchi, D. Genetic Modulation of Personality Traits: A Systematic Review of the Literature. Int. Clin. Psychopharmacol. 2014, 29, 1–15. [Google Scholar] [CrossRef]
- Shi, J.; Gershon, E.S.; Liu, C. Genetic Associations with Schizophrenia: Meta-Analyses of 12 Candidate Genes. Schizophr. Res. 2008, 104, 96–107. [Google Scholar] [CrossRef]
- Martin, A.R.; Gignoux, C.R.; Walters, R.K.; Wojcik, G.L.; Neale, B.M.; Gravel, S.; Daly, M.J.; Bustamante, C.D.; Kenny, E.E. Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations. Am. J. Hum. Genet. 2017, 100, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Hidden “risk” in Polygenic Scores: Clinical Use Today Could Exacerbate Health Disparities. bioRxiv 2018, 441261. [Google Scholar] [CrossRef]
- Golimbet, V.E.; Alfimova, M.V.; Korovaĭtseva, G.I.; Lezheĭko, T.V. [The Moderating Effect of the Va166Met Polymorphism of Brain-Derived Neurotrophic Factor Gene on the Clinical and Psychological Features of Patients with Schizophrenia]. Mol. Biol. 2014, 48, 81–88. [Google Scholar] [CrossRef]
- Pakhomova, S.A.; Korovaitseva, G.I.; Monchakovskaya, M.Y.; Vilyanov, V.B.; Frolova, L.P.; Kasparov, S.V.; Kolesnichenko, E.V.; Golimbet, V.E. Molecular Genetic Studies of Early-Onset Schizophrenia. Neurosci. Behav. Physiol. 2011, 41, 532–535. [Google Scholar] [CrossRef]
- Golimbet, V.E.; Kaleda, V.G.; Korovaitseva, G.I.; Lezheiko, T.V.; Kasparov, S.V.; Krikova, E.V.; Tikhonov, D.V. [Genetic Variations Associated with Premorbid Personality in Patients with Schizophrenia]. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2019, 119, 55–59. [Google Scholar] [CrossRef]
- An Association Study of Polymorphisms in HTR2A, BDNF and SLC6A4 Genes with Paranoid Schizophrenia and Suicidal Behavior. Available online: https://pubmed.ncbi.nlm.nih.gov/23250597/ (accessed on 31 January 2024).
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Guillén-Burgos, H.F.; Gutiérrez-Ruiz, K. Genetic Advances in Post-Traumatic Stress Disorder. Rev. Colomb. Psiquiatr. (Engl. Ed.) 2018, 47, 108–118. [Google Scholar] [CrossRef]
- Shen, T.; You, Y.; Joseph, C.; Mirzaei, M.; Klistorner, A.; Graham, S.L.; Gupta, V. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis. 2018, 9, 523–536. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Gredicak, M.; Sagud, M.; Nedic Erjavec, G.; Uzun, S.; Pivac, N. The Association of Brain-Derived Neurotrophic Factor with the Diagnosis and Treatment Response in Depression. Expert Rev. Mol. Diagn. 2023, 23, 283–296. [Google Scholar] [CrossRef]
- Andreatta, M.; Neueder, D.; Genheimer, H.; Schiele, M.A.; Schartner, C.; Deckert, J.; Domschke, K.; Reif, A.; Wieser, M.J.; Pauli, P. Human BDNF Rs6265 Polymorphism as a Mediator for the Generalization of Contextual Anxiety. J. Neurosci. Res. 2019, 97, 300–312. [Google Scholar] [CrossRef]
- Losenkov, I.S.; Mulder, N.J.V.; Levchuk, L.A.; Vyalova, N.M.; Loonen, A.J.M.; Bosker, F.J.; Simutkin, G.G.; Boiko, A.S.; Bokhan, N.A.; Wilffert, B.; et al. Association Between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Front. Psychiatry 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, J.; Du, J.; Sun, J.; Baranova, A.; Zhang, F. BDNF Gene’s Role in Schizophrenia: From Risk Allele to Methylation Implications. Front. Psychiatry 2020, 11, 564277. [Google Scholar] [CrossRef] [PubMed]
- Mitra, P.; Ghosh, R.; Sharma, S.; Nebhinani, N.; Sharma, P. Association of Circulating BDNF Levels with BDNF Rs6265 Polymorphism in Schizophrenia. Behav. Brain Res. 2020, 394, 112832. [Google Scholar] [CrossRef]
- Fedosova, A.; Titova, N.; Kokaeva, Z.; Shipilova, N.; Katunina, E.; Klimov, E. Genetic Markers as Risk Factors for the Development of Impulsive-Compulsive Behaviors in Patients with Parkinson’s Disease Receiving Dopaminergic Therapy. J. Pers. Med. 2021, 11, 1321. [Google Scholar] [CrossRef] [PubMed]
- Zakharyan, R.; Boyajyan, A.; Arakelyan, A.; Gevorgyan, A.; Mrazek, F.; Petrek, M. Functional Variants of the Genes Involved in Neurodevelopment and Susceptibility to Schizophrenia in an Armenian Population. Hum. Immunol. 2011, 72, 746–748. [Google Scholar] [CrossRef]
- Suchanek, R.; Owczarek, A.; Paul-Samojedny, M.; Kowalczyk, M.; Kucia, K.; Kowalski, J. BDNF Val66met Polymorphism Is Associated with Age at Onset and Intensity of Symptoms of Paranoid Schizophrenia in a Polish Population. J. Neuropsychiatry Clin. Neurosci. 2013, 25, 88–94. [Google Scholar] [CrossRef]
- Neves-Pereira, M.; Cheung, J.K.; Pasdar, A.; Zhang, F.; Breen, G.; Yates, P.; Sinclair, M.; Crombie, C.; Walker, N.; St. Clair, D.M. BDNF Gene Is a Risk Factor for Schizophrenia in a Scottish Population. Mol. Psychiatry 2005, 10, 208–212. [Google Scholar] [CrossRef]
- Chao, H.M.; Kao, H.T.; Porton, B. BDNF Val66Met Variant and Age of Onset in Schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2008, 147B, 505–506. [Google Scholar] [CrossRef]
- Pan, L.; Cao, Z.; Chen, L.; Qian, M.; Yan, Y. Association of BDNF and MMP-9 Single-Nucleotide Polymorphisms with the Clinical Phenotype of Schizophrenia. Front. Psychiatry 2022, 13, 941973. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhao, J.; Shi, Y.; Zhao, X.; Feng, G.; Xu, F.; Zhu, S.; He, L. Brain-Derived Neurotrophic Factor and Risk of Schizophrenia: An Association Study and Meta-Analysis. Biochem. Biophys. Res. Commun. 2007, 353, 738–743. [Google Scholar] [CrossRef]
- Kanazawa, T.; Glatt, S.J.; Kia-Keating, B.; Yoneda, H.; Tsuang, M.T. Meta-Analysis Reveals No Association of the Val66Met Polymorphism of Brain-Derived Neurotrophic Factor with Either Schizophrenia or Bipolar Disorder. Psychiatr. Genet. 2007, 17, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Naoe, Y.; Shinkai, T.; Hori, H.; Fukunaka, Y.; Utsunomiya, K.; Sakata, S.; Matsumoto, C.; Shimizu, K.; Hwang, R.; Ohmori, O.; et al. No Association between the Brain-Derived Neurotrophic Factor (BDNF) Val66Met Polymorphism and Schizophrenia in Asian Populations: Evidence from a Case-Control Study and Meta-Analysis. Neurosci. Lett. 2007, 415, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Muratake, T.; Kaneko, N.; Nunokawa, A.; Someya, T. No Association between the Brain-Derived Neurotrophic Factor Gene and Schizophrenia in a Japanese Population. Schizophr. Res. 2006, 84, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Fukuo, Y.; Moriwaki, M.; Iwata, N.; Hori, H.; Yoshimura, R.; Katsuki, A.; Ikenouchi-Sugita, A.; Atake, K.; Umene-Nakano, W.; et al. No Significant Association between Brain-Derived Neurotrophic Factor Gene Rs6265 and Cognitive Function in Japanese Patients with Schizophrenia. Psychiatry Res. 2014, 215, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.C.; Tang, P.Y.; Tee, S.F.; Chow, T.J.; Cheah, Y.C.; Singh, S.S.J. BDNF and DARPP-32 Genes Are Not Risk Factors for Schizophrenia in the Malay Population. Genet. Mol. Res. 2012, 11, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Sarchiapone, M.; Carli, V.; Roy, A.; Iacoviello, L.; Cuomo, C.; Latella, M.C.; Di Giannantonio, M.; Janiri, L.; De Gaetano, M.; Janal, M.N. Association of Polymorphism (Val66Met) of Brain-Derived Neurotrophic Factor with Suicide Attempts in Depressed Patients. Neuropsychobiology 2008, 57, 139–145. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, S.W.; Kim, S.Y.; Chung, J.W.; Kim, J.; Myung, W.; Song, J.; Kim, S.; Carroll, B.J.; Kim, D.K. Association between the BDNF Val66Met Polymorphism and Chronicity of Depression. Psychiatry Investig. 2013, 10, 56. [Google Scholar] [CrossRef]
- Pathak, P.; Mehra, A.; Ram, S.; Pal, A.; Grover, S. Association of Serum BDNF Level and Val66Met Polymorphism with Response to Treatment in Patients of Major Depressive Disease: A Step towards Personalized Therapy. Behav. Brain Res. 2022, 430, 113931. [Google Scholar] [CrossRef]
- Niitsu, T.; Fabbri, C.; Bentini, F.; Serretti, A. Pharmacogenetics in Major Depression: A Comprehensive Meta-Analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 183–194. [Google Scholar] [CrossRef]
- Schosser, A.; Fischer-Hansal, D.; Swoboda, M.M.; Ludwig, B.; Carlberg, L.; Swoboda, P.; Kienesberger, K.; Bernegger, A.; Fuxjäger, M.; Zotter, M.; et al. BDNF Gene Polymorphisms Predicting Treatment Response to CBT-Based Rehabilitation of Depression: To Be Submitted to: European Neuropsychopharmacology. Eur. Neuropsychopharmacol. 2022, 58, 103–108. [Google Scholar] [CrossRef]
- Cao, B.; Bauer, I.E.; Sharma, A.N.; Mwangi, B.; Frazier, T.; Lavagnino, L.; Zunta-Soares, G.B.; Walss-Bass, C.; Glahn, D.C.; Kapczinski, F.; et al. Reduced Hippocampus Volume and Memory Performance in Bipolar Disorder Patients Carrying the BDNF Val66met Met Allele. J. Affect. Disord. 2016, 198, 198–205. [Google Scholar] [CrossRef]
- McGregor, N.W.; Dimatelis, J.J.; Van Zyl, P.J.; Hemmings, S.M.J.; Kinnear, C.; Russell, V.A.; Stein, D.J.; Lochner, C. A Translational Approach to the Genetics of Anxiety Disorders. Behav. Brain Res. 2018, 341, 91–97. [Google Scholar] [CrossRef]
- Li, W.; Zhou, N.; Yu, Q.; Li, X.; Yu, Y.; Sun, S.; Kou, C.; Chen, D.C.; Xiu, M.H.; Kosten, T.R.; et al. Association of BDNF Gene Polymorphisms with Schizophrenia and Clinical Symptoms in a Chinese Population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 538–545. [Google Scholar] [CrossRef]
- Meng, X.; Kou, C.; Shi, J.; Yu, Y.; Huang, Y. Association between polymorphism of BDNF and internalizing disorders. Chin. J. Epidemiol. 2009, 30, 1265–1268. (In Chinese) [Google Scholar] [CrossRef]
- Icick, R.; Bloch, V.; Prince, N.; Karsinti, E.; Lépine, J.P.; Laplanche, J.L.; Mouly, S.; Marie-Claire, C.; Brousse, G.; Bellivier, F.; et al. Clustering Suicidal Phenotypes and Genetic Associations with Brain-Derived Neurotrophic Factor in Patients with Substance Use Disorders. Transl. Psychiatry 2021, 11, 72. [Google Scholar] [CrossRef]
- Xie, B.; Wang, B.; Suo, P.; Kou, C.; Wang, J.; Meng, X.; Cheng, L.; Ma, X.; Yu, Y. Genetic Association between BDNF Gene Polymorphisms and Phobic Disorders: A Case-Control Study among Mainland Han Chinese. J. Affect. Disord. 2011, 132, 239–242. [Google Scholar] [CrossRef]
- Guillot, C.R.; Kelly, M.E.; Phillips, N.B.; Su, M.Y.; Douglas, M.E.; Poe, D.J.; Berman, M.E.; Liang, T. BDNF and Stress/Mood-Related Interactions on Emotional Disorder Symptoms, Executive Functioning, and Deliberate Self-Harm. J. Psychiatr. Res. 2023, 163, 195–201. [Google Scholar] [CrossRef]
- Saha, S.; González-Maeso, J. The Crosstalk between 5-HT2AR and MGluR2 in Schizophrenia. Neuropharmacology 2023, 230, 109489. [Google Scholar] [CrossRef]
- Preda, A.; Shapiro, B.B. A Safety Evaluation of Aripiprazole in the Treatment of Schizophrenia. Expert Opin. Drug Saf. 2020, 19, 1529–1538. [Google Scholar] [CrossRef]
- Gong, P.; Li, J.; Wang, J.; Lei, X.; Chen, D.; Zhang, K.; Zhang, W.; Zhen, A.; Gao, X.; Zhang, F. Variations in 5-HT2A Influence Spatial Cognitive Abilities and Working Memory. Can. J. Neurol. Sci. 2011, 38, 303–308. [Google Scholar] [CrossRef]
- Babić Leko, M.; Nikolac Perković, M.; Španić, E.; Švob Štrac, D.; Pleić, N.; Vogrinc, Ž.; Gunjača, I.; Bežovan, D.; Nedić Erjavec, G.; Klepac, N.; et al. Serotonin Receptor Gene Polymorphisms Are Associated with Cerebrospinal Fluid, Genetic, and Neuropsychological Biomarkers of Alzheimer’s Disease. Biomedicines 2022, 10, 3118. [Google Scholar] [CrossRef]
- Howe, A.S.; ButtenschØn, H.N.; Bani-Fatemi, A.; Maron, E.; Otowa, T.; Erhardt, A.; Binder, E.B.; Gregersen, N.O.; Mors, O.; Woldbye, D.P.; et al. Candidate Genes in Panic Disorder: Meta-Analyses of 23 Common Variants in Major Anxiogenic Pathways. Mol. Psychiatry 2016, 21, 665–679. [Google Scholar] [CrossRef]
- Gareeva, A.E.; Badretdinov, U.G.; Akhmetova, E.A.; Kinyasheva, K.O.; Nasibullin, T.R.; Samigullina, L.I.; Timerbulatov, I.F.; Timerbulatova, M.F.; Asadullin, A.R. [The Role of Genetic Factors in the Development of Suicidal Behavior in Individuals with Dependence on Synthetic Cathinones]. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2020, 120, 69–78. [Google Scholar] [CrossRef]
- Ivashchenko, D.V.; Khoang, S.Z.; Makhmudova, B.V.; Buromskaya, N.I.; Shimanov, P.V.; Deitch, R.V.; Akmalova, K.A.; Shuev, G.N.; Dorina, I.V.; Nastovich, M.I.; et al. Pharmacogenetics of Antipsychotics in Adolescents with Acute Psychotic Episode during First 14 Days after Admission: Effectiveness and Safety Evaluation. Drug Metab. Pers. Ther. 2020, 35. [Google Scholar] [CrossRef]
- Yildiz, S.H.; Akilli, A.; Bagcioglu, E.; Erdogan, M.O.; Coskun, K.S.; Alpaslan, A.H.; Subasi, B.; Terzi, E.S.A. Association of Schizophrenia with T102C (Rs6313) and 1438 A/G (Rs6311) Polymorphisms of HTR2A Gene. Acta Neuropsychiatr. 2013, 25, 342–348. [Google Scholar] [CrossRef]
- Zhang, R.; Bi, Y.; Niu, W.; Huang, X.; Chen, S.; Li, X.; Wu, X.; Cao, Y.; Yang, F.; Wang, L.; et al. Association Study of 5-HT1A, 5-HT2A Polymorphisms with Schizophrenia and Major Depressive Disorder in the Han Chinese Population. Neurosci. Lett. 2016, 635, 39–43. [Google Scholar] [CrossRef]
- Massoud, S.; Salmanian, M.; Tabibian, M.; Ghamari, R.; Tavabe Ghavami, T.S.; Alizadeh, F. The Contribution of the 5-Hydroxytryptamine Receptor 2 A Gene Polymorphisms Rs6311 and Rs6313 to Schizophrenia in Iran. Mol. Biol. Rep. 2023, 50, 2633–2639. [Google Scholar] [CrossRef]
- Kaur, G.; Singh Chavan, B.; Gupta, D.; Sinhmar, V.; Prasad, R.; Tripathi, A.; Garg, P.D.; Gupta, R.; Khurana, H.; Gautam, S.; et al. An Association Study of Dopaminergic (DRD2) and Serotoninergic (5-HT2) Gene Polymorphism and Schizophrenia in a North Indian Population. Asian J. Psychiatr. 2019, 39, 178–184. [Google Scholar] [CrossRef]
- Sujitha, S.P.; Nair, A.; Banerjee, M.; Lakshmanan, S.; Harshavaradhan, S.; Gunasekaran, S.; Gopinathan, A. 5-Hydroxytryptamine (Serotonin) 2A Receptor Gene Polymorphism Is Associated with Schizophrenia. Indian J. Med. Res. 2014, 140, 736. [Google Scholar]
- Wang, Y.; Tan, X.; Chen, Z.; Zhang, B.; Gao, Y.; Wang, Y. Association between the Rs6313 Polymorphism in the 5-HTR2A Gene and the Efficacy of Antipsychotic Drugs. BMC Psychiatry 2023, 23, 682. [Google Scholar] [CrossRef]
- Chen, S.F.; Shen, Y.C.; Chen, C.H. HTR2A A-1438G/T102C Polymorphisms Predict Negative Symptoms Performance upon Aripiprazole Treatment in Schizophrenic Patients. Psychopharmacology 2009, 205, 285–292. [Google Scholar] [CrossRef]
- Lingaiah, K.; Ramachandra, N.B. An insght into the understanding of 5-HT2A variants leading to scgizophrenia. Indian J. Med. Res. 2014, 140, 713–715. [Google Scholar]
- Stoltenberg, S.F.; Christ, C.C.; Highland, K.B. Serotonin system gene polymorphisms are associated with impulsivity in a context dependent manner. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 182–191. [Google Scholar] [CrossRef]
- Miyauchi, M.; Neugebauer, N.M.; Meltzer, H.Y. Dopamine D4 Receptor Stimulation Contributes to Novel Object Recognition: Relevance to Cognitive Impairment in Schizophrenia. J. Psychopharmacol. 2017, 31, 442–452. [Google Scholar] [CrossRef]
- Saha, S.; Chatterjee, M.; Dutta, N.; Sinha, S.; Mukhopadhyay, K. Analysis of Neurotransmitters Validates the Importance of the Dopaminergic System in Autism Spectrum Disorder. World J. Pediatr. 2023, 19, 770–781. [Google Scholar] [CrossRef]
- Pérez-Rubio, G.; Ramírez-Venegas, A.; Díaz, V.N.; Gómez, L.G.; Fabián, K.E.; Carmona, S.G.; López-Flores, L.A.; Ambrocio-Ortiz, E.; Romero, R.C.; Alcantar-Ayala, N.; et al. Polymorphisms in HTR2A and DRD4 Predispose to Smoking and Smoking Quantity. PLoS ONE 2017, 12, e0170019. [Google Scholar] [CrossRef]
- Manali, D.; Bhowmik, A.D.; Bhaduri, N.; Sarkar, K.; Ghosh, P.; Sinha, S.; Ray, A.; Chatterjee, A.; Mukhopadhyay, K. Role of Gene-Gene/Gene-Environment Interaction in the Etiology of Eastern Indian ADHD Probands. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 577–587. [Google Scholar] [CrossRef]
- Kibitov; Krupitsky; Blokhina; Verbitskaya, E.; Brodyansky, V.; Alekseeva, N.P.; Bushara, N.; Yaroslavtseva, T.; Palatkin, V.Y.; Masalov, D.V.; et al. [A Pharmacogenetic Analysis of Dopaminergic and Opioidergic Genes in Opioid Addicts Treated with the Combination of Naltrexone and Guanfacine]. Zhurnal Nevrol. I Psikhiatrii Im. S.S. Korsakova 2016, 116, 36–48. [Google Scholar] [CrossRef]
- Nakajima, M.; Hattori, E.; Yamada, K.; Iwayama, Y.; Toyota, T.; Iwata, Y.; Tsuchiya, K.J.; Sugihara, G.; Hashimoto, K.; Watanabe, H.; et al. Association and Synergistic Interaction between Promoter Variants of the DRD4 Gene in Japanese Schizophrenics. J. Hum. Genet. 2007, 52, 86–91. [Google Scholar] [CrossRef]
- Frydecka, D.; Misiak, B.; Piotrowski, P.; Bielawski, T.; Pawlak, E.; Kłosińska, E.; Krefft, M.; Al Noaimy, K.; Rymaszewska, J.; Moustafa, A.A.; et al. The Role of Dopaminergic Genes in Probabilistic Reinforcement Learning in Schizophrenia Spectrum Disorders. Brain Sci. 2021, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, A.; Kanazawa, T.; Kikuyama, H.; Okugawa, G.; Uenishi, H.; Miyamoto, T.; Matsumoto, N.; Koh, J.; Shinosaki, K.; Kishimoto, T.; et al. Genetic Polymorphisms in Dopamine- and Serotonin-Related Genes and Treatment Responses to Risperidone and Perospirone. Psychiatry Investig. 2009, 6, 222–225. [Google Scholar] [CrossRef]
- Fang, T.; Liu, M.; Liu, M.; Tian, X.; Zhang, X.; Liu, F.; Hao, W.; Wu, N.; Li, H.; Li, J. A Preliminary Study on the Association of Single Nucleotide Polymorphisms and Methylation of Dopamine System-Related Genes with Psychotic Symptoms in Patients with Methamphetamine Use Disorder. Eur. J. Neurosci. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Serretti, A.; Lilli, R.; Lorenzi, C.; Lattuada, E.; Smeraldi, E. DRD4 Exon 3 Variants Associated with Delusional Symptomatology in Major Psychoses: A Study on 2,011 Affected Subjects. Am. J. Med. Genet. 2001, 105, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Macciardi, F.; Cusin, C.; Lattuada, E.; Lilli, R.; Smeraldi, E. Dopamine Receptor D4 Gene Is Associated with Delusional Symptomatology in Mood Disorders. Psychiatry Res. 1998, 80, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Catalano, M.; Nobile, M.; Novelli, E.; Nöthen, M.M.; Smeraldi, E. Distribution of a Novel Mutation in the First Exon of the Human Dopamine D4 Receptor Gene in Psychotic Patients. Biol. Psychiatry 1993, 34, 459–464. [Google Scholar] [CrossRef]
- Patel, Y.; Parker, N.; Shin, J.; Howard, D.; French, L.; Thomopoulos, S.I.; Pozzi, E.; Abe, Y.; Abé, C.; Anticevic, A.; et al. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry 2021, 78, 47–63. [Google Scholar] [CrossRef]
- Namkung, H.; Yukitake, H.; Fukudome, D.; Lee, B.J.; Tian, M.; Ursini, G.; Saito, A.; Lam, S.; Kannan, S.; Srivastava, R.; et al. The MiR-124-AMPAR Pathway Connects Polygenic Risks with Behavioral Changes Shared between Schizophrenia and Bipolar Disorder. Neuron 2023, 111, 220–235.e9. [Google Scholar] [CrossRef]
All Subjects | Control | Mental Disorders | Schizophrenia Spectrum Disorders | Mood Disorders | |
---|---|---|---|---|---|
Number of participants | 2393 | 754 | 1639 | 1420 | 219 |
Sex, N | 1126 males 1267 females | 296 males 458 females | 830 males 809 females | 765 males 655 females | 65 males 154 females |
Age, Mean (SD) | 44 (13.6) | 42 (15.2) | 46 (13.2) | 46 (12.9) | 44 (14.9) |
Higher Education (%) | 776 (32.4%) | 263 (34.9%) | 513 (31.3%) | 441 (31.1%) | 72 (32.9%) |
Employment (%) | 906 (37.9%) | 713 (94.5%) | 193 (11.8%) | 80 (36.5%) | 113 (8%) |
SNP | All Subjects | Control | Mental Disorders | Mood Disorders | Schizophrenia Spectrum Disorders | Test for the Hardy–Weinberg Equilibrium (p-Value) * |
---|---|---|---|---|---|---|
BDNF rs6265 (C>T) | ||||||
T/T | 54 (2%) | 22 (3%) | 32 (2%) | 6 (3%) | 26 (2%) | 0.51 |
C/T | 580 (25%) | 207 (28%) | 373 (23%) | 51 (24%) | 322 (23%) | |
C/C | 1732 (73%) | 519 (69%) | 1213 (75%) | 159 (73%) | 1054 (75%) | |
T = 0.15 | T = 0.17 | T = 0.14 | T = 0.15 | T = 0.13 | ||
BDNF rs10835210 (C>A) | ||||||
C/C | 588 (25%) | 197 (28%) | 391 (24%) | 67 (31%) | 342 (25%) | 0.41 |
A/A | 588 (25%) | 170 (24%) | 418 (26%) | 49 (23%) | 351 (25%) | |
C/A | 1135 (50%) | 346 (48%) | 789 (50%) | 101 (46%) | 688 (50%) | |
A = 0.5 | A = 0.48 | A = 0.51 | A = 0.46 | A = 0.5 | ||
HTR2A rs6313 (G>A) | ||||||
A/A | 294 (13%) | 111 (15%) | 183 (12%) | 21 (10%) | 162 (12%) | 0.52 |
G/G | 941 (42%) | 289 (39%) | 652 (43%) | 78 (38%) | 574 (44%) | |
G/A | 1022 (45%) | 345 (46%) | 677 (45%) | 105 (52%) | 572 (44%) | |
A = 0.36 | A = 0.38 | A = 0.34 | A = 0.36 | A = 0.34 | ||
DRD4 rs1800955 (T>C) | ||||||
C/C | 497 (22%) | 133 (19%) | 364 (23%) | 44 (21%) | 320 (23%) | 0.38 |
T/T | 670 (29%) | 238 (34%) | 432 (27%) | 51 (24%) | 381 (28%) | |
T/C | 1111 (49%) | 328 (47%) | 783 (50%) | 115 (55%) | 668 (49%) | |
C = 0.46 | C = 0.42 | C = 0.48 | C = 0.48 | C = 0.48 |
Genes | SNP | Association of Allele Frequency with Study Groups | ||
---|---|---|---|---|
The Most Significant Model | p-Value | FDR * | ||
Mental disorders compared to controls | ||||
BDNF | rs6265 | Dominant | 0.0046 | 0.009 |
BDNF | rs10835210 | Recessive | 0.11 | 0.11 |
HTR2A | rs6313 | Dominant | 0.049 | 0.06 |
DRD4 | rs1800955 | Dominant | 0.0013 | 0.005 |
Mood disorders compared to controls | ||||
BDNF | rs6265 | Dominant and Overdominant | 0.23 | 0.23 |
BDNF | rs10835210 | Recessive | 0.04 | 0.08 |
HTR2A | rs6313 | Recessive | 0.083 | 0.11 |
DRD4 | rs1800955 | Dominant | 0.0067 | 0.03 |
Schizophrenia spectrum disorders compared to controls | ||||
BDNF | rs6265 | Dominant | 0.0041 | 0.008 |
BDNF | rs10835210 | Dominant | 0.16 | 0.16 |
HTR2A | rs6313 | Dominant | 0.02 | 0.03 |
DRD4 | rs1800955 | Dominant | 0.0037 | 0.01 |
Mood disorders compared to schizophrenia spectrum disorders | ||||
BDNF | rs6265 | Recessive | 0.39 | 0.39 |
BDNF | rs10835210 | Dominant | 0.094 | 0.19 |
HTR2A | rs6313 | Overdominant | 0.04 | 0.16 |
DRD4 | rs1800955 | Overdominant | 0.11 | 0.15 |
Genes | SNP | Association of Allele Frequency with Study Groups | ||
---|---|---|---|---|
The Most Significant Model | p-Value | FDR * | ||
Hallucinations | ||||
BDNF | rs6265 | Overdominant | 0.24 | 0.32 |
BDNF | rs10835210 | Recessive | 0.12 | 0.24 |
HTR2A | rs6313 | Overdominant | 0.55 | 0.55 |
DRD4 | rs1800955 | Recessive | 0.025 | 0.1 |
Delusions of control | ||||
BDNF | rs6265 | Overdominant | 0.29 | 0.29 |
BDNF | rs10835210 | Dominant | 0.07 | 0.09 |
HTR2A | rs6313 | Recessive | 0.033 | 0.07 |
DRD4 | rs1800955 | Dominant | 0.022 | 0.09 |
Delusions | ||||
BDNF | rs6265 | Recessive | 0.59 | 0.59 |
BDNF | rs10835210 | Dominant | 0.45 | 0.60 |
HTR2A | rs6313 | Overdominant | 0.23 | 0.46 |
DRD4 | rs1800955 | Overdominant | 0.011 | 0.04 |
Catatonic symptoms | ||||
BDNF | rs6265 | Overdominant | 0.17 | 0.34 |
BDNF | rs10835210 | Recessive | 0.3 | 0.30 |
HTR2A | rs6313 | Recessive | 0.23 | 0.31 |
DRD4 | rs1800955 | Recessive | 0.06 | 0.24 |
Neurotic, psychopathic symptoms, and habit and impulse disorders | ||||
BDNF | rs6265 | Recessive | 0.48 | 0.64 |
BDNF | rs10835210 | Dominant | 0.016 | 0.06 |
HTR2A | rs6313 | Overdominant | 0.32 | 0.64 |
DRD4 | rs1800955 | Overdominant | 0.73 | 0.73 |
Suicidal and auto-aggressive behavior | ||||
BDNF | rs6265 | Recessive | 0.013 | 0.052 |
BDNF | rs10835210 | Recessive | 0.73 | 0.73 |
HTR2A | rs6313 | Recessive | 0.35 | 0.47 |
DRD4 | rs1800955 | Dominant | 0.15 | 0.30 |
Unlawful and hetero-aggressive behavior | ||||
BDNF | rs6265 | Recessive | 0.18 | 0.24 |
BDNF | rs10835210 | Overdominant | 0.4 | 0.40 |
HTR2A | rs6313 | Overdominant | 0.026 | 0.052 |
DRD4 | rs1800955 | Dominant | 0.025 | 0.10 |
Affective disorders | ||||
BDNF | rs6265 | Dominant | 0.07 | 0.28 |
BDNF | rs10835210 | Dominant | 0.17 | 0.34 |
HTR2A | rs6313 | Recessive | 0.22 | 0.22 |
DRD4 | rs1800955 | Overdominant | 0.17 | 0.23 |
Negative symptoms | ||||
BDNF | rs6265 | Dominant | 0.61 | 0.61 |
BDNF | rs10835210 | Overdominant | 0.09 | 0.36 |
HTR2A | rs6313 | Overdominant | 0.18 | 0.36 |
DRD4 | rs1800955 | Recessive | 0.25 | 0.33 |
European | African | Asian | Latin | |
---|---|---|---|---|
BDNF rs6268 | T = 0.193746 χ2 = 3.795 p = 0.052 | T = 0.04243 χ2 = 154.6 p < 0.001 | T = 0.4449 χ2 = 360 p < 0.001 | A = 0.15765 χ2 = 0.667 p = 0.415 |
BDNF rs10835210 | A = 0.433849 χ2 = 6.371 p = 0.012 | A = 0.0823 χ2 = 1523 p < 0.001 | A = 0.163 χ2 = 84.816 p < 0.001 | A = 0.23 χ2 = 268 p < 0.001 |
HTR2A rs6313 | A = 0.419754 χ2 = 5.388 p = 0.021 | A = 0.37809 χ2 = 0.023 p = 0.879 | A = 0.5515 χ2 = 127 p < 0.001 | A = 0.387 χ2 = 0.151 p = 0.698 |
DRD4 rs1800955 | C = 0.44079 χ2 = 0.967 p = 0.326 | C = 0.3844 χ2 = 6.272 p = 0.013 | C = 0.295 χ2 = 7.245 p = 0.008 | C = 0.382 χ2 = 3.231 p = 0.073 |
A p-value < 0.05 was considered significant (marked in bold). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, A.; Ushakova, V.; Pavlova, O.; Bairamova, S.; Andryshenko, N.; Ochneva, A.; Abramova, O.; Zorkina, Y.; Spektor, V.A.; Gadisov, T.; et al. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes 2024, 15, 240. https://doi.org/10.3390/genes15020240
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, et al. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes. 2024; 15(2):240. https://doi.org/10.3390/genes15020240
Chicago/Turabian StyleMorozova, Anna, Valeriya Ushakova, Olga Pavlova, Sakeena Bairamova, Nika Andryshenko, Aleksandra Ochneva, Olga Abramova, Yana Zorkina, Valery A. Spektor, Timur Gadisov, and et al. 2024. "BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia" Genes 15, no. 2: 240. https://doi.org/10.3390/genes15020240
APA StyleMorozova, A., Ushakova, V., Pavlova, O., Bairamova, S., Andryshenko, N., Ochneva, A., Abramova, O., Zorkina, Y., Spektor, V. A., Gadisov, T., Ukhov, A., Zubkov, E., Solovieva, K., Alexeeva, P., Khobta, E., Nebogina, K., Kozlov, A., Klimenko, T., Gurina, O., ... Pavlov, K. (2024). BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes, 15(2), 240. https://doi.org/10.3390/genes15020240