Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches
Abstract
:1. Introduction
1.1. Epidemiology
1.1.1. Prevalence of Migraine, Including HM
1.1.2. Clinical Features
2. The Genetic Basis of HM
2.1. FHM and the Three Known Genes
2.1.1. FHM Due to Mutations in the CACNA1A Gene
2.1.2. FHM Due to Mutations in the ATP1A2 Gene
2.1.3. FHM Due to Mutations in the SCN1A Gene
2.1.4. Other Potential Genes Associated with FHM
2.2. SHM
3. Innovative Approaches That Offer the Potential to Explain the Remaining Heritability of HM
3.1. Learning from the Legacy of GWAS
3.2. Exome Studies
3.3. Investigating Large Structural Variations
3.3.1. CNVs
3.3.2. SVs
3.4. Rare Variant Association Testing
3.4.1. Single-Variant Association-Based Test
3.4.2. Region- or Gene-Based Tests
3.4.3. Burden Tests
3.4.4. Variance-Component Tests
3.5. Annotation of Sequence Variants
3.6. Annotation Tools
3.7. Machine Learning
3.8. Criteria to Be Considered When Selecting Variants within a Case-Control Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, N.; Stam, A.H.; Haan, J.; Ferrari, M.D.; Terwindt, G.M. Familial and sporadic hemiplegic migraine: Diagnosis and treatment. Curr. Treat. Options Neurol. 2013, 15, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.B.; Ducros, A. Sporadic and familial hemiplegic migraine: Pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol. 2011, 10, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, N.; Haan, J.; Stam, A.H.; Vijfhuizen, L.S.; Koelewijn, S.C.; Smagge, A.; de Vries, B.; Ferrari, M.D.; van den Maagdenberg, A.; Terwindt, G.M. Clinical spectrum of hemiplegic migraine and chances of finding a pathogenic mutation. Neurology 2018, 90, e575–e582. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.L.; Eriksen, M.K.; Roemer, S.F.; Andersen, I.; Olesen, J.; Russell, M.B. A population-based study of familial hemiplegic migraine suggests revised diagnostic criteria. Brain 2002, 125, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Van den Maagdenberg, A.M.; Haan, J.; Terwindt, G.M.; Ferrari, M.D. Migraine: Gene mutations and functional consequences. Curr. Opin. Neurol. 2007, 20, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Lykke Thomsen, L.; Kirchmann Eriksen, M.; Faerch Romer, S.; Andersen, I.; Ostergaard, E.; Keiding, N.; Olesen, J.; Russell, M.B. An epidemiological survey of hemiplegic migraine. Cephalalgia 2002, 22, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Marchenkova, A.; van den Maagdenberg, A.M.; Nistri, A. Loss of inhibition by brain natriuretic peptide over P2X3 receptors contributes to enhanced spike firing of trigeminal ganglion neurons in a mouse model of familial hemiplegic migraine type-1. Neuroscience 2016, 331, 197–205. [Google Scholar] [CrossRef]
- de Vries, B.; Freilinger, T.; Vanmolkot, K.R.; Koenderink, J.B.; Stam, A.H.; Terwindt, G.M.; Babini, E.; van den Boogerd, E.H.; van den Heuvel, J.J.; Frants, R.R.; et al. Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology 2007, 69, 2170–2176. [Google Scholar] [CrossRef]
- Kumar, A.; Samanta, D.; Emmady, P.D.; Arora, R. Hemiplegic Migraine; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Stovner, L.J.; Nichols, E.; Steiner, T.J.; Abd-Allah, F.; Abdelalim, A.; Al-Raddadi, R.M.; Ansha, M.G.; Barac, A.; Bensenor, I.M.; Doan, L.P. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar] [CrossRef]
- Prakash, V.B.; Ramachandani, G.; Prakash, V.S.; Sharma, S.; Tiwari, S. Symptom-free status after prolonged suffering with refractory chronic migraine: A case report. J. Ayurveda Case Rep. 2021, 4, 100–104. [Google Scholar] [CrossRef]
- Steiner, T.J.; Stovner, L.J.; Vos, T. GBD 2015: Migraine is the third cause of disability in under 50s. J. Headache Pain 2016, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.L.; Ostergaard, E.; Olesen, J.; Russell, M.B. Evidence for a separate type of migraine with aura: Sporadic hemiplegic migraine. Neurology 2003, 60, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.H.; Olofsson, I.; Chalmer, M.A.; Olesen, J.; Hansen, T.F. Higher burden of rare frameshift indels in genes related to synaptic transmission separate familial hemiplegic migraine from common types of migraine. J. Med. Genet. 2020, 57, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Bigal, M.E.; Diamond, M.; Freitag, F.; Reed, M.L.; Stewart, W.F. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 2011, 77, 1905. [Google Scholar] [CrossRef]
- Gasparini, C.F.; Sutherland, H.G.; Griffiths, L.R. Studies on the pathophysiology and genetic basis of migraine. Curr. Genom. 2013, 14, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Toldo, I.; Brunello, F.; Morao, V.; Perissinotto, E.; Valeriani, M.; Pruna, D.; Tozzi, E.; Moscano, F.; Farello, G.; Frusciante, R.; et al. First Attack and Clinical Presentation of Hemiplegic Migraine in Pediatric Age: A Multicenter Retrospective Study and Literature Review. Front. Neurol. 2019, 10, 1079. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.M.; Hauge, A.W.; Ashina, M.; Olesen, J. Trigger factors for familial hemiplegic migraine. Cephalalgia 2011, 31, 1274–1281. [Google Scholar] [CrossRef]
- Haan, J.; Terwindt, G.M.; Ophoff, R.A.; Bos, P.L.; Frants, R.R.; Ferrari, M.D.; Krommenhoek, T.; Lindhout, D.L.; Sandkuyl, L.A.; Van Eyk, R. Is familial hemiplegic migraine a hereditary form of basilar migraine? Cephalalgia 1995, 15, 477–481. [Google Scholar] [CrossRef]
- Ducros, A.; Denier, C.; Joutel, A.; Cecillon, M.; Lescoat, C.; Vahedi, K.; Darcel, F.; Vicaut, E.; Bousser, M.G.; Tournier-Lasserve, E. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N. Engl. J. Med. 2001, 345, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Saleh, C.; Pierquin, G.; Beyenburg, S. Hemiplegic Migraine Presenting with Prolonged Somnolence: A Case Report. Case Rep. Neurol. 2016, 8, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.H.; Hong, C.T. Prolonged symptoms in sporadic hemiplegic migraine: Aura or migrainous infarction? Acta Neurol. Taiwan. 2012, 21, 129–132. [Google Scholar] [PubMed]
- Kumar, G.; Topper, L.; Maytal, J. Familial hemiplegic migraine with prolonged aura and multimodality imaging: A case report. Headache 2009, 49, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Toldo, I.; Cecchin, D.; Sartori, S.; Calderone, M.; Mardari, R.; Cattelan, F.; Laverda, A.M.; Drigo, P.; Battistella, P.A. Multimodal neuroimaging in a child with sporadic hemiplegic migraine: A contribution to understanding pathogenesis. Cephalalgia 2011, 31, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.L.; Olesen, J.; Russell, M.B. Increased risk of migraine with typical aura in probands with familial hemiplegic migraine and their relatives. Eur. J. Neurol. 2003, 10, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Fujiwara, K.; Tsubuku, T.; Yabe, I.; Sasaki, H.; Fukuda, S. Time course of downbeat positioning nystagmus in familial hemiplegic migraine type 1 treated with acetazolamide. J. Neurol. Sci. 2016, 368, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Battistini, S.; Stenirri, S.; Piatti, M.; Gelfi, C.; Righetti, P.G.; Rocchi, R.; Giannini, F.; Battistini, N.; Guazzi, G.C.; Ferrari, M.; et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology 1999, 53, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, K.; Denier, C.; Ducros, A.; Bousson, V.; Levy, C.; Chabriat, H.; Haguenau, M.; Tournier-Lasserve, E.; Bousser, M.G. CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurology 2000, 55, 1040–1042. [Google Scholar] [CrossRef]
- Pelzer, N.; Blom, D.E.; Stam, A.H.; Vijfhuizen, L.S.; Hageman, A.; van Vliet, J.A.; Ferrari, M.D.; van den Maagdenberg, A.; Haan, J.; Terwindt, G.M. Recurrent coma and fever in familial hemiplegic migraine type 2. A prospective 15-year follow-up of a large family with a novel ATP1A2 mutation. Cephalalgia 2017, 37, 737–755. [Google Scholar] [CrossRef]
- Humbertclaude, V.; Riant, F.; Krams, B.; Zimmermann, V.; Nagot, N.; Annequin, D.; Echenne, B.; Tournier-Lasserve, E.; Roubertie, A.; Episodic Syndrome, C. Cognitive impairment in children with CACNA1A mutations. Dev. Med. Child. Neurol. 2020, 62, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Rispoli, M.G.; Pellegrino, N.; Graziosi, A.; Rotondo, E.; Napoli, C.; Pietrobon, D.; Brighina, F.; Parisi, P. Diagnostic and therapeutic aspects of hemiplegic migraine. J. Neurol. Neurosurg. Psychiatry 2020, 91, 764–771. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Albury, C.L.; Griffiths, L.R. Advances in genetics of migraine. J. Headache Pain 2019, 20, 72. [Google Scholar] [CrossRef]
- Ophoff, R.A.; Terwindt, G.M.; Vergouwe, M.N.; van Eijk, R.; Oefner, P.J.; Hoffman, S.M.; Lamerdin, J.E.; Mohrenweiser, H.W.; Bulman, D.E.; Ferrari, M.; et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87, 543–552. [Google Scholar] [CrossRef] [PubMed]
- De Fusco, M.; Marconi, R.; Silvestri, L.; Atorino, L.; Rampoldi, L.; Morgante, L.; Ballabio, A.; Aridon, P.; Casari, G. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 2003, 33, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, M.; Freilinger, T.; Eckstein, G.; Babini, E.; Lorenz-Depiereux, B.; Biskup, S.; Ferrari, M.D.; Herzog, J.; van den Maagdenberg, A.M.; Pusch, M.; et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005, 366, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Gallanti, A.; Cardin, V.; Tonelli, A.; Bussone, G.; Bresolin, N.; Mariani, C.; Bassi, M.T. The genetic features of 24 patients affected by familial and sporadic hemiplegic migraine. Neurol. Sci. 2011, 32, S141–S142. [Google Scholar] [CrossRef] [PubMed]
- Maksemous, N.; Blayney, C.D.; Sutherland, H.G.; Smith, R.A.; Lea, R.A.; Tran, K.N.; Ibrahim, O.; McArthur, J.R.; Haupt, L.M.; Cader, M.Z.; et al. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front. Mol. Neurosci. 2022, 15, 892820. [Google Scholar] [CrossRef] [PubMed]
- Gormley, P.; Kurki, M.I.; Hiekkala, M.E.; Veerapen, K.; Happola, P.; Mitchell, A.A.; Lal, D.; Palta, P.; Surakka, I.; Kaunisto, M.A.; et al. Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1589 Families. Neuron 2018, 98, 743–753.e744. [Google Scholar] [CrossRef] [PubMed]
- Hiekkala, M.E.; Vuola, P.; Artto, V.; Happola, P.; Happola, E.; Vepsalainen, S.; Cuenca-Leon, E.; Lal, D.; Gormley, P.; Hamalainen, E.; et al. The contribution of CACNA1A, ATP1A2 and SCN1A mutations in hemiplegic migraine: A clinical and genetic study in Finnish migraine families. Cephalalgia 2018, 38, 1849–1863. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Maksemous, N.; Albury, C.L.; Ibrahim, O.; Smith, R.A.; Lea, R.A.; Haupt, L.M.; Jenkins, B.; Tsang, B.; Griffiths, L.R. Comprehensive Exonic Sequencing of Hemiplegic Migraine-Related Genes in a Cohort of Suspected Probands Identifies Known and Potential Pathogenic Variants. Cells 2020, 9, 2368. [Google Scholar] [CrossRef] [PubMed]
- Terwindt, G.M.; Ophoff, R.A.; Haan, J.; Vergouwe, M.N.; van Eijk, R.; Frants, R.R.; Ferrari, M.D. Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Dutch Migraine Genetics Research Group. Neurology 1998, 50, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Van Gils, J.; Bigourdan, A.; Jouk, P.S.; Lacombe, D.; Menegon, P.; Moutton, S.; Riant, F.; Sole, G.; Tournier-Lasserve, E.; et al. Major intra-familial phenotypic heterogeneity and incomplete penetrance due to a CACNA1A pathogenic variant. Eur. J. Med. Genet. 2019, 62, 103530. [Google Scholar] [CrossRef]
- Kors, E.E.; Haan, J.; Giffin, N.J.; Pazdera, L.; Schnittger, C.; Lennox, G.G.; Terwindt, G.M.; Vermeulen, F.L.; Van den Maagdenberg, A.M.; Frants, R.R.; et al. Expanding the phenotypic spectrum of the CACNA1A gene T666M mutation: A description of 5 families with familial hemiplegic migraine. Arch. Neurol. 2003, 60, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, D. Calcium channels and migraine. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, D.; Brennan, K.C. Genetic mouse models of migraine. J. Headache Pain 2019, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 1998, 24, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.F.; van den Maagdenberg, A.M.J.M.; Frants, R.R.; Ferrari, M.D. Chapter 3 Familial Hemiplegic Migraine. Adv. Genet. 2008, 63, 57–83. [Google Scholar] [PubMed]
- Grieco, G.S.; Gagliardi, S.; Ricca, I.; Pansarasa, O.; Neri, M.; Gualandi, F.; Nappi, G.; Ferlini, A.; Cereda, C. New CACNA1A deletions are associated to migraine phenotypes. J. Headache Pain 2018, 19, 75. [Google Scholar] [CrossRef]
- Terwindt, G.M.; Ophoff, R.A.; Haan, J.; Sandkuijl, L.A.; Frants, R.R.; Ferrari, M.D. Migraine, ataxia and epilepsy: A challenging spectrum of genetically determined calcium channelopathies. Eur. J. Hum. Genet. 1998, 6, 297–307. [Google Scholar] [CrossRef]
- Sowell, M.K.; Youssef, P.E. The Comorbidity of Migraine and Epilepsy in Children and Adolescents. Semin. Pediatr. Neurol. 2016, 23, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Grieco, G.S.; Santorelli, F.M. Migraine headache: A review of the molecular genetics of a common disorder. J. Headache Pain 2012, 13, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Tottene, A.; Fellin, T.; Pagnutti, S.; Luvisetto, S.; Striessnig, J.; Fletcher, C.; Pietrobon, D. Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 13284–13289. [Google Scholar] [CrossRef] [PubMed]
- Van den Maagdenberg, A.M.; Pietrobon, D.; Pizzorusso, T.; Kaja, S.; Broos, L.A.; Cesetti, T.; van de Ven, R.C.; Tottene, A.; van der Kaa, J.; Plomp, J.J.; et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Tottene, A.; Conti, R.; Fabbro, A.; Vecchia, D.; Shapovalova, M.; Santello, M.; van den Maagdenberg, A.M.; Ferrari, M.D.; Pietrobon, D. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 2009, 61, 762–773. [Google Scholar] [CrossRef]
- Chanda, M.L.; Tuttle, A.H.; Baran, I.; Atlin, C.; Guindi, D.; Hathaway, G.; Israelian, N.; Levenstadt, J.; Low, D.; Macrae, L.; et al. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 2013, 154, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Vecchia, D.; Tottene, A.; van den Maagdenberg, A.M.; Pietrobon, D. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiol. Dis. 2014, 69, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Vecchia, D.; Tottene, A.; van den Maagdenberg, A.M.; Pietrobon, D. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans. Front. Cell Neurosci. 2015, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, A.; Karatas, H. Mouse Models of Familial Hemiplegic Migraine for Studying Migraine Pathophysiology. Curr. Neuropharmacol. 2019, 17, 961–973. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Griffiths, L.R. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017, 57, 537–569. [Google Scholar] [CrossRef] [PubMed]
- Dilekoz, E.; Houben, T.; Eikermann-Haerter, K.; Balkaya, M.; Lenselink, A.M.; Whalen, M.J.; Spijker, S.; Ferrari, M.D.; van den Maagdenberg, A.M.; Ayata, C. Migraine mutations impair hippocampal learning despite enhanced long-term potentiation. J. Neurosci. 2015, 35, 3397–3402. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.; Andreou, A.P.; Chami, L.; Bergerot, A.; van den Maagdenberg, A.M.; Ferrari, M.D.; Goadsby, P.J. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia 2011, 31, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- Ceruti, S.; Villa, G.; Fumagalli, M.; Colombo, L.; Magni, G.; Zanardelli, M.; Fabbretti, E.; Verderio, C.; van den Maagdenberg, A.M.; Nistri, A.; et al. Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 Knock-in mice: Implications for basic mechanisms of migraine pain. J. Neurosci. 2011, 31, 3638–3649. [Google Scholar] [CrossRef] [PubMed]
- Van den Maagdenberg, A.M.; Pizzorusso, T.; Kaja, S.; Terpolilli, N.; Shapovalova, M.; Hoebeek, F.E.; Barrett, C.F.; Gherardini, L.; van de Ven, R.C.; Todorov, B.; et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann. Neurol. 2010, 67, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.J.; Rungta, R.L.; Garcia, E.; van den Maagdenberg, A.M.; MacVicar, B.A.; Snutch, T.P. Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel. Proc. Natl. Acad. Sci. USA 2010, 107, 18694–18699. [Google Scholar] [CrossRef] [PubMed]
- Eikermann-Haerter, K.; Dilekoz, E.; Kudo, C.; Savitz, S.I.; Waeber, C.; Baum, M.J.; Ferrari, M.D.; van den Maagdenberg, A.M.; Moskowitz, M.A.; Ayata, C. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J. Clin. Investig. 2009, 119, 99–109. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.; Terwindt, G.M.; van den Maagdenberg, A. Genetics of migraine aura: An update. J. Headache Pain 2020, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Ceroni, M.; Poloni, T.E.; Tonietti, S.; Fabozzi, D.; Uggetti, C.; Frediani, F.; Simonetti, F.; Malaspina, A.; Alimonti, D.; Celano, M.; et al. Migraine with aura and white matter abnormalities: Notch3 mutation. Neurology 2000, 54, 1869–1871. [Google Scholar] [CrossRef]
- Xu, Y.; Padiath, Q.S.; Shapiro, R.E.; Jones, C.R.; Wu, S.C.; Saigoh, N.; Saigoh, K.; Ptacek, L.J.; Fu, Y.H. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434, 640–644. [Google Scholar] [CrossRef]
- Eikermann-Haerter, K.; Ayata, C. Cortical spreading depression and migraine. Curr. Neurol. Neurosci. Rep. 2010, 10, 167–173. [Google Scholar] [CrossRef]
- Eikermann-Haerter, K.; Baum, M.J.; Ferrari, M.D.; van den Maagdenberg, A.M.; Moskowitz, M.A.; Ayata, C. Androgenic suppression of spreading depression in familial hemiplegic migraine type 1 mutant mice. Ann. Neurol. 2009, 66, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Shyti, R.; Eikermann-Haerter, K.; van Heiningen, S.H.; Meijer, O.C.; Ayata, C.; Joels, M.; Ferrari, M.D.; van den Maagdenberg, A.M.; Tolner, E.A. Stress hormone corticosterone enhances susceptibility to cortical spreading depression in familial hemiplegic migraine type 1 mutant mice. Exp. Neurol. 2015, 263, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Shyti, R.; Kohler, I.; Schoenmaker, B.; Derks, R.J.; Ferrari, M.D.; Tolner, E.A.; Mayboroda, O.A.; van den Maagdenberg, A.M. Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis--mass spectrometry. Mol. Biosyst. 2015, 11, 1462–1471. [Google Scholar] [CrossRef]
- Carreira, R.J.; Shyti, R.; Balluff, B.; Abdelmoula, W.M.; van Heiningen, S.H.; van Zeijl, R.J.; Dijkstra, J.; Ferrari, M.D.; Tolner, E.A.; McDonnell, L.A.; et al. Large-scale mass spectrometry imaging investigation of consequences of cortical spreading depression in a transgenic mouse model of migraine. J. Am. Soc. Mass. Spectrom. 2015, 26, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, T.; Tavraz, N.N.; Junghans, C. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease. Front. Physiol. 2016, 7, 239. [Google Scholar] [CrossRef]
- Fernandez, D.M.; Hand, C.K.; Sweeney, B.J.; Parfrey, N.A. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred. Headache 2008, 48, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Riant, F.; De Fusco, M.; Aridon, P.; Ducros, A.; Ploton, C.; Marchelli, F.; Maciazek, J.; Bousser, M.G.; Casari, G.; Tournier-Lasserve, E. ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum. Mutat. 2005, 26, 281. [Google Scholar] [CrossRef] [PubMed]
- Vanmolkot, K.R.; Kors, E.E.; Turk, U.; Turkdogan, D.; Keyser, A.; Broos, L.A.; Kia, S.K.; van den Heuvel, J.J.; Black, D.F.; Haan, J.; et al. Two de novo mutations in the Na,K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur. J. Hum. Genet. 2006, 14, 555–560. [Google Scholar] [CrossRef]
- Maksemous, N.; Smith, R.A.; Sutherland, H.G.; Maher, B.H.; Ibrahim, O.; Nicholson, G.A.; Carpenter, E.P.; Lea, R.A.; Cader, M.Z.; Griffiths, L.R. Targeted next generation sequencing identifies a genetic spectrum of DNA variants in patients with hemiplegic migraine. Cephalalgia Rep. 2019, 2, 251581631988163. [Google Scholar] [CrossRef]
- Gagliardi, S.; Grieco, G.S.; Gualandi, F.; Caniatti, L.M.; Groppo, E.; Valente, M.; Nappi, G.; Neri, M.; Cereda, C. De novo exonic duplication of ATP1A2 in Italian patient with hemiplegic migraine: A case report. J. Headache Pain 2017, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Segall, L.; Mezzetti, A.; Scanzano, R.; Gargus, J.J.; Purisima, E.; Blostein, R. Alterations in the α2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2. Proc. Natl. Acad. Sci. USA 2005, 102, 11106–11111. [Google Scholar] [CrossRef] [PubMed]
- Tavraz, N.N.; Friedrich, T.; Durr, K.L.; Koenderink, J.B.; Bamberg, E.; Freilinger, T.; Dichgans, M. Diverse functional consequences of mutations in the Na+/K+-ATPase α2-subunit causing familial hemiplegic migraine type 2. J. Biol. Chem. 2008, 283, 31097–31106. [Google Scholar] [CrossRef] [PubMed]
- De Vries, B.; Frants, R.R.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M. Molecular genetics of migraine. Hum. Genet. 2009, 126, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Capendeguy, O.; Horisberger, J.D. Functional effects of Na+,K+-ATPase gene mutations linked to familial hemiplegic migraine. Neuromolecular Med. 2004, 6, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Tavraz, N.N.; Durr, K.L.; Koenderink, J.B.; Freilinger, T.; Bamberg, E.; Dichgans, M.; Friedrich, T. Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine. Channels 2009, 3, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Glutamate transporters: Diversity, function, and involvement in neurologic disease. Neurology 2010, 74, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Leo, L.; Gherardini, L.; Barone, V.; De Fusco, M.; Pietrobon, D.; Pizzorusso, T.; Casari, G. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011, 7, e1002129. [Google Scholar] [CrossRef] [PubMed]
- Capuani, C.; Melone, M.; Tottene, A.; Bragina, L.; Crivellaro, G.; Santello, M.; Casari, G.; Conti, F.; Pietrobon, D. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol. Med. 2016, 8, 967–986. [Google Scholar] [CrossRef]
- Pietrobon, D. Migraine: New molecular mechanisms. Neuroscientist 2005, 11, 373–386. [Google Scholar] [CrossRef]
- Segall, L.; Scanzano, R.; Kaunisto, M.A.; Wessman, M.; Palotie, A.; Gargus, J.J.; Blostein, R. Kinetic alterations due to a missense mutation in the Na,K-ATPase α2 subunit cause familial hemiplegic migraine type 2. J. Biol. Chem. 2004, 279, 43692–43696. [Google Scholar] [CrossRef] [PubMed]
- Koenderink, J.B.; Zifarelli, G.; Qiu, L.Y.; Schwarz, W.; De Pont, J.J.; Bamberg, E.; Friedrich, T. Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation. Biochim. Biophys. Acta 2005, 1669, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bottger, P.; Glerup, S.; Gesslein, B.; Illarionova, N.B.; Isaksen, T.J.; Heuck, A.; Clausen, B.H.; Fuchtbauer, E.M.; Gramsbergen, J.B.; Gunnarson, E.; et al. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci. Rep. 2016, 6, 22047. [Google Scholar] [CrossRef] [PubMed]
- Unekawa, M.; Ikeda, K.; Tomita, Y.; Kawakami, K.; Suzuki, N. Enhanced susceptibility to cortical spreading depression in two types of Na+,K+-ATPase α2 subunit-deficient mice as a model of familial hemiplegic migraine 2. Cephalalgia 2018, 38, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006, 9, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- William, A.C. From Ionic Currents to Molecular Review Mechanisms: The Structure and Function of Voltage-Gated Sodium Channels. Neuron 2000, 26, 13–25. [Google Scholar]
- Zhang, Y.; Chen, N.; Zhou, M.; Guo, J.; Guo, J.; He, L. A novel SCN1A mutation identified in a Chinese family with familial hemiplegic migraine: A case report. Cephalalgia 2017, 37, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, M.; Cestèle, S. Pathophysiological Mechanisms of Migraine and Epilepsy: Similarities and Differences; Elsevier Ireland Ltd.: Dublin, Ireland, 2018; Volume 667, pp. 92–102. [Google Scholar]
- Cestele, S.; Labate, A.; Rusconi, R.; Tarantino, P.; Mumoli, L.; Franceschetti, S.; Annesi, G.; Mantegazza, M.; Gambardella, A. Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia 2013, 54, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Cestele, S.; Schiavon, E.; Rusconi, R.; Franceschetti, S.; Mantegazza, M. Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc. Natl. Acad. Sci. USA 2013, 110, 17546–17551. [Google Scholar] [CrossRef]
- Schutte, S.S.; Schutte, R.J.; Barragan, E.V.; O’Dowd, D.K. Model systems for studying cellular mechanisms of SCN1A-related epilepsy. J. Neurophysiol. 2016, 115, 1755–1766. [Google Scholar] [CrossRef]
- Meng, H.; Xu, H.Q.; Yu, L.; Lin, G.W.; He, N.; Su, T.; Shi, Y.W.; Li, B.; Wang, J.; Liu, X.R.; et al. The SCN1A mutation database: Updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum. Mutat. 2015, 36, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wolking, S.; Lehmann-Horn, F.; Hedrich, U.B.; Freilinger, T.; Lerche, H.; Borck, G.; Kubisch, C.; Jurkat-Rott, K. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 2016, 36, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Pellacani, S.; Sicca, F.; Di Lorenzo, C.; Grieco, G.S.; Valvo, G.; Cereda, C.; Rubegni, A.; Santorelli, F.M. The Revolution in Migraine Genetics: From Aching Channels Disorders to a Next-Generation Medicine. Front. Cell Neurosci. 2016, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Le Fort, D.; Safran, A.B.; Picard, F.; Bouchardy, I.; Morris, M.A. Elicited repetitive daily blindness: A new familial disorder related to migraine and epilepsy. Neurology 2004, 63, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Vanmolkot, K.R.; Babini, E.; de Vries, B.; Stam, A.H.; Freilinger, T.; Terwindt, G.M.; Norris, L.; Haan, J.; Frants, R.R.; Ramadan, N.M.; et al. The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: Genetic and functional studies. Mutation in brief #957. Online. Hum. Mutat. 2007, 28, 522. [Google Scholar] [CrossRef] [PubMed]
- Auffenberg, E.; Hedrich, U.; Lerche, H.; Dichgans, M.; Plesnila, N.; Freilinger, T. A novel mouse model for familial hemiplegic migraine type 3 reveals increased susceptibility for cortical spreading depression. Cephalalgia 2017, 37, 206. [Google Scholar]
- Jansen, N.A.; Dehghani, A.; Linssen, M.M.L.; Breukel, C.; Tolner, E.A.; van den Maagdenberg, A. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. Ann. Clin. Transl. Neurol. 2020, 7, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Rispoli, M.G.; Di Stefano, V.; Mantuano, E.; De Angelis, M.V. Novel missense mutation in the ATP1A2 gene associated with atypical sporapedic hemiplegic migraine. BMJ Case Rep. 2019, 12, e231129. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, M.A.; Bolay, H.; Dalkara, T. Deciphering Migraine Mechanisms: Clues from Familial Hemiplegic Migraine Genotypes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; Volume 55, pp. 276–280. [Google Scholar]
- Suzuki-Muromoto, S.; Kosaki, R.; Kosaki, K.; Kubota, M. Familial hemiplegic migraine with a PRRT2 mutation: Phenotypic variations and carbamazepine efficacy. Brain Dev. 2020, 42, 293–297. [Google Scholar] [CrossRef]
- Ferrari, M.D.; Goadsby, P.J.; Burstein, R.; Kurth, T.; Ayata, C.; Charles, A.; Ashina, M.; van den Maagdenberg, A.; Dodick, D.W. Migraine. Nat. Rev. Dis. Primers 2022, 8, 2. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Saffari, A.; Westenberger, A.; Klein, C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 2015, 138, 3476–3495. [Google Scholar] [CrossRef] [PubMed]
- Riant, F.; Roze, E.; Barbance, C.; Meneret, A.; Guyant-Marechal, L.; Lucas, C.; Sabouraud, P.; Trebuchon, A.; Depienne, C.; Tournier-Lasserve, E. PRRT2 mutations cause hemiplegic migraine. Neurology 2012, 79, 2122–2124. [Google Scholar] [CrossRef]
- Riant, F.; Roos, C.; Roubertie, A.; Barbance, C.; Hadjadj, J.; Auvin, S.; Baille, G.; Beltramone, M.; Boulanger, C.; Cahn, A.; et al. Hemiplegic Migraine Associated with PRRT2 Variations: A Clinical and Genetic Study. Neurology 2022, 98, e51–e61. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, A.R.; Jaffer, F.; Dale, R.C.; Labrum, R.; Erro, R.; Meyer, E.; Xiromerisiou, G.; Stamelou, M.; Walker, M.; Kullmann, D.; et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015, 138, 3567–3580. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, N.; de Vries, B.; Kamphorst, J.T.; Vijfhuizen, L.S.; Ferrari, M.D.; Haan, J.; van den Maagdenberg, A.M.; Terwindt, G.M. PRRT2 and hemiplegic migraine: A complex association. Neurology 2014, 83, 288–290. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.; van den Maagdenberg, A.; Terwindt, G.M. Advance in genetics of migraine. Curr. Opin. Neurol. 2019, 32, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Valente, P.; Castroflorio, E.; Rossi, P.; Fadda, M.; Sterlini, B.; Cervigni, R.I.; Prestigio, C.; Giovedi, S.; Onofri, F.; Mura, E.; et al. PRRT2 Is a Key Component of the Ca2+-Dependent Neurotransmitter Release Machinery. Cell Rep. 2016, 15, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.C.; Gardiner, A.; Branson, J.A.; Houlden, H. Benefit of Carbamazepine in a Patient with Hemiplegic Migraine Associated with PRRT2 Mutation; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2014; Volume 56, p. 910. [Google Scholar]
- Jen, J.C.; Wan, J.; Palos, T.P.; Howard, B.D.; Baloh, R.W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005, 65, 529–534. [Google Scholar] [CrossRef]
- Kovermann, P.; Hessel, M.; Kortzak, D.; Jen, J.C.; Koch, J.; Fahlke, C.; Freilinger, T. Impaired K(+) binding to glial glutamate transporter EAAT1 in migraine. Sci. Rep. 2017, 7, 13913. [Google Scholar] [CrossRef]
- Suzuki, M.; Van Paesschen, W.; Stalmans, I.; Horita, S.; Yamada, H.; Bergmans, B.A.; Legius, E.; Riant, F.; De Jonghe, P.; Li, Y.; et al. Defective membrane expression of the Na+-HCO3− cotransporter NBCe1 is associated with familial migraine. Proc. Natl. Acad. Sci. USA 2010, 107, 15963–15968. [Google Scholar] [CrossRef]
- Maksemous, N.; Harder, A.V.; Ibrahim, O.; Vijfhuizen, L.S.; Sutherland, H.; Pelzer, N.; de Boer, I.; Terwindt, G.M.; Lea, R.A.; van den Maagdenberg, A.M. Whole Exome Sequencing of Hemiplegic Migraine Patients Shows an Increased Burden of Missense Variants in CACNA1H and CACNA1I Genes. Mol. Neurobiol. 2023, 60, 3034–3043. [Google Scholar] [CrossRef] [PubMed]
- Colson, N.J.; Fernandez, F.; Lea, R.A.; Griffiths, L.R. The search for migraine genes: An overview of current knowledge. Cell. Mol. Life Sci. 2007, 64, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.L.; Oestergaard, E.; Bjornsson, A.; Stefansson, H.; Fasquel, A.C.; Gulcher, J.; Stefansson, K.; Olesen, J. Screen for CACNA1A and ATP1A2 mutations in sporadic hemiplegic migraine patients. Cephalalgia 2008, 28, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, W.; Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 2008, 40, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Cox, N.J. The allelic architecture of human disease genes: Common disease–common variant… or not? Hum. Mol. Genet. 2002, 11, 2417–2423. [Google Scholar] [CrossRef] [PubMed]
- Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [Google Scholar] [CrossRef] [PubMed]
- Witte, J.S. Genome-wide association studies and beyond. Annu. Rev. Public Health 2010, 31, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Hindorff, L.A. A Catalog of Published Genome-Wide Association Studies. 2009. Available online: http://www.genome.gov/26525384 (accessed on 11 March 2024).
- Lee, J.C.; Parkes, M. Genome-wide association studies and Crohn’s disease. Brief. Funct. Genom. 2011, 10, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef]
- Schork, N.J.; Murray, S.S.; Frazer, K.A.; Topol, E.J. Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 2009, 19, 212–219. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Witte, J.S.; Visscher, P.M.; Wray, N.R. The contribution of genetic variants to disease depends on the ruler. Nat. Rev. Genet. 2014, 15, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An expanded view of complex traits: From polygenic to omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G. Rare and common variants: Twenty arguments. Nat. Rev. Genet. 2012, 13, 135–145. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; Balasubramanian, S.; Frankish, A.; Huang, N.; Morris, J.; Walter, K.; Jostins, L.; Habegger, L.; Pickrell, J.K.; Montgomery, S.B. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012, 335, 823–828. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.A.; Beaudoin, M.; Gardet, A.; Stevens, C.; Sharma, Y.; Zhang, C.K.; Boucher, G.; Ripke, S.; Ellinghaus, D.; Burtt, N. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 2011, 43, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012, 488, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Bjornsdottir, G.; Chalmer, M.A.; Stefansdottir, L.; Skuladottir, A.T.; Einarsson, G.; Andresdottir, M.; Beyter, D.; Ferkingstad, E.; Gretarsdottir, S.; Halldorsson, B.V. Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura. Nat. Genet. 2023, 55, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.R.; Wegmann, D.; Ehm, M.G.; Kessner, D.; Jean, P.S.; Verzilli, C.; Shen, J.; Tang, Z.; Bacanu, S.-A.; Fraser, D. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 2012, 337, 100–104. [Google Scholar] [CrossRef]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.B.; Buckingham, K.J.; Lee, C.; Bigham, A.W.; Tabor, H.K.; Dent, K.M.; Huff, C.D.; Shannon, P.T.; Jabs, E.W.; Nickerson, D.A. Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 2010, 42, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.B.; Bigham, A.W.; Buckingham, K.J.; Hannibal, M.C.; McMillin, M.J.; Gildersleeve, H.I.; Beck, A.E.; Tabor, H.K.; Cooper, G.M.; Mefford, H.C. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 2010, 42, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Sassi, C.; Guerreiro, R.; Gibbs, R.; Ding, J.; Lupton, M.; Troakes, C.; Al-Sarraj, S.; Niblock, M.; Gallo, J.; Adnan, J.; et al. Investigating the role of rare coding variability in Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in late-onset Alzheimer’s disease. Neurobiol. Aging 2014, 35, e1–e2881. [Google Scholar] [CrossRef] [PubMed]
- Lange, L.A.; Hu, Y.; Zhang, H.; Xue, C.; Schmidt, E.M.; Tang, Z.-Z.; Bizon, C.; Lange, E.M.; Smith, J.D.; Turner, E.H. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am. J. Hum. Genet. 2014, 94, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.; Sutton, G.; Ng, P.C.; Feuk, L.; Halpern, A.L.; Walenz, B.P.; Axelrod, N.; Huang, J.; Kirkness, E.F.; Denisov, G. The diploid genome sequence of an individual human. PLoS Biol. 2007, 5, e254. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.A.; Srinivasan, M.; Egholm, M.; Shen, Y.; Chen, L.; McGuire, A.; He, W.; Chen, Y.-J.; Makhijani, V.; Roth, G.T. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Conrad, D.F.; Andrews, T.D.; Carter, N.P.; Hurles, M.E.; Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 2006, 38, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Girirajan, S.; Campbell, C.D.; Eichler, E.E. Human copy number variation and complex genetic disease. Annu. Rev. Genet. 2011, 45, 203–226. [Google Scholar] [CrossRef]
- Özaltun, M.F.; Geyik, S.; Yılmaz, Ş.G. Screening for copy number variations of the 15q13. 3 hotspot in CHRNA7 gene and expression in patients with migraines. Curr. Issues Mol. Biol. 2021, 43, 1090–1113. [Google Scholar] [CrossRef] [PubMed]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Pu, M.; Messer, K. AbsCN-seq: A statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data. Bioinformatics 2014, 30, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.L.; Cibulskis, K.; Helman, E.; McKenna, A.; Shen, H.; Zack, T.; Laird, P.W.; Onofrio, R.C.; Winckler, W.; Weir, B.A. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 2012, 30, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Renault, V.; Tost, J.; Pichon, F.; Wang-Renault, S.-F.; Letouze, E.; Imbeaud, S.; Zucman-Rossi, J.; Deleuze, J.-F.; How-Kit, A. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations. PLoS ONE 2017, 12, e0189334. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wen, Y.; Guo, X.; Li, Z.; Dai, J.; Ni, B.; Yu, J.; Lin, Y.; Zhou, W.; Yao, B. A screen for genomic disorders of infertility identifies MAST2 duplications associated with nonobstructive azoospermia in humans. Biol. Reprod. 2015, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chen, S.; Ullah, A.; Xue, H. AluScanCNV2: An R package for copy number variation calling and cancer risk prediction with next-generation sequencing data. Genes. Dis. 2019, 6, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, Z.; Cai, Y.; Chen, T.; Li, C.; Fu, W.; Jiang, Y. CNVcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 2017, 6, gix115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, Z. CNVannotator: A comprehensive annotation server for copy number variation in the human genome. PLoS ONE 2013, 8, e80170. [Google Scholar] [CrossRef]
- Smith, L.P.; Yamato, J.A.; Kuhner, M.K. CNValidator: Validating somatic copy-number inference. Bioinformatics 2019, 35, 2660. [Google Scholar] [CrossRef]
- Xie, C.; Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009, 10, 80. [Google Scholar] [CrossRef]
- Onsongo, G.; Baughn, L.B.; Bower, M.; Henzler, C.; Schomaker, M.; Silverstein, K.A.; Thyagarajan, B. CNV-RF is a random forest–based copy number variation detection method using next-generation sequencing. J. Mol. Diagn. 2016, 18, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Zhang, J.-G.; Deng, H.-W.; Wang, Y.-P. Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS ONE 2013, 8, e59128. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, P.; Fiume, M.; Dzamba, M.; Smith, T.; Brudno, M. Detecting copy number variation with mated short reads. Genome Res. 2010, 20, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Nakamura, Y.; Tsunoda, T. An algorithm for inferring complex haplotypes in a region of copy-number variation. Am. J. Hum. Genet. 2008, 83, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.; Wu, Q.; Li, H. A statistical method for identifying trait-associated copy number variants. Hum. Hered. 2015, 79, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Sathirapongsasuti, J.F.; Lee, H.; Horst, B.A.; Brunner, G.; Cochran, A.J.; Binder, S.; Quackenbush, J.; Nelson, S.F. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics 2011, 27, 2648–2654. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Myšičková, A.; Sun, R.; Kalscheuer, V.; Vingron, M.; Haas, S.A. Modeling read counts for CNV detection in exome sequencing data. Stat. Appl. Genet. Mol. Biol. 2011, 10, 1–30. [Google Scholar] [CrossRef]
- Chen, G.K.; Chang, X.; Curtis, C.; Wang, K. Precise inference of copy number alterations in tumor samples from SNP arrays. Bioinformatics 2013, 29, 2964–2970. [Google Scholar] [CrossRef]
- Conrad, D.F.; Pinto, D.; Redon, R.; Feuk, L.; Gokcumen, O.; Zhang, Y.; Aerts, J.; Andrews, T.D.; Barnes, C.; Campbell, P. Origins and functional impact of copy number variation in the human genome. Nature 2010, 464, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Helbig, I.; Mefford, H.C.; Sharp, A.J.; Guipponi, M.; Fichera, M.; Franke, A.; Muhle, H.; De Kovel, C.; Baker, C.; Von Spiczak, S. 15q13. 3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 2009, 41, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Mefford, H.C.; Sharp, A.J.; Baker, C.; Itsara, A.; Jiang, Z.; Buysse, K.; Huang, S.; Maloney, V.K.; Crolla, J.A.; Baralle, D. Recurrent rearrangements of chromosome 1q21. 1 and variable pediatric phenotypes. N. Engl. J. Med. 2008, 359, 1685–1699. [Google Scholar] [CrossRef]
- Greenway, S.C.; Pereira, A.C.; Lin, J.C.; DePalma, S.R.; Israel, S.J.; Mesquita, S.M.; Ergul, E.; Conta, J.H.; Korn, J.M.; McCarroll, S.A. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat. Genet. 2009, 41, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Nagamani, S.C.S.; Erez, A.; Shen, J.; Li, C.; Roeder, E.; Cox, S.; Karaviti, L.; Pearson, M.; Kang, S.-H.L.; Sahoo, T. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12. Eur. J. Hum. Genet. 2010, 18, 278–284. [Google Scholar] [CrossRef]
- Rice, A.M.; McLysaght, A. Dosage-sensitive genes in evolution and disease. BMC Biol. 2017, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Gillentine, M.A.; Schaaf, C.P. The human clinical phenotypes of altered CHRNA7 copy number. Biochem. Pharmacol. 2015, 97, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Szafranski, P.; Schaaf, C.P.; Person, R.E.; Gibson, I.B.; Xia, Z.; Mahadevan, S.; Wiszniewska, J.; Bacino, C.A.; Lalani, S.; Potocki, L. Structures and molecular mechanisms for common 15q13. 3 microduplications involving CHRNA7: Benign or pathological? Hum. Mutat. 2010, 31, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Lakich, D.; Kazazian Jr, H.H.; Antonarakis, S.E.; Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat. Genet. 1993, 5, 236–241. [Google Scholar] [CrossRef]
- Small, K.; Iber, J.; Warren, S.T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat. Genet. 1997, 16, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Giglio, S.; Calvari, V.; Gregato, G.; Gimelli, G.; Camanini, S.; Giorda, R.; Ragusa, A.; Guerneri, S.; Selicorni, A.; Stumm, M. Heterozygous submicroscopic inversions involving olfactory receptor–gene clusters mediate the recurrent t (4; 8)(p16; p23) translocation. Am. J. Hum. Genet. 2002, 71, 276–285. [Google Scholar] [CrossRef] [PubMed]
- McCarroll, S.A.; Huett, A.; Kuballa, P.; Chilewski, S.D.; Landry, A.; Goyette, P.; Zody, M.C.; Hall, J.L.; Brant, S.R.; Cho, J.H. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet. 2008, 40, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- The GIANT Consortium. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009, 41, 25–34. [Google Scholar] [CrossRef] [PubMed]
- De Cid, R.; Riveira-Munoz, E.; Zeeuwen, P.L.; Robarge, J.; Liao, W.; Dannhauser, E.N.; Giardina, E.; Stuart, P.E.; Nair, R.; Helms, C. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 2009, 41, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-L.; Chen, X.-D.; Guo, Y.; Lei, S.-F.; Wang, J.-T.; Zhou, Q.; Pan, F.; Chen, Y.; Zhang, Z.-X.; Dong, S.-S. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am. J. Hum. Genet. 2008, 83, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Lupski, J.R. Molecular mechanisms for genomic disorders. Annu. Rev. Genom. Hum. Genet. 2002, 3, 199–242. [Google Scholar] [CrossRef] [PubMed]
- Feuk, L.; Carson, A.R.; Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 2006, 7, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Korbel, J.O.; Urban, A.E.; Affourtit, J.P.; Godwin, B.; Grubert, F.; Simons, J.F.; Kim, P.M.; Palejev, D.; Carriero, N.J.; Du, L. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007, 318, 420–426. [Google Scholar] [CrossRef]
- Yoon, S.; Xuan, Z.; Makarov, V.; Ye, K.; Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009, 19, 1586–1592. [Google Scholar] [CrossRef]
- Hajirasouliha, I.; Hormozdiari, F.; Alkan, C.; Kidd, J.M.; Birol, I.; Eichler, E.E.; Sahinalp, S.C. Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics 2010, 26, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Korbel, J.O.; Abyzov, A.; Mu, X.J.; Carriero, N.; Cayting, P.; Zhang, Z.; Snyder, M.; Gerstein, M.B. PEMer: A computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009, 10, R23. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P. BreakDancer: An algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 2009, 6, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Handsaker, R.E.; Korn, J.M.; Nemesh, J.; McCarroll, S.A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 2011, 43, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.J.; Leal, S.M. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010, 6, e1001156. [Google Scholar] [CrossRef] [PubMed]
- Asimit, J.; Zeggini, E. Rare variant association analysis methods for complex traits. Annu. Rev. Genet. 2010, 44, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Price, A.L.; Kryukov, G.V.; de Bakker, P.I.; Purcell, S.M.; Staples, J.; Wei, L.-J.; Sunyaev, S.R. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet. 2010, 86, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Leal, S.M. Discovery of rare variants via sequencing: Implications for the design of complex trait association studies. PLoS Genet. 2009, 5, e1000481. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, E.T.; Lasseigne, B.N.; Petrovski, S.; Sapp, P.C.; Dion, P.A.; Leblond, C.S.; Couthouis, J.; Lu, Y.-F.; Wang, Q.; Krueger, B.J. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015, 347, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Leal, S.M. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data. Am. J. Hum. Genet. 2008, 83, 311–321. [Google Scholar] [CrossRef]
- Madsen, B.E.; Browning, S.R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009, 5, e1000384. [Google Scholar] [CrossRef] [PubMed]
- Consortium, H.I. A haplotype map of the human genome. Nature 2005, 437, 1299–1320. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.R.; Jackson, A.U.; Fogarty, M.P.; Buchkovich, M.L.; Stančáková, A.; Stringham, H.M.; Sim, X.; Yang, L.; Fuchsberger, C.; Cederberg, H. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat. Genet. 2013, 45, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, S.; Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST). Mutat. Res./Fundam. Mol. Mech. Mutagen. 2007, 615, 28–56. [Google Scholar] [CrossRef] [PubMed]
- Neale, B.M.; Rivas, M.A.; Voight, B.F.; Altshuler, D.; Devlin, B.; Orho-Melander, M.; Kathiresan, S.; Purcell, S.M.; Roeder, K.; Daly, M.J. Testing for an unusual distribution of rare variants. PLoS Genet. 2011, 7, e1001322. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wu, M.C.; Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 2012, 13, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Ladouceur, M.; Dastani, Z.; Aulchenko, Y.S.; Greenwood, C.M.; Richards, J.B. The empirical power of rare variant association methods: Results from sanger sequencing in 1998 individuals. PLoS Genet. 2012, 8, e1002496. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 2011, 89, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Pan, W. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol. Off. Publ. Int. Genet. Epidemiol. Soc. 2009, 33, 497–507. [Google Scholar] [CrossRef]
- Derkach, A.; Lawless, J.F.; Sun, L. Robust and powerful tests for rare variants using Fisher’s method to combine evidence of association from two or more complementary tests. Genet. Epidemiol. 2013, 37, 110–121. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, Y.; Hsu, L. A unified mixed-effects model for rare-variant association in sequencing studies. Genet. Epidemiol. 2013, 37, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.; Jin, J. Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 2004, 32, 962–994. [Google Scholar] [CrossRef]
- Barnett, I.; Mukherjee, R.; Lin, X. The generalized higher criticism for testing SNP-set effects in genetic association studies. J. Am. Stat. Assoc. 2017, 112, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Li, Z.; Morrison, A.C.; Boerwinkle, E.; Lin, X. ACAT: A fast and powerful p value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 2019, 104, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, J.; Silk, M.; Wang, Q.; Berkovic, S.F.; Liu, L.; Ascher, D.B.; Balding, D.J.; Petrovski, S. Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. Genome Res. 2017, 27, 1715–1729. [Google Scholar] [CrossRef] [PubMed]
- Hayeck, T.J.; Stong, N.; Wolock, C.J.; Copeland, B.; Kamalakaran, S.; Goldstein, D.B.; Allen, A.S. Improved pathogenic variant localization via a hierarchical model of sub-regional intolerance. Am. J. Hum. Genet. 2019, 104, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Rödelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef]
- Fujita, P.A.; Rhead, B.; Zweig, A.S.; Hinrichs, A.S.; Karolchik, D.; Cline, M.S.; Goldman, M.; Barber, G.P.; Clawson, H.; Coelho, A. The UCSC genome browser database: Update 2011. Nucleic Acids Res. 2010, 39, D876–D882. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Harrow, J.; Harte, R.A.; Wallin, C.; Diekhans, M.; Maglott, D.R.; Searle, S.; Farrell, C.M.; Loveland, J.E.; Ruef, B.J. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009, 19, 1316–1323. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Humburg, P.; Kanapin, A.; Rivas, M.A.; Gaulton, K.; Cazier, J.-B.; Donnelly, P. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 2014, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Loveland, J.E.; Gilbert, J.G.; Griffiths, E.; Harrow, J.L. Community gene annotation in practice. Database 2012, 2012, bas009. [Google Scholar] [CrossRef] [PubMed]
- Wilming, L.G.; Gilbert, J.G.; Howe, K.; Trevanion, S.; Hubbard, T.; Harrow, J.L. The vertebrate genome annotation (Vega) database. Nucleic Acids Res. 2007, 36, D753–D760. [Google Scholar] [CrossRef] [PubMed]
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57. [Google Scholar] [CrossRef] [PubMed]
- Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22, 1760–1774. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The ensembl variant effect predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Leslie, E.J.; Taub, M.A.; Liu, H.; Steinberg, K.M.; Koboldt, D.C.; Zhang, Q.; Carlson, J.C.; Hetmanski, J.B.; Wang, H.; Larson, D.E. Identification of functional variants for cleft lip with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted sequencing of GWAS loci. Am. J. Hum. Genet. 2015, 96, 397–411. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Weisburd, B.; Thomas, B.; Solomonson, M.; Ruderfer, D.M.; Kavanagh, D.; Hamamsy, T.; Lek, M.; Samocha, K.E.; Cummings, B.B. The ExAC browser: Displaying reference data information from over 60,000 exomes. Nucleic Acids Res. 2017, 45, D840–D845. [Google Scholar] [CrossRef]
- Pennisi, E. Breakthrough of the year. Human genetic variation. Science 2007, 318, 1842–1843. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Okser, S.; Pahikkala, T.; Airola, A.; Salakoski, T.; Ripatti, S.; Aittokallio, T. Regularized machine learning in the genetic prediction of complex traits. PLoS Genet. 2014, 10, e1004754. [Google Scholar] [CrossRef] [PubMed]
- Enoma, D.O.; Bishung, J.; Abiodun, T.; Ogunlana, O.; Osamor, V.C. Machine learning approaches to genome-wide association studies. J. King Saud. Univ.-Sci. 2022, 34, 101847. [Google Scholar] [CrossRef]
- Dasgupta, A.; Sun, Y.V.; König, I.R.; Bailey-Wilson, J.E.; Malley, J.D. Brief review of regression-based and machine learning methods in genetic epidemiology: The Genetic Analysis Workshop 17 experience. Genet. Epidemiol. 2011, 35, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, K.; Qu, H.-Q.; Zhang, H.; Bradfield, J.; Kim, C.; Frackleton, E.; Hou, C.; Glessner, J.T.; Chiavacci, R. From disease association to risk assessment: An optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet. 2009, 5, e1000678. [Google Scholar] [CrossRef] [PubMed]
- Kooperberg, C.; LeBlanc, M.; Obenchain, V. Risk prediction using genome-wide association studies. Genet. Epidemiol. 2010, 34, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Kraft, P.; Wacholder, S.; Cornelis, M.C.; Hu, F.B.; Hayes, R.B.; Thomas, G.; Hoover, R.; Hunter, D.J.; Chanock, S. Beyond odds ratios—Communicating disease risk based on genetic profiles. Nat. Rev. Genet. 2009, 10, 264–269. [Google Scholar] [CrossRef]
- Ashley, E.A.; Butte, A.J.; Wheeler, M.T.; Chen, R.; Klein, T.E.; Dewey, F.E.; Dudley, J.T.; Ormond, K.E.; Pavlovic, A.; Morgan, A.A. Clinical assessment incorporating a personal genome. Lancet 2010, 375, 1525–1535. [Google Scholar] [CrossRef]
- Manolio, T.A. Bringing genome-wide association findings into clinical use. Nat. Rev. Genet. 2013, 14, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 2011, 27, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Williams, S.M. Epistasis and its implications for personal genetics. Am. J. Hum. Genet. 2009, 85, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Cordell, H.J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 2009, 10, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Che, R.; Motsinger-Reif, A.A. Evaluation of genetic risk score models in the presence of interaction and linkage disequilibrium. Front. Genet. 2013, 4, 138. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Visscher, P.M.; Wray, N.R. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum. Mol. Genet. 2009, 18, 3525–3531. [Google Scholar] [CrossRef] [PubMed]
- Okser, S.; Pahikkala, T.; Aittokallio, T. Genetic variants and their interactions in disease risk prediction–machine learning and network perspectives. BioData Min. 2013, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, S.; Biernacka, J.M.; Cordell, H.J.; González-Recio, O.; König, I.R.; Zhang, H.; Sun, Y.V. Machine learning in genome-wide association studies. Genet. Epidemiol. 2009, 33, S51–S57. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Wojciechowski, R.; Sung, H.; Mathias, R.A.; Wang, L.; Klein, A.P.; Lenroot, R.K.; Malley, J.; Bailey-Wilson, J.E. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc. 2009, 3, S64. [Google Scholar] [CrossRef]
- Tang, R.; Sinnwell, J.P.; Li, J.; Rider, D.N.; de Andrade, M.; Biernacka, J.M. Identification of genes and haplotypes that predict rheumatoid arthritis using random forests. BMC Proc. 2009, 3, S68. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Witten, D.M.; Jain, P.; O’roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, A.; López-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 2011, 88, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Fay, J.C. Identification of deleterious mutations within three human genomes. Genome Res. 2009, 19, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Okser, S.; Lehtimäki, T.; Elo, L.L.; Mononen, N.; Peltonen, N.; Kähönen, M.; Juonala, M.; Fan, Y.-M.; Hernesniemi, J.A.; Laitinen, T. Genetic variants and their interactions in the prediction of increased pre-clinical carotid atherosclerosis: The cardiovascular risk in young Finns study. PLoS Genet. 2010, 6, e1001146. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Asselbergs, F.W.; Williams, S.M. Bioinformatics challenges for genome-wide association studies. Bioinformatics 2010, 26, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Pahikkala, T.; Okser, S.; Airola, A.; Salakoski, T.; Aittokallio, T. Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations. Algorithms Mol. Biol. 2012, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Behravan, H.; Hartikainen, J.M.; Tengström, M.; Pylkäs, K.; Winqvist, R.; Kosma, V.M.; Mannermaa, A. Machine learning identifies interacting genetic variants contributing to breast cancer risk: A case study in Finnish cases and controls. Sci. Rep. 2018, 8, 13149. [Google Scholar] [CrossRef]
- Jostins, L.; Barrett, J.C. Genetic risk prediction in complex disease. Hum. Mol. Genet. 2011, 20, R182–R188. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Wheeler, B.; Sampson, J.; Hartge, P.; Chanock, S.J.; Park, J.-H. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 2013, 45, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013, 9, e1003348. [Google Scholar] [CrossRef]
- Do, C.B.; Hinds, D.A.; Francke, U.; Eriksson, N. Comparison of family history and SNPs for predicting risk of complex disease. PLoS Genet. 2012, 8, e1002973. [Google Scholar] [CrossRef] [PubMed]
- Kruppa, J.; Ziegler, A.; König, I.R. Risk estimation and risk prediction using machine-learning methods. Hum. Genet. 2012, 131, 1639–1654. [Google Scholar] [CrossRef]
- Povysil, G.; Petrovski, S.; Hostyk, J.; Aggarwal, V.; Allen, A.S.; Goldstein, D.B. Rare-variant collapsing analyses for complex traits: Guidelines and applications. Nat. Rev. Genet. 2019, 20, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.J.; Locke, D.P.; McGrath, S.D.; Cheng, Z.; Bailey, J.A.; Vallente, R.U.; Pertz, L.M.; Clark, R.A.; Schwartz, S.; Segraves, R. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 2005, 77, 78–88. [Google Scholar] [CrossRef]
- Fredman, D.; White, S.J.; Potter, S.; Eichler, E.E.; Dunnen, J.T.D.; Brookes, A.J. Complex SNP-related sequence variation in segmental genome duplications. Nat. Genet. 2004, 36, 861–866. [Google Scholar] [CrossRef]
- Kaur, S.; Ali, A.; Ahmad, U.; Siahbalaei, Y.; Pandey, A.; Singh, B. Role of single nucleotide polymorphisms (SNPs) in common migraine. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 47. [Google Scholar] [CrossRef]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef]
Gene | Mutation | ID | Functional Consequences | Caused Disorders |
---|---|---|---|---|
CACNA1A | R192Q | rs121908211 | Gain of function, increased calcium influx and susceptibility to CSD and metabolic alterations. | Migraine, FHM |
S218L | rs121908225 | Gain of function, increased calcium influx in the neuro system and led to hyper excitatory neurotransmitter release in the cortex, and subsequently elevated susceptibility to CSD | FHM is implicated in epilepsy. HM, SHM, different types of seizures and cerebellar ataxia | |
E1015K | rs16024 | Altered Cav2.1 channels function and have inactivation properties, leading to a gain of function | HM, MA | |
I1512T | n/a | FHM | ||
R2157G | rs554393704 | n/a | FHM | |
T501M | rs121908240 | Gain of function, altered channel activation/inactivation process and promoted CSD. | FHM, progressive ataxia and EA2 | |
R583Q | rs121908217 | Disrupted channel activation/inactivation process. | FHM, SHM, progressive ataxia and EA2 | |
T666M, T665M | rs121908212 | Gain of function via leading to a reduction in recovery after inactivation and increased calcium influx | FHM, SHM, Progressive Cerebellar Ataxia and cerebellar dysfunction | |
I1811L | n/a | Altered P/Q-type calcium currents and accelerated recovery from inactivation | FHM, cerebellar ataxia | |
V714A | rs121908213 | Accelerated channel recovery from inactivation | FHM and cerebellar symptoms, including ataxia | |
D715E | rs121908218 | Disrupted channel inactivation process and glutametric release | FHM | |
E2080K | rs752513542 | n/a | SHM | |
P2479L | rs764648125 | n/a | SHM | |
H2481Q | rs539546830 | n/a | SHM | |
Y1384C | rs121908219 | Loss of function in Cav2.1 | FHM, SHM, coma, cerebellar ataxia, and cerebellar atrophy | |
I710T | n/a | n/a | FHM has been found to cause epilepsy, cerebral oedema, fatal coma, and seizure | |
V713M, V714M | n/a | n/a | FHM, Developmental and epileptic encephalopathy, EA2 | |
Q1673fs, Q1674fs, Q1676fs, Q1679fs | n/a | n/a | FHM, Developmental and epileptic encephalopathy, EA2, Spinocerebellar ataxia type 6 | |
A1507T, A1508T, A1511T | n/a | n/a | FHM, Developmental and epileptic encephalopathy, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
K771, K772, K775 | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
V1811I, V1808I, V1809I, V1814I | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
C281fs | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
R1779, R1780, R1782, R1785 | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
T1355N, T1356N, T1359N | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
c.3990-2A>C | n/a | n/a | Migraine, familial hemiplegic | |
R1667P, R1672P, R1666P, R1669P | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
F550fs, F551fs | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
E1212, E1211, E1215 | n/a | n/a | Migraine, familial hemiplegic | |
T1355N, T1356N, T1359N | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
V1811I, V1808I, V1809I, V1814I | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
c.978+1G>C | n/a | n/a | Migraine, familial hemiplegic | |
L1344P, L1345P, L1348P | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
V1806A, V1807A, V1809A, V1812A | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
D1316E, D1317E, D1320E | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
G700E, G701E | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
c.2017-2034del | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
L617S, L618S | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
S218P | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 | |
I1707T, I1708T, I1710T, I1713T | n/a | n/a | Developmental and epileptic encephalopathy, 52, EA2, Migraine, familial hemiplegic, Spinocerebellar ataxia type 6 |
Gene | Mutation | ID | Functional Consequences | Caused Disorders |
---|---|---|---|---|
ATP1A2 | D178N | n/a | Loss of function | FHM, increased risk of epilepsy and mental retardation |
P979L | rs121918615 | Loss of function | FHM, increased risk of epilepsy and mental retardation | |
R1007W | rs746795369 | Disruption of K+ levels in the CNS | FHM and increased susceptibility to epilepsy | |
R593W | rs886039530 | Reduced rate of the pump activity | FHM | |
V628M | rs1553245659 | Reduced rate of the pump activity | FHM | |
W887R | rs28933399 | Generation of non-functional proteins, disruption of the level of glutamate taken by glial cells, decreased clearance of K+ in the synapses and initiation of CSD | FHM and altered pain responses | |
T345M | n/a | Reduced potassium intake | FHM | |
T345A | rs121918613 | lower affinity for potassium | FHM | |
R689Q | rs28933401 | Increased potassium intake led to a reduction in the exchange rate at the cellular level. | FHM, benign familial infantile convulsion | |
M731T | rs28933400 | Increased potassium intake led to a reduction in the exchange rate at the cellular level. | FHM | |
G301R | rs121918612 | Disrupted the level of glutamate taken by glial cells | FHM | |
E700K | n/a | n/a | FHM and coma | |
L764P | rs28933398 | Generation of non-functional proteins | FHM | |
R383H | rs765909830 | n/a | FHM | |
E825K | n/a | Loss of function of the sodium-potassium pump | FHM and types of seizures | |
A606T | rs1414742926 | Loss of function of the sodium-potassium pump | FHM and epileptic seizures | |
M745I | n/a | n/a | SHM | |
R879Q | rs761597771 | n/a | SHM | |
R879W | n/a | n/a | SHM | |
Y9N | rs55858252 | n/a | SHM | |
R383H | rs765909830 | n/a | SHM | |
G615R | rs770053423 | Complete loss of function of the pump | FHM and neurological features | |
I240fs | n/a | n/a | FHM | |
P786L | n/a | n/a | FHM | |
I286fs | n/a | n/a | FHM | |
S779N | n/a | n/a | Alternating hemiplegia of childhood 1 | |
Y1009 | n/a | n/a | Epilepsy, Familial hemiplegic migraine | |
R834Q | n/a | n/a | FHM | |
G366V | n/a | n/a | FHM | |
C581 | n/a | n/a | FHM | |
T263M | n/a | n/a | FHM | |
R1002Q | n/a | n/a | FHM, Migraine, familial hemiplegic | |
V628M | n/a | n/a | FHM | |
A606T | n/a | n/a | FHM | |
G855R | n/a | n/a | FHM | |
G715R | n/a | n/a | FHM | |
R421 | n/a | n/a | FHM | |
R834 | n/a | n/a | FHM | |
V191M | n/a | n/a | FHM | |
T376R | n/a | n/a | FHM | |
T376M | n/a | n/a | FHM | |
I286T | n/a | n/a | FHM | |
R548H | n/a | n/a | FHM | |
P979L | n/a | n/a | FHM | |
T345A | n/a | n/a | Migraine, familial hemiplegic | |
G301R | n/a | n/a | Familial hemiplegic migraine | |
T378N | n/a | n/a | FHM, Alternating hemiplegia of childhood 1 | |
W887R | n/a | n/a | Migraine, familial hemiplegic | |
L764P | n/a | n/a | Migraine, familial hemiplegic | |
M731T | n/a | n/a | Migraine, familial hemiplegic | |
T378N | n/a | n/a | FHM, Alternating hemiplegia of childhood 1 | |
D718N | n/a | n/a | FHM | |
G855E | n/a | n/a | FHM | |
R421 | n/a | n/a | FHM | |
R937H | n/a | n/a | Inborn genetic diseases, FHM | |
D812H | n/a | n/a | FHM | |
R1002Q | n/a | n/a | FHM, Migraine, familial hemiplegic | |
T263M | n/a | n/a | FHM | |
Y1009 | n/a | n/a | Epilepsy, FHM | |
R937fs | n/a | n/a | Alternating hemiplegia of childhood, Migraine, familial hemiplegic | |
I630L | n/a | n/a | Migraine, familial hemiplegic | |
M829V | n/a | n/a | FHM | |
T368M | n/a | n/a | FHM | |
R202W | n/a | n/a | FHM |
Gene | Mutation | ID | Functional Consequences | Caused Disorders |
---|---|---|---|---|
SCN1A | L1649Q | n/a | Associated with a gain of function and increased action firing in the interneurons | FHM |
L263V | n/a | Increased susceptibility to CSD | FHM, epilepsy and other seizures | |
Q1489K | n/a | Overall, it causes a gain of function, leading to increased neuronal excitability and release of neurotransmitters. Some results showed a loss of function. | FHM | |
Q1489H | n/a | n/a | FHM and elicited repetitive daily blindness | |
F1499L | n/a | n/a | FHM and elicited repetitive daily blindness | |
F1774S | n/a | The overall gain of function | SHM | |
T1174S | n/a | Switch between loss and gain of function, but there is an overall loss of function impact, deceleration of recovery from fast inactivation. | FHM and epileptic seizures | |
L263Q | n/a | n/a | FHM and epileptic seizures | |
L1624P | n/a | Gain of function via decreasing fast inactivation predicts hyperexcitability. | FHM | |
I1498M | n/a | n/a | FHM | |
F1661L | n/a | n/a | FHM | |
L1670W | n/a | Gain of function via modifying the channel gate properties | FHM | |
R1613G, R1614G, R1630G, R1631G, R1642G, R828G | n/a | n/a | Migraine, familial hemiplegic | |
L1328P, L1312P, L1329P, L1340P, L1311P, L526P | n/a | n/a | Migraine, familial hemiplegic | |
L1634S, L1635S, L1652S, L1663S, L1651S, L849S | n/a | n/a | Migraine, familial hemiplegic | |
N1350I, N564I, N1349I, N1378I, N1366I, N1367I | n/a | n/a | Migraine, familial hemiplegic 3, Generalized epilepsy with febrile seizures plus, type 2, Severe myoclonic epilepsy in infancy | |
SLC1A3 | P290R | n/a | n/a | Episodic ataxia, seizures, and hemiplegia |
T387P | n/a | Disruption of the binding of potassium to EAAT1 | HM | |
SLC4A4 | S982NfsX4 | n/a | Loss of function | HM |
L522P | n/a | Loss of function due to disruption of synaptic pH | SHM and episodic ataxia |
Tool | Platform | Description | License | Credit Publication |
---|---|---|---|---|
CNVkit | Python | Detection and visualisation of CNVs. Mainly for WES data | Free | The National Institutes of Health [157]. |
AbsCN-seq | R | Detection of CNVs in NGS data | Free | The National Institutes of Health [158]. |
ABSOLUTE | R | Detection of CNVs and multiplicity of mutations in NGS data | Free for non-commercial use | The National Cancer Institute, the National Human Genome Research Institute, the National Institute of Health, National Research Service Award [159]. |
aCNViewer | Docker, R, Python | Visualisation of CNVs and loss of heterozygosity in tumour samples | Free | Community of developers [160]. |
Affy6CNV | R, Perl, C++ | Pipeline for calling CNVs from Affymetrix genotyping data. | Free | Community of developers [161]. |
AluScanCNV2 | R | Calling CNVs from NGS data | Free | Private developers, University grants Hong Kong SAR [162]. |
CNVcaller | Python, Perl | Detection of CNVs in large populations. | Free | The National Natural Science Foundation of China, the National Thousand Youth Talents Plan [163]. |
CNVannotator | Web-based | Annotation of CNVs | Free | The National Institutes of Health, the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation, Ingram Professorship Funds [164]. |
CNValidator | Python | Evaluation of the correctness of copy number calls. | Free | The National Institutes of Health (NIH) [165]. |
CNV-seq | R, Perl | Estimation of CNVs, a statistical approach for CNVs assessment | Free | National University of Singapore [166]. |
CNV-RF | Perl, R | Detection of CNVs in NGS data | Free | thya0003_at_umn.edu [167]. |
CNVeM | C | Detection of CNVs | Free | The National Toxicology Program and National Institute of Environmental Health Sciences [168]. |
CNVer | C, C++ | Detection of CNVs | Free | cnver_at_cs.toronto.edu [169]. |
CNVnator | C++ | Discovery and characterisation of CNVs | Free | The US National Institutes of Health [170] |
CNVphaser | Perl | Detection of CNVs | Free for non-commercial use | Grants-in-Aid for Scientific Research (jsps.go.jp) [171]. |
CNVtest | R | Testing CNVs association based on log-ratio data of SNP arrays | Free | The US National Institutes of Health [172]. |
ExomeCNV | R | Detection of CNVs and loss of heterozygosity | Free | The US National Institutes of Health [173]. |
exomeCopy | R | Detection of CNVs from exome data | Free | European Union’s Seventh Framework Program [174]. |
PennCNV2 | C++ | Detection of CNVs from SNP arrays and NGS data | Free | kai_at_openbioinformatics.org [175]. |
Gene- or Region-Based Tests | ||||
---|---|---|---|---|
Test | Design | Strengths | Limitations | Tools |
Burden tests: ARIEL, CAST, CMC, MZ, WSS | They all collapse genetic variants into single scores | Powerful and accurate when most variants are causal and have the same direction of effect | Less powerful when the number of causal variants is small and/or some variants increase disease risk and others decrease disease risk | EPACTS, GRANVIL, PLINK/SEQ, RVTESTS, SCORE-SEQ, SKAT, VAT |
Adaptive burden tests: aSum, Step-up, EREC test, VT, KBAC, RBT | Use weights from the adaptive burden test. | More robust compared to other tests that aggregate information, use predetermined thresholds | Require intense computational power | EPACTS, KBAC, PLINK/SEQ, RVTESTS, SCORE-SEQ, VAT |
SKAT, SSU, C-alpha test | Test variance of genetic effects | Contrary to burden tests, they are powerful when the number of causal variants is small, and most variants do not have the same direction of effect as the trait. | They lose power when most variants are causal and their effects have the same direction. | EPACTS, PLINK/SEQ, SCORE-SEQ, SKAT, VAT |
Joint tests: SKAT-O, Fisher method, MiST | Burden tests are combined. | Reserve power regardless of the number of causal variants and the direction of effect | Power decreases when the underlying assumption of either test is true. The Fisher method requires intense computation. | EPACTS, PLINK/SEQ, MiST, SKAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfayyadh, M.M.; Maksemous, N.; Sutherland, H.G.; Lea, R.A.; Griffiths, L.R. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes 2024, 15, 443. https://doi.org/10.3390/genes15040443
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes. 2024; 15(4):443. https://doi.org/10.3390/genes15040443
Chicago/Turabian StyleAlfayyadh, Mohammed M., Neven Maksemous, Heidi G. Sutherland, Rod A. Lea, and Lyn R. Griffiths. 2024. "Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches" Genes 15, no. 4: 443. https://doi.org/10.3390/genes15040443
APA StyleAlfayyadh, M. M., Maksemous, N., Sutherland, H. G., Lea, R. A., & Griffiths, L. R. (2024). Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes, 15(4), 443. https://doi.org/10.3390/genes15040443