Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Composition
2.2. Chromosome Analysis and Chromosomal Microarray Analysis
2.3. Southern Blotting for D4Z4 Repeat Length Analysis
2.4. Optical Genome Mapping
2.4.1. DNA Extraction and Labeling
2.4.2. Data Analysis
2.5. Nanopore Sequencing
3. Results
3.1. OGM Concordance in Detection of Chromosomal Abnormalities
Method | Structural Variant Types | Total | |||
---|---|---|---|---|---|
Duplication/Insertion | Deletion | Translocation/Inversion | Repeat (FSHD1) | ||
CA, CMA, SB | 38 | 22 | 17 | 10 | 87 |
OGM | 36 * | 22 * | 16 | 10 | 84 |
Concordance | 95% | 100% | 94% | 100% | 98% |
3.2. Modality of Structural Variant Calling and Advantages of OGM
3.2.1. Copy Number Variants
3.2.2. Balanced/Unbalanced SVs
3.2.3. Repeat Length Investigations
3.3. Genomic Structure Solved by OGM
3.3.1. Size Determination of Balanced Events
3.3.2. Resolving the Genomic Structure of Two Adjacent Copy Number Gains
3.4. Novel Findings Provided by OGM
3.4.1. Detection of a Reciprocal Translocation Breakpoint in a Clinically Relevant Gene
3.4.2. Solving Structure of a Chromosome Aberration and Detection of a Clinically Relevant Gene in Breakpoint of an Insertion
3.4.3. Solving a Low Mosaic Loss of a Clinically Relevant Gene
3.5. Discordant and Ambiguous Cases
3.5.1. Discordant Cases
3.5.2. Ambiguous Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, D.; Wain, K.E.; Dubuc, A.M.; Conlin, L.; Hickey, S.E.; Lamb, A.N.; Martin, C.L.; Morton, C.C.; Rasmussen, K.; Schuette, J.L.; et al. Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2018, 20, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Chaisson, M.J.P.; Sanders, A.D.; Zhao, X.; Malhotra, A.; Porubsky, D.; Rausch, T.; Gardner, E.J.; Rodriguez, O.L.; Guo, L.; Collins, R.L. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 2019, 10, 1784. [Google Scholar] [CrossRef] [PubMed]
- Levy-Sakin, M.; Pastor, S.; Mostovoy, Y.; Li, L.; Leung, A.K.Y.; McCaffrey, J.; Young, E.; Lam, E.T.; Hastie, A.R.; Wong, K.H.Y. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat. Commun. 2019, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Bocklandt, S.; Hastie, A.; Cao, H. Bionano Genome Mapping: High-Throughput, Ultra-Long Molecule Genome Analysis System for Precision Genome Assembly and Haploid-Resolved Structural Variation Discovery. Adv. Exp. Med. Biol. 2019, 1129, 97–118. [Google Scholar] [PubMed]
- Stence, A.A.; Thomason, J.G.; Pruessner, J.A.; Sompallae, R.R.; Snow, A.N.; Ma, D.; Mooret, S.A.; Bossler, A.D. Validation of Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy. J. Mol. Diagn. 2021, 23, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Barseghyan, H.; Tang, W.; Wang, R.T.; Almalvez, M.; Segura, E.; Bramble, M.S.; Lipson, A.; Douine, E.D.; Lee, H.; Délot, E.C. Next-generation mapping: A novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med. 2017, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, X.; Ding, L.; Li, H.; Xu, C.; Gong, Y.; Liu, Y.; Mu, T.; Leigh, D.; Cram, D.S. Clinical application of single-molecule optical mapping to a multigeneration FSHD1 pedigree. Mol. Genet. Genom. Med. 2019, 7, e565. [Google Scholar] [CrossRef] [PubMed]
- Cope, H.; Barseghyan, H.; Bhattacharya, S.; Fu, Y.; Hoppman, N.; Marcou, C.; Walley, N.; Rehder, C.; Deak, K.; Alkelai, A. Detection of a mosaic CDKL5 deletion and inversion by optical genome mapping ends an exhaustive diagnostic odyssey. Mol. Genet. Genomic Med. 2021, 9, e1665. [Google Scholar] [CrossRef] [PubMed]
- Mantere, T.; Neveling, K.; Pebrel-Richard, C.; Benoist, M.; van der Zande, G.; Kater-Baats, E.; Baatout, I.; van Beek, R.; Yammine, T.; Oorsprong, M. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 2021, 108, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Mostovoy, Y.; Yilmaz, F.; Chow, S.K.; Chu, C.; Lin, C.; Geiger, E.A.; Meeks, N.J.L.; Chatfield, K.C.; Coughlin, C.R.; Surti, U. Genomic regions associated with microdeletion/microduplication syndromes exhibit extreme diversity of structural variation. Genetics 2021, 217, iyaa038. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.R.; Xu, J.; Dileep, V.; Zhan, Y.; Song, F.; Le, V.T.; Yardımcı, G.G.; Chakraborty, A.; Bann, D.V.; Wang, Y. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 2018, 50, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
- Neveling, K.; Mantere, T.; Vermeulen, S.; Oorsprong, M.; van Beek, R.; Kater-Baats, E.; Pauper, M.; van der Zande, G.; Smeets, D.; Weghuis, D.O. Next-generation cytogenetics: Comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping. Am. J. Human. Genet. 2021, 108, 1423–1435. [Google Scholar] [CrossRef] [PubMed]
- Kriegova, E.; Fillerova, R.; Minarik, J.; Savara, J.; Manakova, J.; Petrackova, A.; Dihel, M.; Balcarkova, J.; Krhovska, P.; Pika, T. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities. Sci. Rep. 2021, 11, 14671. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, H.; Scharf, F.; Gehling, S.; Benet-Pagès, A.; Jakubiczka, S.; Becker, K.; Seipelt, M.; Kleefeld, F.; Knop, K.C.; Prott, E.-C. Methylation of the 4q35 D4Z4 repeat defines disease status in facioscapulohumeral muscular dystrophy. Brain 2023, 146, 1388–1402. [Google Scholar] [CrossRef]
- Barseghyan, H.; Pang, A.W.C.; Clifford, B.; Serrano, M.A.; Chaubey, A.; Hastie, A.R. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes 2023, 14, 1868. [Google Scholar] [CrossRef]
- Kushary, S.T.; Revah-Politi, A.; Barua, S.; Ganapathi, M.; Accogli, A.; Aggarwal, V.; Brunetti-Pierri, N.; Cappuccio, G.; Capra, V.; Fagerberg, C.R.; et al. ZTTK syndrome: Clinical and molecular findings of 15 cases and a review of the literature. Am. J. Med. Genet. A 2021, 185, 3740–3753. [Google Scholar] [CrossRef] [PubMed]
- Tokita, M.J.; Braxton, A.A.; Shao, Y.; Lewis, A.M.; Vincent, M.; Küry, S.; Besnard, T.; Isidor, B.; Latypova, X.; Bézieau, S. De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive. Am. J. Hum. Genet. 2016, 99, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Hastie, A.R.; Lam, E.T.; Wing, A.; Pang, C.; Zhang, X.; Lee, J.; Liang, T.Y.; Wang, J.; Zhou, X.; Cao, H.; et al. Rapid Automated Large Structural Variation Detection in a Diploid Genome by NanoChannel Based Next-Generation Mapping. BioRxiv 2017, 102764, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barseghyan, H.; Eisenreich, D.; Lindt, E.; Wendlandt, M.; Scharf, F.; Benet-Pages, A.; Sendelbach, K.; Neuhann, T.; Abicht, A.; Holinski-Feder, E.; et al. Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes 2024, 15, 342. https://doi.org/10.3390/genes15030342
Barseghyan H, Eisenreich D, Lindt E, Wendlandt M, Scharf F, Benet-Pages A, Sendelbach K, Neuhann T, Abicht A, Holinski-Feder E, et al. Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes. 2024; 15(3):342. https://doi.org/10.3390/genes15030342
Chicago/Turabian StyleBarseghyan, Hayk, Doris Eisenreich, Evgenia Lindt, Martin Wendlandt, Florentine Scharf, Anna Benet-Pages, Kai Sendelbach, Teresa Neuhann, Angela Abicht, Elke Holinski-Feder, and et al. 2024. "Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method" Genes 15, no. 3: 342. https://doi.org/10.3390/genes15030342
APA StyleBarseghyan, H., Eisenreich, D., Lindt, E., Wendlandt, M., Scharf, F., Benet-Pages, A., Sendelbach, K., Neuhann, T., Abicht, A., Holinski-Feder, E., & Koehler, U. (2024). Optical Genome Mapping as a Potential Routine Clinical Diagnostic Method. Genes, 15(3), 342. https://doi.org/10.3390/genes15030342