The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions
Highlights
- We provide an overview of the genetic landscape of the tuberous sclerosis complex (TSC) and related mTORopathies, including focal cortical dysplasia (FCD) and hemimegalencephaly (HME).
- We discuss current challenges in identifying the genetic cause of TSC in patients with no mutation identified (NMI) and highlight the potential role of mosaicism in these cases.
- Alternative methods for the detection of mosaic variants should be explored in individuals where TSC is suspected but no genetic evidence is found.
- Understanding the genetic etiology in these cases can enable the timely initiation of targeted therapies, surveillance, and genetic counseling.
Abstract
:1. Introduction
2. Overview of the Genetics of mTORopathies
Gene | Major Affected Sensing Arm(s) of mTOR Pathway | Previously Reported Genetic Variant Type(s) | CNS Pathological Manifestations | Reported Clinical Manifestations and Syndromes | Systemic Features Present * |
---|---|---|---|---|---|
Variants of mTOR Activators | |||||
MTOR [18,19] | Amino acid, growth factor, cytokine signaling, cellular energy, and oxygen stress [20] | Somatic and germline | FCD Hemimegalencephaly Megalencephaly | Epilepsy Smith–Kingsmore syndrome Intellectual disability | (+) |
AKT1 [21,22] | AKT family: growth factor [23] | Somatic | Hemimegalencephaly | Epilepsy Motor weakness Intellectual disability Somatic Proteus syndrome | (+) |
AKT3 [24,25] | AKT family: growth factor [23] | Somatic and germline | Hemimegalencephaly Megalencephaly Polymicrogyria | Epilepsy MPPH syndrome Intellectual disability | (-) |
PIK3CA [21,26] | PI3K family: growth factor [20] | Somatic and germline | Hemimegalencephaly Megalencephaly Dysplastic megalencephaly FCD | Epilepsy PIK3CA-related overgrowth spectrum Intellectual disability | (+) |
PIK3R2 [25,27] | PI3K family: growth factor [20] | Somatic and germline | Megalencephaly | Epilepsy MPPH Intellectual disability | (-) |
RHEB [28] | Amino acid, growth factor [29] | Somatic | FCD Hemimegalencephaly | Epilepsy | (-) |
Loss of Function Variants of mTOR Inhibitors | |||||
TSC1/TSC2 [2] | TSC complex: amino acid, growth factor, cytokine signaling, cellular energy and oxygen, stress [20,30] | Somatic and germline | Cortical tubers SEN SEGA Hemimegalencephaly FCD | Epilepsy Tuberous sclerosis complex Intellectual disability | (+) |
TBC1D7 [31,32] | Forms part of TSC complex | Germline | Macrocephaly/megalencephaly | Intellectual disability | (+) |
DEPDC5 [33,34,35,36] | GATOR1 complex: amino acid [20,37] | Somatic and germline | Hemimegalencephaly Megalencephaly FCD | Epilepsy Intellectual disability Psychiatric comorbidities | (-) |
NPRL2 [38,39] | GATOR1 complex: amino acid [20,37] | Somatic and germline | FCD | Epilepsy Intellectual disability Psychiatric comorbidities | (-) |
NPRL3 [38,39,40] | GATOR1 complex: amino acid [20,37] | Somatic and germline | FCD | Epilepsy Intellectual disability Psychiatric comorbidities | (-) |
PTEN [41,42,43,44] | Growth factor, cellular metabolism [45] | Somatic and germline | FCD Hemimegalencephaly Megalencephaly Polymicrogyria | Focal epilepsy ASD Neurodevelopmental disorders Cowden syndrome | (+) |
STRADα [46,47] | Cellular energy [20] | Germline | Megalencephaly | Focal epilepsy Pretzel syndrome Intellectual disability | (+) |
SZT2 [48,49] | KICSTOR complex: amino acid [50] | Germline | Megalencephaly | Developmental delay Epileptic encephalopathy | (-) |
KPTN [51,52,53] | KICSTOR complex: amino acid [50] | Germline | Macrocephaly/Megalencephaly | Epilepsy Intellectual disability | (-) |
3. Overview of Genetics of TSC
4. Summary of Genotype–Phenotype Correlations for TSC
5. Updates to Genotype–Phenotype Correlations in TSC: Mosaicism and the Two-Hit Hypothesis
6. Advances in Detection of Pathogenic Variants in TSC and mTORopathies
Study | Summary of Relevant Methodologies for the Detection for Mosaicism | Sample Type | Advantages of Method and/or Sample Used |
---|---|---|---|
An Integral Approach to the Molecular Diagnosis of Tuberous Sclerosis Complex: the role of mosaicism and splicing variants [128] | Three NGS panels: (1) a panel of amplicons with TSC1 and TSC2 exons, exon–intron boundaries, and intronic pathogenic variants, (2) an exonic capture panel, and (3) another similar in-house panel. Average coverage of >400×. Confirmation of mosaic variants by ADS at >7000× coverage. | Blood, buccal swab, saliva, or affected tissue from skin | NGS panels were able to detect variants with >1% VAF and incorporate intronic variants. |
Dissecting the genetic basis of focal cortical dysplasia: a large cohort study [11] | Hybrid capture sequencing of coding exons and exon-flanking junctions in three panels with mTOR pathway and FCD candidate genes. Confirmation of pathogenic variants with ADS at ≥9000× mean read depth and ddPCR for low-VAF variants. | Affected brain tissue and blood | Two methods of orthogonal validation were used for mosaic variants, where ddPCR allowed better quantification of DNA. |
Low-level mosaicism in tuberous sclerosis complex in four unrelated patients: comparison of clinical characteristics and diagnostic pathways [133] | Coding exons and flanking intronic sequences were sequenced with >30-fold coverage. ASO-PCR and ddPCR were used to confirm detected mosaic variants. | Blood, buccal mucosa, unaffected skin, and angiofibroma | ASO-PCR was found to be able to be used in place of ddPCR if unavailable, as it has similar sensitivity. However, it does not allow quantification. |
Comprehensive genetic and phenotype analysis of 95 individuals with mosaic tuberous sclerosis complex [105] | Deep MPS with a ≥500× median read depth. Validation by amplicon MPS or MHPA assay with a median read depth 100,000×. | Buccal sample, saliva, blood, normal skin, normal kidney, normal lymph node, fetal tissue, urine, semen, SEGA, angiofibroma, fibrous cephalic plaque, angiomyolipoma, shagreen patch, ungual fibroma, hypomelanotic macule | Use of many sample types and high read depth of the MHPA assay allowed the detection of variants with <0.1% VAF. |
Precise detection of low-level somatic variants in resected epilepsy brain tissue [68] | Deep sequencing of up to 28 epilepsy-related genes with average read depth of 1112× followed by site-specific ADS and deep-sequencing technical replicates. | Brain samples from intractable epilepsy patients | Deep sequencing technical replicates were shown to improve positive predictive values and limit false positives, especially in processed brain-derived tissue. |
Detection of TSC1/TSC2 mosaic variants in patients with cardiac rhabdomyoma and tuberous sclerosis complex by hybrid-capture next-generation sequencing [139] | Hybrid capture sequencing of coding sequences and 10 kb upstream and downstream, with mean sequencing depth of 7423× in target regions. Confirmation of detected variants by ddPCR. | Umbilical cord and fetal cardiac rhabdomyoma tissue | Utilization of cord blood and fetal tissue allowed improved accuracy of prenatal TSC diagnosis. |
Somatic mosaic variant gradient detected in trace brain tissue from stereo-EEG depth electrodes [136] | Trace DNA from SEEG electrodes pooled into three spatial brain groups. VAF in each group quantified with 200-fold exome sequencing and ddPCR (controlled with brain-specific glial fibrillary acidic protein) to correlate mosaic gradients with epileptogenicity. | Trace brain tissue from SEEG depth electrodes | Utilization of small amounts of DNA from electrode tissue traces allowed a molecular diagnosis and the mosaic gradient to be determined in individuals with TSC-epilepsy. |
Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain [135] | ddPCR was employed to quantify brain-derived cell-free DNA. CSF cell-free DNA was compared to brain-specific DNA methylation patterns to determine their origin. | Cell-free DNA from CSF | Utilization of a CSF liquid biopsy is less invasive and more accessible compared with samples from neurosurgery or autopsy. |
7. Genetic Counseling/Reproductive Counseling and Management in TSC
8. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ebrahimi-Fakhari, D.; Mann, L.L.; Poryo, M.; Graf, N.; von Kries, R.; Heinrich, B.; Ebrahimi-Fakhari, D.; Flotats-Bastardas, M.; Gortner, L.; Zemlin, M.; et al. Correction to: Incidence of Tuberous Sclerosis and Age at First Diagnosis: New Data and Emerging Trends from a National, Prospective Surveillance Study. Orphanet J. Rare Dis. 2019, 14, 106. [Google Scholar] [CrossRef]
- Northrup, H.; Koenig, M.K.; Pearson, D.A.; Au, K.S. Tuberous Sclerosis Complex; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Nabavi Nouri, M.; Zak, M.; Jain, P.; Whitney, R. Epilepsy Management in Tuberous Sclerosis Complex: Existing and Evolving Therapies and Future Considerations. Pediatr. Neurol. 2022, 126, 11–19. [Google Scholar] [CrossRef]
- Zöllner, J.P.; Franz, D.N.; Hertzberg, C.; Nabbout, R.; Rosenow, F.; Sauter, M.; Schubert-Bast, S.; Wiemer-Kruel, A.; Strzelczyk, A. A Systematic Review on the Burden of Illness in Individuals with Tuberous Sclerosis Complex (TSC). Orphanet. J. Rare Dis. 2020, 15, 23. [Google Scholar] [CrossRef]
- Amin, S.; Lux, A.; Calder, N.; Laugharne, M.; Osborne, J.; O’callaghan, F. Causes of Mortality in Individuals with Tuberous Sclerosis Complex. Dev. Med. Child Neurol. 2017, 59, 612–617. [Google Scholar] [CrossRef]
- Peron, A.; Au, K.S.; Northrup, H. Genetics, Genomics, and Genotype-Phenotype Correlations of TSC: Insights for Clinical Practice. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 281–290. [Google Scholar] [CrossRef]
- Karalis, V.; Bateup, H.S. Current Approaches and Future Directions for the Treatment of MTORopathies. Dev. Neurosci. 2021, 43, 143–158. [Google Scholar] [CrossRef]
- Moloney, P.B.; Cavalleri, G.L.; Delanty, N. Epilepsy in the MTORopathies: Opportunities for Precision Medicine. Brain Commun. 2021, 3, fcab222. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Bordey, A. Convergent and Divergent Mechanisms of Epileptogenesis in MTORopathies. Front. Neuroanat. 2021, 15, 664695. [Google Scholar] [CrossRef]
- Crino, P.B. MTOR Signaling in Epilepsy: Insights from Malformations of Cortical Development. Cold Spring Harb. Perspect. Med. 2015, 5, a022442. [Google Scholar] [CrossRef]
- Baldassari, S.; Ribierre, T.; Marsan, E.; Adle-Biassette, H.; Ferrand-Sorbets, S.; Bulteau, C.; Dorison, N.; Fohlen, M.; Polivka, M.; Weckhuysen, S.; et al. Dissecting the Genetic Basis of Focal Cortical Dysplasia: A Large Cohort Study. Acta Neuropathol. 2019, 138, 885–900. [Google Scholar] [CrossRef]
- Mühlebner, A.; Bongaarts, A.; Sarnat, H.B.; Scholl, T.; Aronica, E. New Insights into a Spectrum of Developmental Malformations Related to MTOR Dysregulations: Challenges and Perspectives. J. Anat. 2019, 235, 521–542. [Google Scholar] [CrossRef]
- Abs, E.; Goorden, S.M.I.; Schreiber, J.; Overwater, I.E.; Hoogeveen-Westerveld, M.; Bruinsma, C.F.; Aganović, E.; Borgesius, N.Z.; Nellist, M.; Elgersma, Y. TORC1-Dependent Epilepsy Caused by Acute Biallelic Tsc1 Deletion in Adult Mice. Ann. Neurol. 2013, 74, 569–579. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. MTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. MTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Wolfson, R.L.; Chantranupong, L.; Wyant, G.A.; Gu, X.; Orozco, J.M.; Shen, K.; Condon, K.J.; Petri, S.; Kedir, J.; Scaria, S.M.; et al. KICSTOR Recruits GATOR1 to the Lysosome and Is Necessary for Nutrients to Regulate MTORC1. Nature 2017, 543, 438–442. [Google Scholar] [CrossRef]
- Nathan, N.; Keppler-Noreuil, K.M.; Biesecker, L.G.; Moss, J.; Darling, T.N. Mosaic Disorders of the PI3K/PTEN/AKT/TSC/MTORC1 Signaling Pathway. Dermatol. Clin. 2017, 35, 51–60. [Google Scholar] [CrossRef]
- Møller, R.S.; Weckhuysen, S.; Chipaux, M.; Marsan, E.; Taly, V.; Bebin, E.M.; Hiatt, S.M.; Prokop, J.W.; Bowling, K.M.; Mei, D.; et al. Germline and Somatic Mutations in the MTOR Gene in Focal Cortical Dysplasia and Epilepsy. Neurol. Genet. 2016, 2, e118. [Google Scholar] [CrossRef]
- Nakashima, M.; Saitsu, H.; Takei, N.; Tohyama, J.; Kato, M.; Kitaura, H.; Shiina, M.; Shirozu, H.; Masuda, H.; Watanabe, K.; et al. Somatic Mutations in the MTOR Gene Cause Focal Cortical Dysplasia Type IIb. Ann. Neurol. 2015, 78, 375–386. [Google Scholar] [CrossRef]
- Crino, P.B. The MTOR Signalling Cascade: Paving New Roads to Cure Neurological Disease. Nat. Rev. Neurol. 2016, 12, 379–392. [Google Scholar] [CrossRef]
- Orloff, M.S.; He, X.; Peterson, C.; Chen, F.; Chen, J.-L.; Mester, J.L.; Eng, C. Germline PIK3CA and AKT1 Mutations in Cowden and Cowden-like Syndromes. Am. J. Hum. Genet. 2013, 92, 76–80. [Google Scholar] [CrossRef]
- Carpten, J.D.; Faber, A.L.; Horn, C.; Donoho, G.P.; Briggs, S.L.; Robbins, C.M.; Hostetter, G.; Boguslawski, S.; Moses, T.Y.; Savage, S.; et al. A Transforming Mutation in the Pleckstrin Homology Domain of AKT1 in Cancer. Nature 2007, 448, 439–444. [Google Scholar] [CrossRef]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Poduri, A.; Evrony, G.D.; Cai, X.; Elhosary, P.C.; Beroukhim, R.; Lehtinen, M.K.; Hills, L.B.; Heinzen, E.L.; Hill, A.; Hill, R.S.; et al. Somatic Activation of AKT3 Causes Hemispheric Developmental Brain Malformations. Neuron 2012, 74, 41–48. [Google Scholar] [CrossRef]
- Rivière, J.-B.; Mirzaa, G.M.; O’Roak, B.J.; Beddaoui, M.; Alcantara, D.; Conway, R.L.; St-Onge, J.; Schwartzentruber, J.A.; Gripp, K.W.; Nikkel, S.M.; et al. De Novo Germline and Postzygotic Mutations in AKT3, PIK3R2 and PIK3CA Cause a Spectrum of Related Megalencephaly Syndromes. Nat. Genet. 2012, 44, 934–940. [Google Scholar] [CrossRef]
- Janku, F.; Tsimberidou, A.M.; Garrido-Laguna, I.; Wang, X.; Luthra, R.; Hong, D.S.; Naing, A.; Falchook, G.S.; Moroney, J.W.; Piha-Paul, S.A.; et al. PIK3CA Mutations in Patients with Advanced Cancers Treated with PI3K/AKT/MTOR Axis Inhibitors. Mol. Cancer Ther. 2011, 10, 558–565. [Google Scholar] [CrossRef]
- Nakamura, K.; Kato, M.; Tohyama, J.; Shiohama, T.; Hayasaka, K.; Nishiyama, K.; Kodera, H.; Nakashima, M.; Tsurusaki, Y.; Miyake, N.; et al. AKT3 and PIK3R2 Mutations in Two Patients with Megalencephaly-Related Syndromes: MCAP and MPPH. Clin. Genet. 2014, 85, 396–398. [Google Scholar] [CrossRef]
- Lee, W.S.; Macdonald-Laurs, E.; Stephenson, S.; D’Arcy, C.; Maixner, W.; Harvey, A.S.; Lockhart, P.J.; Leventer, R.J. Pathogenic RHEB Somatic Variant in a Child With Tuberous Sclerosis Complex Without Pathogenic Variants in TSC1 or TSC2. Neurology 2023, 101, 78–82. [Google Scholar] [CrossRef]
- Parmar, N.; Tamanoi, F. Rheb G-Proteins and the Activation of MTORC1. Enzymes 2010, 27, 39–56. [Google Scholar]
- Huang, J.; Manning, B.D. The TSC1-TSC2 Complex: A Molecular Switchboard Controlling Cell Growth. Biochem. J. 2008, 412, 179–190. [Google Scholar] [CrossRef]
- Alfaiz, A.A.; Micale, L.; Mandriani, B.; Augello, B.; Pellico, M.T.; Chrast, J.; Xenarios, I.; Zelante, L.; Merla, G.; Reymond, A. TBC1D7 Mutations Are Associated with Intellectual Disability, Macrocrania, Patellar Dislocation, and Celiac Disease. Hum. Mutat. 2014, 35, 447–451. [Google Scholar] [CrossRef]
- Capo-Chichi, J.-M.; Tcherkezian, J.; Hamdan, F.F.; Décarie, J.C.; Dobrzeniecka, S.; Patry, L.; Nadon, M.-A.; Mucha, B.E.; Major, P.; Shevell, M.; et al. Disruption of TBC1D7, a Subunit of the TSC1-TSC2 Protein Complex, in Intellectual Disability and Megalencephaly. J. Med. Genet. 2013, 50, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Meloche, C.; Rioux, M.-F.; Nguyen, D.K.; Carmant, L.; Andermann, E.; Gravel, M.; Cossette, P. A Recurrent Mutation in DEPDC5 Predisposes to Focal Epilepsies in the French-Canadian Population. Clin. Genet. 2014, 86, 570–574. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Heron, S.E.; Regan, B.M.; Mandelstam, S.; Crompton, D.E.; Hodgson, B.L.; Licchetta, L.; Provini, F.; Bisulli, F.; Vadlamudi, L.; et al. Mutations in Mammalian Target of Rapamycin Regulator DEPDC5 Cause Focal Epilepsy with Brain Malformations. Ann. Neurol. 2014, 75, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.A.; Borlot, F.; Cossette, P.; Minassian, B.A.; Andrade, D.M. Two Definite Cases of Sudden Unexpected Death in Epilepsy in a Family with a DEPDC5 Mutation. Neurol. Genet. 2015, 1, e28. [Google Scholar] [CrossRef]
- Ververi, A.; Zagaglia, S.; Menzies, L.; Baptista, J.; Caswell, R.; Baulac, S.; Ellard, S.; Lynch, S.; Genomics England Research Consortium; Jacques, T.S.; et al. Germline Homozygous Missense DEPDC5 Variants Cause Severe Refractory Early-Onset Epilepsy, Macrocephaly and Bilateral Polymicrogyria. Hum. Mol. Genet. 2023, 32, 580–594. [Google Scholar] [CrossRef]
- Baldassari, S.; Licchetta, L.; Tinuper, P.; Bisulli, F.; Pippucci, T. GATOR1 Complex: The Common Genetic Actor in Focal Epilepsies. J. Med. Genet. 2016, 53, 503–510. [Google Scholar] [CrossRef]
- Ricos, M.G.; Hodgson, B.L.; Pippucci, T.; Saidin, A.; Ong, Y.S.; Heron, S.E.; Licchetta, L.; Bisulli, F.; Bayly, M.A.; Hughes, J.; et al. Mutations in the Mammalian Target of Rapamycin Pathway Regulators NPRL2 and NPRL3 Cause Focal Epilepsy. Ann. Neurol. 2016, 79, 120–131. [Google Scholar] [CrossRef]
- Weckhuysen, S.; Marsan, E.; Lambrecq, V.; Marchal, C.; Morin-Brureau, M.; An-Gourfinkel, I.; Baulac, M.; Fohlen, M.; Kallay Zetchi, C.; Seeck, M.; et al. Involvement of GATOR Complex Genes in Familial Focal Epilepsies and Focal Cortical Dysplasia. Epilepsia 2016, 57, 994–1003. [Google Scholar] [CrossRef]
- Iffland, P.H.; Everett, M.E.; Cobb-Pitstick, K.M.; Bowser, L.E.; Barnes, A.E.; Babus, J.K.; Romanowski, A.J.; Baybis, M.; Elziny, S.; Puffenberger, E.G.; et al. NPRL3 Loss Alters Neuronal Morphology, MTOR Localization, Cortical Lamination and Seizure Threshold. Brain 2022, 145, 3872–3885. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Nakamura, N.; Vazquez, F.; Batt, D.B.; Perera, S.; Roberts, T.M.; Sellers, W.R. Regulation of G1 Progression by the PTEN Tumor Suppressor Protein Is Linked to Inhibition of the Phosphatidylinositol 3-Kinase/Akt Pathway. Proc. Natl. Acad. Sci. USA 1999, 96, 2110–2115. [Google Scholar] [CrossRef]
- Tsujita, Y.; Mitsui-Sekinaka, K.; Imai, K.; Yeh, T.-W.; Mitsuiki, N.; Asano, T.; Ohnishi, H.; Kato, Z.; Sekinaka, Y.; Zaha, K.; et al. Phosphatase and Tensin Homolog (PTEN) Mutation Can Cause Activated Phosphatidylinositol 3-Kinase δ Syndrome-like Immunodeficiency. J. Allergy Clin. Immunol. 2016, 138, 1672–1680.e10. [Google Scholar] [CrossRef]
- Zhou, X.-P.; Waite, K.A.; Pilarski, R.; Hampel, H.; Fernandez, M.J.; Bos, C.; Dasouki, M.; Feldman, G.L.; Greenberg, L.A.; Ivanovich, J.; et al. Germline PTEN Promoter Mutations and Deletions in Cowden/Bannayan-Riley-Ruvalcaba Syndrome Result in Aberrant PTEN Protein and Dysregulation of the Phosphoinositol-3-Kinase/Akt Pathway. Am. J. Hum. Genet. 2003, 73, 404–411. [Google Scholar] [CrossRef]
- Shao, D.D.; Achkar, C.M.; Lai, A.; Srivastava, S.; Doan, R.N.; Rodan, L.H.; Chen, A.Y.; Brain Development Study Group; Poduri, A.; Yang, E.; et al. Polymicrogyria Is Associated With Pathogenic Variants in PTEN. Ann. Neurol. 2020, 88, 1153–1164. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, J.; He, L.; Stiles, B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018, 9, 338. [Google Scholar] [CrossRef]
- Aerden, M.; Vallaeys, L.; Holvoet, M.; De Waele, L.; Van Den Bogaert, K.; Devriendt, K. Homozygous Missense STRADA Mutation in a Patient with Polyhydramnios, Megalencephaly and Symptomatic Epilepsy Syndrome. Clin. Dysmorphol. 2021, 30, 121–124. [Google Scholar] [CrossRef]
- Bi, W.; Glass, I.A.; Muzny, D.M.; Gibbs, R.A.; Eng, C.M.; Yang, Y.; Sun, A. Whole Exome Sequencing Identifies the First STRADA Point Mutation in a Patient with Polyhydramnios, Megalencephaly, and Symptomatic Epilepsy Syndrome (PMSE). Am. J. Med. Genet. A 2016, 170, 2181–2185. [Google Scholar] [CrossRef]
- Basel-Vanagaite, L.; Hershkovitz, T.; Heyman, E.; Raspall-Chaure, M.; Kakar, N.; Smirin-Yosef, P.; Vila-Pueyo, M.; Kornreich, L.; Thiele, H.; Bode, H.; et al. Biallelic SZT2 Mutations Cause Infantile Encephalopathy with Epilepsy and Dysmorphic Corpus Callosum. Am. J. Hum. Genet. 2013, 93, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, N.; Nakashima, M.; Miyauchi, A.; Yoshitomi, S.; Kimizu, T.; Ganesan, V.; Teik, K.W.; Ch’ng, G.-S.; Kato, M.; Mizuguchi, T.; et al. Novel Biallelic SZT2 Mutations in 3 Cases of Early-Onset Epileptic Encephalopathy. Clin. Genet. 2018, 93, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Cattelani, C.; Lesiak, D.; Liebscher, G.; Singer, I.I.; Stasyk, T.; Wallnöfer, M.H.; Heberle, A.M.; Corti, C.; Hess, M.W.; Pfaller, K.; et al. The SZT2 Interactome Unravels New Functions of the KICSTOR Complex. Cells 2021, 10, 2711. [Google Scholar] [CrossRef]
- Baple, E.L.; Maroofian, R.; Chioza, B.A.; Izadi, M.; Cross, H.E.; Al-Turki, S.; Barwick, K.; Skrzypiec, A.; Pawlak, R.; Wagner, K.; et al. Mutations in KPTN Cause Macrocephaly, Neurodevelopmental Delay, and Seizures. Am. J. Hum. Genet. 2014, 94, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pacio Miguez, M.; Santos-Simarro, F.; García-Miñaúr, S.; Velázquez Fragua, R.; Del Pozo, Á.; Solís, M.; Jiménez Rodríguez, C.; Rufo-Rabadán, V.; Fernandez, V.E.; Rueda, I.; et al. Pathogenic Variants in KPTN, a Rare Cause of Macrocephaly and Intellectual Disability. Am. J. Med. Genet. A 2020, 182, 2222–2225. [Google Scholar] [CrossRef]
- Pajusalu, S.; Reimand, T.; Õunap, K. Novel Homozygous Mutation in KPTN Gene Causing a Familial Intellectual Disability-Macrocephaly Syndrome. Am. J. Med. Genet. A 2015, 167A, 1913–1915. [Google Scholar] [CrossRef] [PubMed]
- van Slegtenhorst, M.; de Hoogt, R.; Hermans, C.; Nellist, M.; Janssen, B.; Verhoef, S.; Lindhout, D.; van den Ouweland, A.; Halley, D.; Young, J.; et al. Identification of the Tuberous Sclerosis Gene TSC1 on Chromosome 9q34. Science 1997, 277, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Ramlaul, K.; Fu, W.; Li, H.; de Martin Garrido, N.; He, L.; Trivedi, M.; Cui, W.; Aylett, C.H.S.; Wu, G. Architecture of the Tuberous Sclerosis Protein Complex. J. Mol. Biol. 2021, 433, 166743. [Google Scholar] [CrossRef] [PubMed]
- Santiago Lima, A.J.; Hoogeveen-Westerveld, M.; Nakashima, A.; Maat-Kievit, A.; van den Ouweland, A.; Halley, D.; Kikkawa, U.; Nellist, M. Identification of Regions Critical for the Integrity of the TSC1-TSC2-TBC1D7 Complex. PLoS ONE 2014, 9, e93940. [Google Scholar] [CrossRef] [PubMed]
- GnomAD. Available online: https://gnomad.broadinstitute.org/gene/ENSG00000165699?dataset=gnomad_r4 (accessed on 4 February 2024).
- Rosengren, T.; Nanhoe, S.; de Almeida, L.G.D.; Schönewolf-Greulich, B.; Larsen, L.J.; Hey, C.A.B.; Dunø, M.; Ek, J.; Risom, L.; Nellist, M.; et al. Mutational Analysis of TSC1 and TSC2 in Danish Patients with Tuberous Sclerosis Complex. Sci. Rep. 2020, 10, 9909. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen-Westerveld, M.; Ekong, R.; Povey, S.; Mayer, K.; Lannoy, N.; Elmslie, F.; Bebin, M.; Dies, K.; Thompson, C.; Sparagana, S.P.; et al. Functional Assessment of TSC2 Variants Identified in Individuals with Tuberous Sclerosis Complex. Hum. Mutat. 2013, 34, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Fokkema, I.F.A.C.; Kroon, M.; López Hernández, J.A.; Asscheman, D.; Lugtenburg, I.; Hoogenboom, J.; den Dunnen, J.T. The LOVD3 Platform: Efficient Genome-Wide Sharing of Genetic Variants. Eur. J. Hum. Genet. 2021, 29, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, X.; Wang, J.; Ding, Y.; Wang, Y.; Li, H.; Zhao, R.; Wu, B. Identification of TSC2 Mosaic Mutation Limited to Cortical Tuber with TSC Targeted Sequencing: A Case Report and Literature Review. Childs. Nerv. Syst. 2021, 37, 3945–3949. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, J.; Zhou, S.; Zhou, Y.; Zhang, L.; Yu, L.; Wang, Y. Genotype and Phenotype Analysis of Chinese Children With Tuberous Sclerosis Complex: A Pediatric Cohort Study. Front. Genet. 2020, 11, 204. [Google Scholar] [CrossRef]
- Avgeris, S.; Fostira, F.; Vagena, A.; Ninios, Y.; Delimitsou, A.; Vodicka, R.; Vrtel, R.; Youroukos, S.; Stravopodis, D.J.; Vlassi, M.; et al. Mutational Analysis of TSC1 and TSC2 Genes in Tuberous Sclerosis Complex Patients from Greece. Sci. Rep. 2017, 7, 16697. [Google Scholar] [CrossRef] [PubMed]
- Au, K.S.; Williams, A.T.; Roach, E.S.; Batchelor, L.; Sparagana, S.P.; Delgado, M.R.; Wheless, J.W.; Baumgartner, J.E.; Roa, B.B.; Wilson, C.M.; et al. Genotype/Phenotype Correlation in 325 Individuals Referred for a Diagnosis of Tuberous Sclerosis Complex in the United States. Genet. Med. 2007, 9, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Tyburczy, M.E.; Dies, K.A.; Glass, J.; Camposano, S.; Chekaluk, Y.; Thorner, A.R.; Lin, L.; Krueger, D.; Franz, D.N.; Thiele, E.A.; et al. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet. 2015, 11, e1005637. [Google Scholar] [CrossRef] [PubMed]
- D’Gama, A.M.; Poduri, A. Brain Somatic Mosaicism in Epilepsy: Bringing Results Back to the Clinic. Neurobiol. Dis. 2023, 181, 106104. [Google Scholar] [CrossRef] [PubMed]
- Biesecker, L.G.; Spinner, N.B. A Genomic View of Mosaicism and Human Disease. Nat. Rev. Genet. 2013, 14, 307–320. [Google Scholar] [CrossRef]
- Sim, N.S.; Ko, A.; Kim, W.K.; Kim, S.H.; Kim, J.S.; Shim, K.-W.; Aronica, E.; Mijnsbergen, C.; Spliet, W.G.M.; Koh, H.Y.; et al. Precise Detection of Low-Level Somatic Mutation in Resected Epilepsy Brain Tissue. Acta Neuropathol. 2019, 138, 901–912. [Google Scholar] [CrossRef]
- Moog, U.; Felbor, U.; Has, C.; Zirn, B. Disorders Caused by Genetic Mosaicism. Dtsch. Arztebl. Int. 2020, 116, 119–125. [Google Scholar] [CrossRef]
- Domogala, D.D.; Gambin, T.; Zemet, R.; Wu, C.W.; Schulze, K.V.; Yang, Y.; Wilson, T.A.; Machol, I.; Liu, P.; Stankiewicz, P. Detection of Low-Level Parental Somatic Mosaicism for Clinically Relevant SNVs and Indels Identified in a Large Exome Sequencing Dataset. Hum. Genom. 2021, 15, 72. [Google Scholar] [CrossRef]
- Walker, S.; Lamoureux, S.; Khan, T.; Joynt, A.C.M.; Bradley, M.; Branson, H.M.; Carter, M.T.; Hayeems, R.Z.; Jagiello, L.; Marshall, C.R.; et al. Genome Sequencing for Detection of Pathogenic Deep Intronic Variation: A Clinical Case Report Illustrating Opportunities and Challenges. Am. J. Med. Genet. A 2021, 185, 3129–3135. [Google Scholar] [CrossRef] [PubMed]
- Riepe, T.V.; Khan, M.; Roosing, S.; Cremers, F.P.M.; ’t Hoen, P.A.C. Benchmarking Deep Learning Splice Prediction Tools Using Functional Splice Assays. Hum. Mutat. 2021, 42, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- West, H.D.; Nellist, M.; Brouwer, R.W.W.; van den Hout-van Vroonhoven, M.C.G.N.; de Almeida, L.G.D.; Hendriks, F.; Elfferich, P.; Raja, M.; Giles, P.; Alfano, R.M.; et al. Targeted Genomic Sequencing of TSC1 and TSC2 Reveals Causal Variants in Individuals for Whom Previous Genetic Testing for Tuberous Sclerosis Complex Was Normal. Hum. Mutat. 2023, 2023, 4899372. [Google Scholar] [CrossRef]
- Weisschuh, N.; Mazzola, P.; Zuleger, T.; Schaeferhoff, K.; Kühlewein, L.; Kortüm, F.; Witt, D.; Liebmann, A.; Falb, R.; Pohl, L.; et al. Diagnostic Genome Sequencing Improves Diagnostic Yield: A Prospective Single-Centre Study in 1000 Patients with Inherited Eye Diseases. J. Med. Genet. 2023, 61, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Dvaladze, A.; Tavares, E.; Di Scipio, M.; Nimmo, G.; Grudzinska-Pechhacker, M.K.; Paton, T.; Tumber, A.; Li, S.; Eileen, C.; Ertl-Wagner, B.; et al. Deep Intronic Variant in MVK as a Cause for Mevalonic Aciduria Initially Presenting as Non-Syndromic Retinitis Pigmentosa. Clin. Genet. 2022, 102, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Di Scipio, M.; Tavares, E.; Deshmukh, S.; Audo, I.; Green-Sanderson, K.; Zubak, Y.; Zine-Eddine, F.; Pearson, A.; Vig, A.; Tang, C.Y.; et al. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants That Cause Retinal Dystrophies by Aberrant Exonization. Invest. Ophthalmol. Vis. Sci. 2020, 61, 36. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Kozlowski, P.; Taillon, B.E.; Bouffard, P.; Holmes, A.J.; Janne, P.; Camposano, S.; Thiele, E.; Franz, D.; Kwiatkowski, D.J. Ultra Deep Sequencing Detects a Low Rate of Mosaic Mutations in Tuberous Sclerosis Complex. Hum. Genet. 2010, 127, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, D.J.; Whittemore, V.H.; Thiele, E.A. Tuberous Sclerosis Complex: Genes, Clinical Features and Therapeutics; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9783527644674. [Google Scholar]
- Ogórek, B.; Hamieh, L.; Hulshof, H.M.; Lasseter, K.; Klonowska, K.; Kuijf, H.; Moavero, R.; Hertzberg, C.; Weschke, B.; Riney, K.; et al. TSC2 Pathogenic Variants Are Predictive of Severe Clinical Manifestations in TSC Infants: Results of the EPISTOP Study. Genet. Med. 2020, 22, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Valdez, L.F.; Hernández-Utrera, J.E.; Chávez-Sánchez, I.N.; Peralta-Amaro, A.L.; Talin-Bosquez, M.J.; García-Pedraza, L.A.; Hernández-Jiménez, C.A.; Delgado-Carmona, D.K.; Gracia-Ramos, A.E. Late Diagnosis of Tuberous Sclerosis: A Case Report. Oxf. Med. Case Rep. 2023, 2023, omad029. [Google Scholar] [CrossRef] [PubMed]
- Seibert, D.; Hong, C.-H.; Takeuchi, F.; Olsen, C.; Hathaway, O.; Moss, J.; Darling, T.N. Recognition of Tuberous Sclerosis in Adult Women: Delayed Presentation with Life-Threatening Consequences. Ann. Intern. Med. 2011, 154, 806–813, W-294. [Google Scholar] [CrossRef]
- Sancak, O.; Nellist, M.; Goedbloed, M.; Elfferich, P.; Wouters, C.; Maat-Kievit, A.; Zonnenberg, B.; Verhoef, S.; Halley, D.; van den Ouweland, A. Mutational Analysis of the TSC1 and TSC2 Genes in a Diagnostic Setting: Genotype--Phenotype Correlations and Comparison of Diagnostic DNA Techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. 2005, 13, 731–741. [Google Scholar] [CrossRef]
- Benvenuto, G.; Li, S.; Brown, S.J.; Braverman, R.; Vass, W.C.; Cheadle, J.P.; Halley, D.J.; Sampson, J.R.; Wienecke, R.; DeClue, J.E. The Tuberous Sclerosis-1 (TSC1) Gene Product Hamartin Suppresses Cell Growth and Augments the Expression of the TSC2 Product Tuberin by Inhibiting Its Ubiquitination. Oncogene 2000, 19, 6306–6316. [Google Scholar] [CrossRef]
- Alsowat, D.; Whitney, R.; Hewson, S.; Jain, P.; Chan, V.; Kabir, N.; Amburgey, K.; Noone, D.; Lemaire, M.; McCoy, B.; et al. The Phenotypic Spectrum of Tuberous Sclerosis Complex: A Canadian Cohort. Child. Neurol. Open 2021, 8, 2329048X211012817. [Google Scholar] [CrossRef]
- Nabbout, R.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; Amato, L.D.; d’Augères, G.B.; de Vries, P.J.; et al. Epilepsy in Tuberous Sclerosis Complex: Findings from the TOSCA Study. Epilepsia Open 2019, 4, 73–84. [Google Scholar] [CrossRef]
- Wong, H.T.; McCartney, D.L.; Lewis, J.C.; Sampson, J.R.; Howe, C.J.; de Vries, P.J. Intellectual Ability in Tuberous Sclerosis Complex Correlates with Predicted Effects of Mutations on TSC1 and TSC2 Proteins. J. Med. Genet. 2015, 52, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Mammadova, D.; Vecko, J.; Hofmann, M.; Schüssler, S.C.; Deiters, L.; Canda, A.; Wieland, A.K.; Gollwitzer, S.; Hamer, H.; Trollmann, R. A Single-Center Observational Study on Long-Term Neurodevelopmental Outcomes in Children with Tuberous Sclerosis Complex. Orphanet. J. Rare Dis. 2023, 18, 349. [Google Scholar] [CrossRef]
- Farach, L.S.; Pearson, D.A.; Woodhouse, J.P.; Schraw, J.M.; Sahin, M.; Krueger, D.A.; Wu, J.Y.; Bebin, E.M.; Lupo, P.J.; Au, K.S.; et al. Tuberous Sclerosis Complex Genotypes and Developmental Phenotype. Pediatr. Neurol. 2019, 96, 58–63. [Google Scholar] [CrossRef]
- Curatolo, P.; Moavero, R.; Roberto, D.; Graziola, F. Genotype/Phenotype Correlations in Tuberous Sclerosis Complex. Semin. Pediatr. Neurol. 2015, 22, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Numis, A.L.; Major, P.; Montenegro, M.A.; Muzykewicz, D.A.; Pulsifer, M.B.; Thiele, E.A. Identification of Risk Factors for Autism Spectrum Disorders in Tuberous Sclerosis Complex. Neurology 2011, 76, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Kothare, S.V.; Singh, K.; Hochman, T.; Chalifoux, J.R.; Staley, B.A.; Weiner, H.L.; Menzer, K.; Devinsky, O. Genotype/Phenotype in Tuberous Sclerosis Complex: Associations with Clinical and Radiologic Manifestations. Epilepsia 2014, 55, 1020–1024. [Google Scholar] [CrossRef] [PubMed]
- Kothare, S.V.; Singh, K.; Chalifoux, J.R.; Staley, B.A.; Weiner, H.L.; Menzer, K.; Devinsky, O. Severity of Manifestations in Tuberous Sclerosis Complex in Relation to Genotype. Epilepsia 2014, 55, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-H.; Rensing, N.R.; Zhang, B.; Gutmann, D.H.; Gambello, M.J.; Wong, M. Tsc2 Gene Inactivation Causes a More Severe Epilepsy Phenotype than Tsc1 Inactivation in a Mouse Model of Tuberous Sclerosis Complex. Hum. Mol. Genet. 2011, 20, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Chivukula, S.; Modiri, O.; Kashanian, A.; Babayan, D.; Ibrahim, G.M.; Weil, A.G.; Tu, A.; Wu, J.Y.; Mathern, G.W.; Fallah, A. Effect of Gene Mutation on Seizures in Surgery for Tuberous Sclerosis Complex. Can. J. Neurol. Sci. 2021, 48, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Giannikou, K.; Martin, K.R.; Abdel-Azim, A.G.; Pamir, K.J.; Hougard, T.R.; Bagwe, S.; Tang, Y.; MacKeigan, J.P.; Kwiatkowski, D.J.; Henske, E.P.; et al. Spectrum of Germline and Somatic Mitochondrial DNA Variants in Tuberous Sclerosis Complex. Front. Genet. 2022, 13, 917993. [Google Scholar] [CrossRef] [PubMed]
- Muto, Y.; Sasaki, H.; Sumitomo, M.; Inagaki, H.; Kato, M.; Kato, T.; Miyai, S.; Kurahashi, H.; Shiroki, R. Genotype-Phenotype Correlation of Renal Lesions in the Tuberous Sclerosis Complex. Hum. Genome Var. 2022, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- van Eeghen, A.M.; Black, M.E.; Pulsifer, M.B.; Kwiatkowski, D.J.; Thiele, E.A. Genotype and Cognitive Phenotype of Patients with Tuberous Sclerosis Complex. Eur. J. Hum. Genet. 2012, 20, 510–515. [Google Scholar] [CrossRef]
- Sudarshan, S.; Kumar, A.; Gupta, A.; Bhari, N.; Sethuraman, G.; Kaushal, T.; Pradhan, A.; Sapra, S.; Gupta, N.; Kaur, P.; et al. Mutation Spectrum of Tuberous Sclerosis Complex Patients in Indian Population. J. Pediatr. Genet. 2021, 10, 274–283. [Google Scholar] [CrossRef]
- Reyna-Fabián, M.E.; Hernández-Martínez, N.L.; Alcántara-Ortigoza, M.A.; Ayala-Sumuano, J.T.; Enríquez-Flores, S.; Velázquez-Aragón, J.A.; Varela-Echavarría, A.; Todd-Quiñones, C.G.; González-Del Angel, A. First Comprehensive TSC1/TSC2 Mutational Analysis in Mexican Patients with Tuberous Sclerosis Complex Reveals Numerous Novel Pathogenic Variants. Sci. Rep. 2020, 10, 6589. [Google Scholar] [CrossRef]
- Vig, A.; Poulter, J.A.; Ottaviani, D.; Tavares, E.; Toropova, K.; Tracewska, A.M.; Mollica, A.; Kang, J.; Kehelwathugoda, O.; Paton, T.; et al. DYNC2H1 Hypomorphic or Retina-Predominant Variants Cause Nonsyndromic Retinal Degeneration. Genet. Med. 2020, 22, 2041–2051. [Google Scholar] [CrossRef]
- Harkness, J.R.; Thomas, H.B.; Urquhart, J.E.; Jamieson, P.; Genomics England Research Consortium; O’Keefe, R.T.; Kingston, H.M.; Deshpande, C.; Newman, W.G. Deep Intronic Variant Causes Aberrant Splicing of ATP7A in a Family with a Variable Occipital Horn Syndrome Phenotype. Eur. J. Med. Genet. 2023, 67, 104907. [Google Scholar] [CrossRef]
- Kozlowski, P.; Roberts, P.; Dabora, S.; Franz, D.; Bissler, J.; Northrup, H.; Au, K.S.; Lazarus, R.; Domanska-Pakiela, D.; Kotulska, K.; et al. Identification of 54 Large Deletions/Duplications in TSC1 and TSC2 Using MLPA, and Genotype-Phenotype Correlations. Hum. Genet. 2007, 121, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Klonowska, K.; Giannikou, K.; Grevelink, J.M.; Boeszoermenyi, B.; Thorner, A.R.; Herbert, Z.T.; Afrin, A.; Treichel, A.M.; Hamieh, L.; Kotulska, K.; et al. Comprehensive Genetic and Phenotype Analysis of 95 Individuals with Mosaic Tuberous Sclerosis Complex. Am. J. Hum. Genet. 2023, 110, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Lin, S.; Zhao, X.; Bennett, M.F.; Brown, N.J.; Wallis, M.; Gao, X.; Sun, L.; Wu, J.; Vedururu, R.; et al. Mosaicism in Tuberous Sclerosis Complex: Lowering the Threshold for Clinical Reporting. Hum. Mutat. 2022, 43, 1956–1969. [Google Scholar] [CrossRef] [PubMed]
- D’Gama, A.M.; Woodworth, M.B.; Hossain, A.A.; Bizzotto, S.; Hatem, N.E.; LaCoursiere, C.M.; Najm, I.; Ying, Z.; Yang, E.; Barkovich, A.J.; et al. Somatic Mutations Activating the MTOR Pathway in Dorsal Telencephalic Progenitors Cause a Continuum of Cortical Dysplasias. Cell Rep. 2017, 21, 3754–3766. [Google Scholar] [CrossRef] [PubMed]
- Bizzotto, S. The Human Brain through the Lens of Somatic Mosaicism. Front. Neurosci. 2023, 17, 1172469. [Google Scholar] [CrossRef] [PubMed]
- Giannikou, K.; Lasseter, K.D.; Grevelink, J.M.; Tyburczy, M.E.; Dies, K.A.; Zhu, Z.; Hamieh, L.; Wollison, B.M.; Thorner, A.R.; Ruoss, S.J.; et al. Low-Level Mosaicism in Tuberous Sclerosis Complex: Prevalence, Clinical Features, and Risk of Disease Transmission. Genet. Med. 2019, 21, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Treichel, A.M.; Hamieh, L.; Nathan, N.R.; Tyburczy, M.E.; Wang, J.-A.; Oyerinde, O.; Raiciulescu, S.; Julien-Williams, P.; Jones, A.M.; Gopalakrishnan, V.; et al. Phenotypic Distinctions between Mosaic Forms of Tuberous Sclerosis Complex. Genet. Med. 2019, 21, 2594–2604. [Google Scholar] [CrossRef]
- Vadlamudi, L.; Dibbens, L.M.; Lawrence, K.M.; Iona, X.; McMahon, J.M.; Murrell, W.; Mackay-Sim, A.; Scheffer, I.E.; Berkovic, S.F. Timing of de Novo Mutagenesis—A Twin Study of Sodium-Channel Mutations. N. Engl. J. Med. 2010, 363, 1335–1340. [Google Scholar] [CrossRef]
- Byers, H.M.; Jensen, D.M.; Glass, I.A.; Bennett, J.T. Minimal Mosaicism, Maximal Phenotype: Discordance between Clinical and Molecular Findings in Two Patients with Tuberous Sclerosis. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 374–378. [Google Scholar] [CrossRef]
- Lim, J.S.; Gopalappa, R.; Kim, S.H.; Ramakrishna, S.; Lee, M.; Kim, W.-I.; Kim, J.; Park, S.M.; Lee, J.; Oh, J.-H.; et al. Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am. J. Hum. Genet. 2017, 100, 454–472. [Google Scholar] [CrossRef]
- Hoelz, H.; Coppenrath, E.; Hoertnagel, K.; Roser, T.; Tacke, M.; Gerstl, L.; Borggraefe, I. Childhood-Onset Epileptic Encephalopathy Associated With Isolated Focal Cortical Dysplasia and a Novel TSC1 Germline Mutation. Clin. EEG Neurosci. 2018, 49, 187–191. [Google Scholar] [CrossRef]
- Fujita, A.; Ando, K.; Kobayashi, E.; Mitani, K.; Okudera, K.; Nakashima, M.; Miyatake, S.; Tsurusaki, Y.; Saitsu, H.; Seyama, K.; et al. Detection of Low-Prevalence Somatic TSC2 Mutations in Sporadic Pulmonary Lymphangioleiomyomatosis Tissues by Deep Sequencing. Hum. Genet. 2016, 135, 61–68. [Google Scholar] [CrossRef]
- Ikeda, K.M.; House, A.A.; Connaughton, D.M.; Pautler, S.E.; Siu, V.M.; Jones, M.-L. Potential Pitfalls in Pre-Implantation Genetic Diagnosis in a Patient with Tuberous Sclerosis and Isolated Mosaicism for a TSC2 Variant in Renal Tissue. Mol. Syndromol. 2021, 12, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Treichel, A.M.; Boeszoermenyi, B.; Lee, C.-C.R.; Moss, J.; Kwiatkowski, D.J.; Darling, T.N. Diagnosis of Mosaic Tuberous Sclerosis Complex Using Next-Generation Sequencing of Subtle or Unusual Cutaneous Findings. JID Innov. 2023, 3, 100180. [Google Scholar] [CrossRef]
- Chernoff, J. The Two-Hit Theory Hits 50. Mol. Biol. Cell 2021, 32, rt1. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.R.; Zhou, W.; Bowman, M.J.; Shih, J.; Au, K.S.; Dittenhafer-Reed, K.E.; Sisson, K.A.; Koeman, J.; Weisenberger, D.J.; Cottingham, S.L.; et al. The Genomic Landscape of Tuberous Sclerosis Complex. Nat. Commun. 2017, 8, 15816. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lee, J.; Kwak, Y.J.; Kim, H.-Y.; Lee, K.H.; Shim, Y.; Lee, H.; Park, S.-H. A Second Hit Somatic (p.R905W) and a Novel Germline Intron-Mutation of TSC2 Gene Is Found in Intestinal Lymphangioleiomyomatosis: A Case Report with Literature Review. Diagn. Pathol. 2021, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Tyburczy, M.E.; Wang, J.-A.; Li, S.; Thangapazham, R.; Chekaluk, Y.; Moss, J.; Kwiatkowski, D.J.; Darling, T.N. Sun Exposure Causes Somatic Second-Hit Mutations and Angiofibroma Development in Tuberous Sclerosis Complex. Hum. Mol. Genet. 2014, 23, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Baulac, S.; Ishida, S.; Marsan, E.; Miquel, C.; Biraben, A.; Nguyen, D.K.; Nordli, D.; Cossette, P.; Nguyen, S.; Lambrecq, V.; et al. Familial Focal Epilepsy with Focal Cortical Dysplasia Due to DEPDC5 Mutations. Ann. Neurol. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Mirzaa, G.M.; Campbell, C.D.; Solovieff, N.; Goold, C.; Jansen, L.A.; Menon, S.; Timms, A.E.; Conti, V.; Biag, J.D.; Adams, C.; et al. Association of MTOR Mutations With Developmental Brain Disorders, Including Megalencephaly, Focal Cortical Dysplasia, and Pigmentary Mosaicism. JAMA Neurol. 2016, 73, 836–845. [Google Scholar] [CrossRef]
- Ribierre, T.; Deleuze, C.; Bacq, A.; Baldassari, S.; Marsan, E.; Chipaux, M.; Muraca, G.; Roussel, D.; Navarro, V.; Leguern, E.; et al. Second-Hit Mosaic Mutation in MTORC1 Repressor DEPDC5 Causes Focal Cortical Dysplasia-Associated Epilepsy. J. Clin. Investig. 2018, 128, 2452–2458. [Google Scholar] [CrossRef]
- Lee, W.S.; Stephenson, S.E.M.; Howell, K.B.; Pope, K.; Gillies, G.; Wray, A.; Maixner, W.; Mandelstam, S.A.; Berkovic, S.F.; Scheffer, I.E.; et al. Second-Hit DEPDC5 Mutation Is Limited to Dysmorphic Neurons in Cortical Dysplasia Type IIA. Ann. Clin. Transl. Neurol. 2019, 6, 1338–1344. [Google Scholar] [CrossRef]
- Bennett, M.F.; Hildebrand, M.S.; Kayumi, S.; Corbett, M.A.; Gupta, S.; Ye, Z.; Krivanek, M.; Burgess, R.; Henry, O.J.; Damiano, J.A.; et al. Evidence for a Dual-Pathway, 2-Hit Genetic Model for Focal Cortical Dysplasia and Epilepsy. Neurol. Genet. 2022, 8, e652. [Google Scholar] [CrossRef]
- Treichel, A.M.; Kwiatkowski, D.J.; Moss, J.; Darling, T.N. A Diagnostic Algorithm for Enhanced Detection of Mosaic Tuberous Sclerosis Complex in Adults. Br. J. Dermatol. 2020, 182, 235–237. [Google Scholar] [CrossRef]
- Blasco-Pérez, L.; Iranzo-Nuez, L.; López-Ortega, R.; Martínez-Cruz, D.; Camprodon-Gómez, M.; Tenés, A.; Antolín, M.; Tizzano, E.F.; García-Arumí, E. An Integral Approach to the Molecular Diagnosis of Tuberous Sclerosis Complex: The Role of Mosaicism and Splicing Variants. J. Mol. Diagn. 2023, 25, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Pel, J.; Leung, A.; Choi, W.W.Y.; Despotovic, M.; Ung, W.L.; Shibahara, G.; Gelinas, L.; Marziali, A. Rapid and Highly-Specific Generation of Targeted DNA Sequencing Libraries Enabled by Linking Capture Probes with Universal Primers. PLoS ONE 2018, 13, e0208283. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R. Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics 2022, 12, 1539. [Google Scholar] [CrossRef]
- Koboldt, D.C. Best Practices for Variant Calling in Clinical Sequencing. Genome Med. 2020, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Lockhart, P.J. Utility of Droplet Digital Polymerase Chain Reaction for Studying Somatic Mosaicism: Brain Malformations and Beyond. Neural Regen. Res. 2023, 18, 2389–2390. [Google Scholar] [CrossRef]
- Manzanilla-Romero, H.H.; Weis, D.; Schnaiter, S.; Rudnik-Schöneborn, S. Low-Level Mosaicism in Tuberous Sclerosis Complex in Four Unrelated Patients: Comparison of Clinical Characteristics and Diagnostic Pathways. Am. J. Med. Genet. A 2021, 185, 3851–3858. [Google Scholar] [CrossRef]
- Nellist, M.; Brouwer, R.W.W.; Kockx, C.E.M.; van Veghel-Plandsoen, M.; Withagen-Hermans, C.; Prins-Bakker, L.; Hoogeveen-Westerveld, M.; Mrsic, A.; van den Berg, M.M.P.; Koopmans, A.E.; et al. Targeted Next Generation Sequencing Reveals Previously Unidentified TSC1 and TSC2 Mutations. BMC Med. Genet. 2015, 16, 10. [Google Scholar] [CrossRef]
- Ye, Z.; Chatterton, Z.; Pflueger, J.; Damiano, J.A.; McQuillan, L.; Harvey, A.S.; Malone, S.; Do, H.; Maixner, W.; Schneider, A.; et al. Cerebrospinal Fluid Liquid Biopsy for Detecting Somatic Mosaicism in Brain. Brain Commun. 2021, 3, fcaa235. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Bennett, M.F.; Neal, A.; Laing, J.A.; Hunn, M.K.; Wittayacharoenpong, T.; Todaro, M.; Patel, S.K.; Bahlo, M.; Kwan, P.; et al. Somatic Mosaic Pathogenic Variant Gradient Detected in Trace Brain Tissue From Stereo-EEG Depth Electrodes. Neurology 2022, 99, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Lin, S.; Zhao, X.; Wallis, M.; Gao, X.; Sun, L.; Wu, J.; Duan, J.; Yao, Y.; Li, L.; et al. Are Germline Mosaic TSC1/2 Variants Present in Controls? Implications for Diagnosis. Pediatr. Neurol. 2024, 150, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Soucy, A.; El Achkar, C.M.; Barkovich, A.J.; Cao, Y.; DiStefano, M.; Evenson, M.; Guerrini, R.; Knight, D.; Lee, Y.-S.; et al. The ClinGen Brain Malformation Variant Curation Expert Panel: Rules for Somatic Variants in AKT3, MTOR, PIK3CA, and PIK3R2. Genet. Med. 2022, 24, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, H.; Wang, J.; Gu, X.; Han, L.; Wu, Y.; Yan, H.; Han, L.; Zhang, H.; He, Y. Detection of TSC1/TSC2 Mosaic Variants in Patients with Cardiac Rhabdomyoma and Tuberous Sclerosis Complex by Hybrid-Capture next-Generation Sequencing. Mol. Genet. Genom. Med. 2021, 9, e1802. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Ye, W.-R.; Shi, W.; Yin, P.; Chen, C.; He, Y.-B.; Chen, M.-F.; Zu, X.-B.; Cai, Y. Perfect Match: MTOR Inhibitors and Tuberous Sclerosis Complex. Orphanet. J. Rare Dis. 2022, 17, 106. [Google Scholar] [CrossRef]
- D’Gama, A.M.; Poduri, A. Precision Therapy for Epilepsy Related to Brain Malformations. Neurotherapeutics 2021, 18, 1548–1563. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05534672 (accessed on 3 February 2024).
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05104983 (accessed on 4 February 2024).
- Iyer, G.; Demeure, M.J.; Deming, D.A.; Federman, N.; McKean, M.; Lee, E.K.; Spira, A.I.; Kwiatkowski, D.J.; Hussein, M.A.; Gordon, E.M.; et al. Phase 2, Multicenter, Open-Label Basket Trial of Nab-Sirolimus for Patients with Malignant Solid Tumors Harboring Pathogenic Inactivating Alterations in TSC1 or TSC2 Genes (PRECISION I). J. Clin. Orthod. 2023, 41, TPS597. [Google Scholar]
- Byrne, S.; Enright, N.; Delanty, N. Precision Therapy in the Genetic Epilepsies of Childhood. Dev. Med. Child. Neurol. 2021, 63, 1276–1282. [Google Scholar] [CrossRef]
- Alsowat, D.; Zak, M.; McCoy, B.; Kabir, N.; Al-Mehmadi, S.; Chan, V.; Whitney, R. A Review of Investigations for Patients with Tuberous Sclerosis Complex Who Were Referred to the Tuberous Sclerosis Clinic at the Hospital for Sick Children: Identifying Gaps in Surveillance. Pediatr. Neurol. 2020, 102, 44–48. [Google Scholar] [CrossRef]
- Słowińska, M.; Kotulska, K.; Szymańska, S.; Roberds, S.L.; Fladrowski, C.; Jóźwiak, S. Approach to Preventive Epilepsy Treatment in Tuberous Sclerosis Complex and Current Clinical Practice in 23 Countries. Pediatr. Neurol. 2021, 115, 21–27. [Google Scholar] [CrossRef]
- Whitney, R.; Zak, M.; Haile, D.; Nabavi Nouri, M. The State of Pediatric Tuberous Sclerosis Complex Epilepsy Care: Results from a National Survey. Epilepsia Open 2022, 7, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Bebin, E.M.; Peters, J.M.; Porter, B.E.; McPherson, T.O.; O’Kelley, S.; Sahin, M.; Taub, K.S.; Rajaraman, R.; Randle, S.C.; McClintock, W.M.; et al. Early Treatment with Vigabatrin Does Not Decrease Focal Seizures or Improve Cognition in Tuberous Sclerosis Complex: The PREVeNT Trial. Ann. Neurol. 2023, 95, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Tutschek, B.; Mayer, K.; Rauch, A. Fetal Tuberous Sclerosis and Diagnosis of Paternal Gonadal Mosaicism. Ultrasound Obstet. Gynecol. 2020, 55, 691–692. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Y.; Wang, J. Fetal Cardiac Rhabdomyoma Due to Paternal Mosaicism of TSC2: A Case Report. Medicine 2020, 99, e21949. [Google Scholar] [CrossRef] [PubMed]
- Brezina, P.R.; Kutteh, W.H. Clinical Applications of Preimplantation Genetic Testing. BMJ 2015, 350, g7611. [Google Scholar] [CrossRef] [PubMed]
- Naja, R.P.; Dhanjal, S.; Doshi, A.; Serhal, P.; Delhanty, J.; SenGupta, S.B. The Impact of Mosaicism in Preimplantation Genetic Diagnosis (PGD): Approaches to PGD for Dominant Disorders in Couples without Family History. Prenat. Diagn. 2016, 36, 864–870. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, A.; Di Scipio, M.; Grewal, S.; Suk, Y.; Trinari, E.; Ejaz, R.; Whitney, R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes 2024, 15, 332. https://doi.org/10.3390/genes15030332
Man A, Di Scipio M, Grewal S, Suk Y, Trinari E, Ejaz R, Whitney R. The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes. 2024; 15(3):332. https://doi.org/10.3390/genes15030332
Chicago/Turabian StyleMan, Alice, Matteo Di Scipio, Shan Grewal, Yujin Suk, Elisabetta Trinari, Resham Ejaz, and Robyn Whitney. 2024. "The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions" Genes 15, no. 3: 332. https://doi.org/10.3390/genes15030332
APA StyleMan, A., Di Scipio, M., Grewal, S., Suk, Y., Trinari, E., Ejaz, R., & Whitney, R. (2024). The Genetics of Tuberous Sclerosis Complex and Related mTORopathies: Current Understanding and Future Directions. Genes, 15(3), 332. https://doi.org/10.3390/genes15030332