Next Article in Journal
Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders
Next Article in Special Issue
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ × Acipenser baerii ♀)
Previous Article in Journal
RNF213 Polymorphisms in Intracranial Artery Dissection
Previous Article in Special Issue
Effects of Long-Term Cryopreservation on the Transcriptomes of Giant Grouper Sperm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species

by
Svetlana Yu. Orlova
1,
Maria N. Ruzina
1,
Olga R. Emelianova
1,2,
Alexey A. Sergeev
1,
Evgeniya A. Chikurova
1,
Alexei M. Orlov
3,4,5 and
Nikolai S. Mugue
1,6,*
1
Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia
2
Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
3
Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
4
Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
5
Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
6
Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
*
Author to whom correspondence should be addressed.
Genes 2024, 15(6), 726; https://doi.org/10.3390/genes15060726
Submission received: 24 April 2024 / Revised: 28 May 2024 / Accepted: 29 May 2024 / Published: 1 June 2024
(This article belongs to the Special Issue Genetic Studies of Fish)

Abstract

:
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.

1. Introduction

Wild aquatic bioresources are an important source of animal protein and micronutrients worldwide, especially for human populations in coastal regions. From 1961 to 2019, global fisheries’ product consumption increased from 9.0 to 20.5 kg live-weight equivalent per capita. In 2020, this figure declined to 20.2 kg. With ever-increasing demand, total fishery and aquaculture production is increasing. In 1950, it was 19 million tonnes live-weight equivalent; in 2018, it reached a historic high of about 179 million tonnes [1], and in 2020 total fisheries and aquaculture production was 178 million tonnes [2]. Aquaculture is the controlled production of aquatic organisms, an important part of agriculture. In 2020, this sector produced 99 million tonnes, or 56% of the total food production from aquatic animals available for human consumption. In comparison, this proportion was only 4% in 1970 [2]. In 2018, the industry employed about 20.5 million people worldwide [1]; in 2022, it employed 58.5 million people [2]. Due to the COVID-19 pandemic, commercial aquaculture faced changes in consumer demand, market disruptions, and logistical difficulties. The industry is now recovering from the crisis. FAO predicts that due to continued population growth and dietary diversification, there will be an increase in demand for food products. By 2030, total fisheries and aquaculture production is predicted to reach 202 million tonnes, of which 106 million tonnes will come from aquaculture [2].
Aquaculture production can be increased through the genetic improvement of farmed species [3]. Today, highly productive strains of rainbow trout [4], Atlantic salmon [5], Nile tilapia (Oreochromis niloticus) [6], and common carp [7] already exist. In the future, new strains and lines can be created using traditional selective breeding, genomic selection methods, as well as biotechnology methods (polyploidization, genetic modification, and genome editing). Genome editing with CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system is highlighted as one of the aquaculture technologies of the future.
For aquaculture, genes that determine economically valuable traits such as growth, development, pigmentation, sex determination, reproductive ability, fatty acid synthesis, and disease resistance can be edited [8,9,10,11,12,13,14,15,16]. These review articles cited the underlying work on editing such genes in a fairly wide range of artificially bred species.
In practical activity, the choice of a gene for editing that determines a desirable phenotype is crucial. It is important to understand which genes’ knockout or modification will lead to the expression of the target trait, and which genes may lead to undesirable effects. The functions of many genes have been studied in the model species zebrafish and several aquaculture species. This review is intended to help researchers navigate the diversity of work on genome editing in fishes. To facilitate the perception of diverse and disparate information on the issues under consideration, we have compiled a table indicating the edited gene, mutant phenotype, and detected gene function for each fish species. In this review, we consider work carried out on key Salmonidae and Cyprinidae fish species, including the model species zebrafish and important aquaculture fish, including rainbow trout, Atlantic salmon, common carp, goldfish, and Gibel carp. In this review, we identify the results of gene editing studies that are the most promising for aquaculture. We also provide general information on the principles of genome editing in fish.

2. Genome Editing in Salmonidae and Cyprinidae Aquaculture Fish Species

2.1. Initial Studies on the Application of Genome Editing in Fish

Fish genome editing is often used in basic research to decipher the functions of individual genes and elucidate evolutionary mechanisms at the molecular level. Fish, which are evolutionarily related to “higher” vertebrates, provide important model systems for the study of genetic and evolutionary patterns. Effective gene editing requires knowledge of the genome, and the development of high-throughput sequencing technology has facilitated the sequencing of more than two hundred fish genomes [17].
From 2008 to 2013, the ZFN, TALEN, and CRISPR/Cas9 systems were successfully applied to zebrafish [18,19,20]. This marked the first successful gene editing in fish, and the application of ZFN and TALEN on the yellow catfish (Tachysurus fulvidraco) (2011) [21] was the first instance of gene editing in an aquaculture fish. In 2014, the CRISPR/Cas9 method was successfully applied to edit the genes of Nile tilapia [22] and Atlantic salmon [23]. Subsequently, gene-editing technology has been successfully applied to other economically important species such as common carp [24], grass carp (Ctenopharyngodon Idella) [25], and tongue sole (Cynoglossus semilaevis) [26]. These systems allow a wide range of applications, including efficient gene knockout and functional studies of sex, growth, development, and immunity and selection for disease resistance, stress tolerance, and rapid growth. The application of gene editing technology in fish is actively developing and can be used to develop new aquaculture breeds in the long term [13].
Today, CRISPR/Cas9 technology is most often used to edit fish genomes. According to PubMed article database statistics (https://pubmed.ncbi.nlm.nih.gov/, accessed on 28 May 2024), ZFN technology was more frequently used for zebrafish before 2008 and TALEN in 2008–2013, and CRISPR/Cas9 method became dominant after 2014 (Figure 1).

2.2. Zebrafish as a Model Object in Studies Using Genome Editing

Over the past forty years, zebrafish has been a widely used model organism for studies of vertebrate development and disease, as well as for the development of molecular genetic techniques. Studies in genetics and experimental embryology have complemented each other, resulting in significant advances in understanding of the regulation of embryo formation, organogenesis, and nervous system development. Research using this model system has expanded into various areas of molecular biology, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish is a popular experimental model because of the ease with which they can be grown and reproduced, the short generation time, their small size, the low cost, the ability to produce hundreds of embryos daily, the transparency of eggs and larvae, and the speed of development during the early stages of ontogeny. Importantly, uncomplicated protocols can be developed for this system that can be reproduced by laboratory personnel with any level of experience, including students [27,28]. An analysis of articles in the PubMed database showed that the zebrafish is frequently used in genome editing experiments to create models of not only human disease and behavior but also economically valuable traits, with most work focusing on the functions of specific genes.
Zebrafish is valuable as a model system not only because of the convenience of working with it but also because about 70% of human genes have at least one specific ortholog in the genome of this fish species [29]. Existing interspecies differences (e.g., human, mouse, zebrafish) have been extensively investigated, including for mechanisms of nucleic acid repair following genome editing. Cas9-induced mutations are generally considered stochastic and unpredictable, making the method difficult to apply where precise genetic changes are required. However, through a systematic approach and analysis of the results of genome editing of multiple sites in four different species (human and mouse cells, domestic silk moth (Bombyx mori) and zebrafish), Cas9-induced mutations were found to be similar in mutation types but significantly different in patterns [30].
In creating disease models, known mutations in genes that cause particular genetic syndromes in humans are obtained, such as muscle laminopathy [31], Charlevoix-Saguenay spastic ataxia [32], Marfan syndrome [33], Sanfilippo syndrome [34], Joubert syndrome [35], Bernard-Soulier syndrome [36], Xia-Gibbs syndrome [37], Lee syndrome [38], Laron syndrome [39], Aicardi-Gutierrez syndrome [40], Finnish-type nephrotic syndrome [41], fragile cornea syndrome [42], multicentric carpotarsal osteolysis syndrome [43], Bietti crystalline dystrophy [44], sarcoglycanopathy [45], autosomal recessive microcephaly [46], sphingolipidosess [47], and mitochondrial diseases caused by polg gene mutations [48].
Another approach to modeling is to simulate the symptoms of the target disease through mutations in genes with known function. Individuals and lines have been created that exhibit analogs of human somatic diseases such as cataract [49,50], myopia [51], exfoliative syndrome [52], retinal dysfunction [53,54], congenital heart defect [55], cardiac hypertrophy [56], dilated cardiomyopathy [57], arrhythmia [58], autoinflammatory syndrome [59], metabolic syndrome [60], diabetes and obesity [61], tuberculosis [62], thrombocytopenia [63], pediatric intestinal pseudoobstruction [64], pediatric cirrhosis [65], congenital hypothyroidism [66], fatty or alcoholic hepatosis [67], and scoliosis [68,69]. Genome editing has been used to model human tumors such as liver cancer [70], paraganglioma [71], skin melanoma [72], and epithelioid sarcoma [73]. Among neurologic diseases, amyotrophic lateral sclerosis [74], epilepsy [75,76,77,78,79], Hirschprung’s disease [80], autism [81,82,83,84], spastic paraplegia [85], restless legs syndrome [86], insomnia [87], microcephaly [46], neurotransmitter function of dopamine [88], monoamine [89], and others [90,91]. Cleft lip and cleft palate mutants also have been tested [92]. Edited zebrafish are used to study feeding behavior [93], social behavior [94,95], hyperactivity [96], domestication patterns [97], and circadian rhythms [98]. These models are used to study the genetic basis of disease development and drug testing.
Much of the work has focused on the role of specific genes in organ formation and function, including the lens [99], retina [100,101,102], optic neurons [103,104], ocular vessels [105,106], inner ear [107,108,109,110,111], vestibular apparatus [111], otoliths [112], brain [89,113,114,115,116,117], neural tissue [118,119,120,121,122,123,124,125,126,127] and nervous system [128,129,130], heart [131,132,133,134,135,136,137,138,139], cardiomyocytes [140,141,142,143], including cardiovascular rate control [144,145], blood vessels [146,147,148,149,150], blood and formational elements [63,151,152,153,154,155,156,157,158,159,160,161], liver [162,163,164], spleen [165], pancreas [166], kidney [167], intestine [168,169]. The targets of studies include lysosomes [170,171], endoplasmic reticulum [172], membranes [173], membrane channels [174], cytoskeleton [175], recombination processes [176], aneuploidy [177], expression regulation [178], and signaling [179]. There is research on the genetic basis of the organism’s response to oxidative stress [180,181,182,183,184], hypoxia [185,186,187], sodium ion uptake from the surrounding aquatic environment and ammonia excretion [188,189,190], inflammation processes [191,192], immunity [193,194,195,196] and disease resistance [197,198,199,200,201].
The genes responsible for the economic traits of zebrafish and other fish species, such as fish growth and development, pigmentation, and sex determination, are summarized in Table S1 and are discussed in more detail below.
A number of methodological studies have been carried out on zebrafish to improve genome editing. Improving editing efficiency and minimizing side effects relative to classical gene transfer technologies are the main goals of genome editing technology. By optimizing the type and structure of Cas protein and the amount of sgRNA, researchers have developed many improved versions of genome editing technologies. The improved eSpCas9, SpCas9-HF1, and HypaCas9 were first tested on zebrafish [202,203,204]. EvoCas9 and HiFi Cas9 (Cas9 point mutation R691A), which had a low frequency of off-target bias without altering efficacy, were also tested on this species [205,206].
A protocol for the knockout of genes in zebrafish using HypaCas9 and HiFi Cas9 has been developed [207]. Scientists combined the SV40 NLS cell nucleus signaling protein with Cas12a for applications in zebrafish individuals [208]. These studies revealed that the improved Cas12a had high knockdown efficiency, and the percentages of off-target mutations and toxicity were reduced. Cas9 toxicity has been noted by many researchers [209,210,211], so the use of a less toxic Cas12a is promising. In another study, a four-guide RNAi search table for 21,386 zebrafish genes was reported using four sgRNAs and the Cas9 protein complex (four controlled anti-ribonucleoprotein (RNP) Cas9) for injection into zebrafish embryos. As a result, the knockout efficiency in the G0 generation exceeded 90%, whereas the incidence of embryo malformations was <17%. In this way, in particular, the key gene zbtb16a of heart development in zebrafish was identified [212].
It was shown in zebrafish that there is a correlation between chromatin accessibility and CRISPR-Cas9 mutagenesis efficiency. The results indicated that CRISPR-Cas9 mutagenesis is dependent on chromatin structure in embryos. Thus, the prokaryotic CRISPR-Cas9 system is affected by eukaryotic chromatin structures. The probability of successful mutagenesis in zebrafish embryos correlates with transcript abundancy during early development [213].
The efficiency of microinjection is one of the key factors affecting the success of gene-editing technology in fish. Microinjections into fish embryos are difficult because the eggs are sticky and the hard chorion impedes the insertion of microinjection needle. Mucus also readily adheres to the tip of the needle and causes mechanical damage to the eggs or needle breakage, so injection efficiency and embryo survival rates are often low. It has been found that 0.25% trypsin can break down the mucus covering the egg and significantly improve microinjection efficiency [214]. As development progresses, the chorion of fish eggs gradually hardens. In addition, the high internal pressure in the egg during injection can cause the contents of the egg to leak out, which reduces the probability of embryo survival. A needle with a modified tip shape can prevent the leakage of egg contents during microinjection. A needle tip sharpened at a specific angle allows easier penetration into the chorion [215]. Further research on different conditions for handling fish eggs prior to injection is needed to improve the accuracy of the instruments and the progress of microinjection. Usually, in order to avoid the mosaicism of edited fish and minimize the number of traumatic punctures of the eggs, microinjections are carried out at the stage of one- and two-cell embryos. However, modern methods allow microinjections to be carried out up to the four-cell stage [216].
The new CRISPR activation system (CRISPRa) has been tested on zebrafish. It is a convenient tool for activating target genes. It was developed and combined with an illumination-based system that can time- and localization-dependently control transcription initiation using a photoreceptor derived from the plant thale cress (Arabidopsis thaliana). The blue light photoreceptor cryptochrome-2 (CRY2) and its binding partner CIB1 form a dimer when exposed to blue light. Researchers activated zebrafish genes using the activators p65 and VP64 in ZF4-type zebrafish cells. The study confirmed the successful control of gene transcription levels using this system. The mRNA expression levels of the ASCL1a, BCL6a, and HSP70 genes increased after irradiation with blue light for several hours and were significantly different from those treated in the dark [217].
Various life activities of organisms are closely related to the precise regulation of gene expression. Gene knockout provides a simple and efficient method to study gene expression and identify gene function. However, using a single genome-editing technology to solve biological problems has certain limitations. The combination of genome-editing technology and multi-omics can pave the way to a better understanding of gene function. Gene knockout can indicate the functional significance of genes identified by multi-omic analysis, and, in turn, multi-omics can characterize mutant effects at different molecular levels (such as transcription level or protein level), including the metabolic level after gene knockout. Moreover, the combination of high-throughput sequencing and gene-editing technology (mainly CRISPR/Cas9) has proven to be a good strategy for the rapid screening of functional genes on a large scale [218]. Initially, this system was applied to model organisms such as zebrafish and their cell lines [219,220].

2.3. Genome Editing and Body Development in Fish

Fish body development poses a crucial economic implication, particularly in relation to the formation of the fish skeleton. To enhance the marketable quality of fish products, it is advisable to reduce the number of bones within the skeletal muscle.
In zebrafish, genes such as hoxb5b [221], foxc1a, foxc1b [222], bmp7a [223], and gne [224] play pivotal roles in establishing symmetry along the central axis of the body. Knocking out these genes results in compromised dorsal–abdominal axis formation, abnormalities in organ arrangement, defects in visceral organ development, and embryonic mortality. Further details, including the type of editing system, mutant phenotypes, and protein annotations for the mentioned genes, can be found in Table S1. The data presented here and below on gene functions were processed using genome editing methods. High embryo lethality may also be linked to impaired organogenesis and immunity, as evidenced by mutants in knockout genes such as LOC795232 [225], sphk1 [226], asap1a, asap1b [227], and zrsr2 [228]. The regulation of cartilage and bone formation, bone mineralization, and osteoblast differentiation involves sox9 [229], vwa1 [230], tmem38b [231], ppp2r3b [68], col11a2 [69], and wnt16 [232] genes. In common carp, the sp7a gene serves a similar function [24]. The deactivation of these genes results in severe pathologies affecting tissue formation, structure-forming cartilage and bones, collagen synthesis impairment, fin deformation, and compromised bone repair after injuries.
The genes wnt16 [233], hoxaa, hoxab, hoxba, hoxca, hoxda, [234], bmp2a, bmp2b [235], and nkx3.2 [175] control the development of the spine, skull, and fins. Mutants for these genes exhibited significant deformities in body shape. The formation of the skull and cranial body pole organs is mediated by the mosmoa, mosmob [236], scxa, scxb [237], cyp1b1 [238], and hspa8 [239] genes. Genes such as stat3 [240], kif7 [241], and gdf5 [242] are responsible for spine development. All this work was carried out on the model object zebrafish.
To enhance the marketable quality of fish products, obtaining mutants for the knockout variant of the runx2b gene [243] shows promise. It controls the development of small muscle ossicles–spicules in the myoseptae (connective tissue partitions between skeletal muscle segments). These mutants lack spicules in the myoseptae, and the bone mineral density, growth, and swimming behavior of the fish remain unimpaired. Similar work was performed on Gibel carp [244].

2.4. Genome Editing and Growth Traits in Fish

Growth encompasses traits related to fish skeletal muscle formation, body size, glucose metabolism, thyroid hormones, insulin, leptin, polyunsaturated fatty acid synthesis, and feeding behavior. All these traits play a pivotal role in enhancing the quality of aquaculture fish products, increasing product yield, and optimizing feed amount and composition.
The control of muscle cells, skeletal muscle, and muscle contractility in zebrafish is governed by genes such as ik [245], foxm1 [210,246], dyrk1b [246], vcp [247], and tpcn1 [248]. The disruption of these genes results in a reduction in the number of muscle cells, impaired differentiation, compromised neuromuscular contacts, and deterioration of skeletal and cardiac musculature.
Knocking out genes like katnal2 [81], smc5 [249], stat5.1 [250] in zebrafish and igfbp-2b1, igfbp-2b2 [251,252] in rainbow trout led to the development of smaller fish compared to unedited individuals. Notable progress has been made with the knockout of myostatin-2 gene, a negative regulator of muscle tissue growth in common carp [24,253]. Mutants of the mstnba gene grow larger than unedited individuals, exhibiting both hyperplasia and hypertrophy of muscle tissue. Similar studies have been conducted on yellow catfish [21,254], channel catfish (Ictalurus punctatus) [255], olive flounder (Paralichthys olivaceus) [256] medaka (Oryzias latipes) [257], and Nile tilapia [258]. The popularity of editing this gene is not surprising, as it gives rise to a beneficial mutation that improves fish marketability. A similar effect is caused by gene pomc knockout [259]—an increased body weight due to more intense muscle formation without signs of obesity—and the acvr2 gene knockout [260]—hypertrophy of muscle fibers, increased muscle growth and body weight. Both these genes are also promising for use in agriculture.
Thyroid hormones play a crucial role in stimulating the growth and development of organisms by intensifying energy metabolism. The disruption of the genes encoding these hormones by genome editing technology made it possible to clarify their function. The greb1 gene, responsible for the formation of somatotropic, thyroid, lactotropic, and gonadotropic secretory cells in embryogenesis [261], exhibits high embryo mortality when knocked out. Silencing genes such as tshba, tg, slc16a2 [262], duox [263], tpo [66], isl2a, and isl2b [117] also play a crucial role in thyroid hormone production. Mutants in these genes display significant defects in thyroid gland and organ development, decreased synthesis of thyroid hormones, and growth retardation.
Studies on zebrafish have explored the role of leptin, insulin, and genes regulating their function in shaping feeding behavior, maintaining glucose homeostasis, and managing energy metabolism. Two research groups found an influence of leptin lepb and its receptor lepr genes on these traits [264,265], but another group found no such influence [266]. In rainbow trout, the knockout of the leptin receptor gene resulted in a hyperphagic phenotype, increased body weight, and rapid growth [93]. Further investigations are needed to fully comprehend the role of leptin and its receptor in shaping feeding behavior and obesity. The knockout of genes such as rfx6 [267], akr1a1a [268], igf1 [269], rreb1a, rreb1b [270], and glo2 [271] in zebrafish resulted in decreased insulin synthesis and impaired glucose homeostasis, underscoring the importance of these genes in maintaining normal sugar and energy metabolism.
Genes such as nur77 [272], pparγ [273], phlpp1 [274], and cygb1 [275] influence fat metabolism, cholesterol, and triglyceride accumulation. Notably, the knockout of the phlpp1 gene leads to a decrease in total cholesterol and triglyceride levels, reducing their accumulation in vessel walls. In the context of fats, genes responsible for double-chain polyunsaturated fatty acid (DC-PUFA) synthesis in zebrafish include elovl8a, fads2 [276,277], and in Atlantic salmon, fads2, Δ6abc/5Mt, and Δ6bcMt [278,279]. Obtaining fish with a desired DC-PUFA content in fillets holds significance for aquaculture. These studies contribute to understanding the mechanism of fatty acid synthesis, particularly in response to food composition [278,279].
In zebrafish, the role of the t1r1 gene of taste receptor type 1 in fish food behavior has been investigated [280]. Mutants with a knockout variant of this gene lose sensitivity to alanine, causing the fish to readily switch to a plant-based diet. On such a diet, the expression of the gene encoding satiety peptides increases in fish, while the synthesis of hunger peptides decreases.

2.5. Genome Editing Affecting Fish Pigmentation

Bony fishes exhibit diverse and colorful pigment patterns. To date, eight different pigment cell types have been identified in the skin of bony fishes, originating from the neural crest. The multipotency of neural crest cells and the diversity of pigment cells in fishes make them an ideal model for studying the formation, differentiation, and migration of different pigment cell types. Additionally, colorful ornamental fishes, such as koi carp and farm-raised fish with vibrant body colors have higher market value, prompting the application of genome-editing technologies in studies investigating fish pigmentation. Moreover, changes in pigmentation are a ready marker for the success of a genome-editing protocol, which makes these genes a convenient target for testing the method [281].
Zebrafish possess three types of pigment cells: black melanophores (accumulating melanin), orange xanthophores (accumulating carotenoids), and iridophores (containing silver and gold pigments or structures). The migration of pigment cell precursors from the neural crest to the site of differentiation is regulated by the pcdh10a and pcdh10b genes [282], which are responsible for intercellular contacts. Genes related to thyroid hormones and their receptors, such as tg, scarb1, tyr, thraa, thrab, and thrb, also play a crucial role in pigmentation formation. They direct the cell cycle of melanophores toward final differentiation and stimulate xanthophores to accumulate carotenoids [283]. Mutants for the sox10 gene knockout variant do not develop any pigment cells, and in double mutants for sox10 and sox5, normal cell differentiation is partially restored, making the sox10 gene essential for the coloration of zebrafish. Interestingly, in the Japanese medaka, the operation of these two genes is completely opposite [284]. The formation of melanophores and xanthophores is regulated by a group of genes, including pax3a, pax3b, pax7a, pax7b [285]. Carotenoid accumulation in xanthophores is controlled by the plin6 [286] and scarb1 [287] genes. Proper iridophore formation is regulated by the genes alk, ltk, alkal1 (aug-α1, aug-α2), alkal2 (aug-β) [288], and edn3a, edn3b, and ednrb1a [289].
In Atlantic salmon, unpigmented mutants were obtained by deactivating the tyr and slc45a2 genes [23]. Several genes responsible for melanin synthesis and melanophore distribution, including asip1, asip2 [290], mc1r [291], and tyrp1 [292], were identified in the colored Oujiang carp. In the goldfish, the tyrosinase gene tyr is responsible for melanin synthesis, similar to other fishes [293].
For the convenience of microscopy scientists, non-pigmented, completely immobile zebrafish was created by knocking out the slc45a2 and chrna genes [294]. Such fish are suitable for study with light optics, as they do not require fixation and lack interfering body coloration.
Dorso-ventral counter shading, the difference in coloration between the dark dorsum and light belly, is an important characteristic of fish pigmentation. Gene knockout studies have established that the mc1r [295] and asip1 [296] genes are responsible for this pigment cell distribution

2.6. Genome Editing and Sex Determination in Fishes

Sex determination is difficult to understand in many fish species, and its function may depend on genetics, embryogenesis, and endocrinology. Many genes have been found to co-regulate the process of sex determination. Significant dimorphism in the size of males and females is observed in at least twenty aquaculture fish species [297]. The study of sexual differentiation is thus an important research topic in aquaculture fishes with significant dimorphism. For commercial production, it is economically advantageous to raise fish of the same sex with a higher growth rate or larger size.
Zebrafish have no dimorphic sex chromosomes, but there appear to be sex-determining genes. The sex ratio is influenced by environmental factors such as oxygen content in the water, water temperature, and population density [298]. Sex is determined through the differentiation of gonads, and this process depends on the balance of steroid hormones. Steroidogenesis is a key process of hormone synthesis leading to differentiation, the development and maturation of gonads, fertility, and reproduction.
The differentiation of gonads into ovaries is determined by genes for steroid hormones and their receptors. Switching off aromatase encoded by the cyp19a1a gene results in knockout zebrafish forming male gonads but retaining follicles and oocyte-like cells [299,300,301,302]. Follicle formation and the activation of follicles were impaired in mutants with the knockout of the follicle-stimulating hormone fshb and luteinizing hormone lhb genes [303], their receptors fshr and lhcgr [304], and progesterone receptor pgr [305]. A similar effect was observed in females with gsdf gene knockout [306]. Accordingly, sufficient amounts of these hormones and receptors are necessary for the normal functioning of the female reproductive system. Estrogen receptors esr2a, esr2b, and esr1 are also responsible for follicle formation and the maintenance of the female sex in adulthood. Moreover, two or three genes had to be knocked out to produce a mutant phenotype; mutants in one gene out of three did not form a mutant phenotype, suggesting that estrogen receptors are redundant in zebrafish [307]. The biosynthesis of female steroid hormones and, consequently, ovary formation and maintenance of the female sex are affected by the operation of the genes sox3 [308], inhbaa, inhbab, inhbb, bmp15, and inha [309,310].
Steroid-encoding genes are also involved in male sex determination. The amount of testosterone and 11-ketotestosterone depends on the activity of hydroxylases encoded by the cyp17a1 [311,312] and cyp11c1 [313] genes. Interestingly, all cyp17a1 gene knockout offspring were nevertheless males [311]. These data are in good agreement with studies of knockout of this gene in common carp [7], where only males were obtained in the F0. Such males were crossed with wild-type females; in the F1, only heterozygous females with normal ovaries and increased body weight were obtained. Obtaining such a unisex population of fish with good market qualities is promising for use in aquaculture.
Spermatogenesis and the formation of male secondary sexual characteristics in zebrafish occur under the control of androgen receptor ar genes [314,315,316].
The anti-Müllerian hormone can cause the regression of the Müllerian duct in mammals and is important for the differentiation of Leydig cells, as well as for the development of follicles in adult females. Zebrafish with abnormalities in the amh gene encoding this hormone were found to have hypertrophied gonads in both males and females, impaired germ cell differentiation due to excessive proliferation, and altered gene expression of other steroid hormones [317,318].
In addition to steroid hormones, other proteins influence sex determination and fertility. Females and males with the mutant of the wnt4a gene were sterile due to genital tract malformations [319]. The genes responsible for ovarian differentiation, oocyte maturation, and folliculogenesis are myoc [320], egf, egfra, egfrb [321], nobox [322], parn [323], ambra1b [324], scg2a, scg2b [325], avp [326], and bmp15 [300,310]. Disruptions in the latter two genes affected, among other things, the mating behavior of fish. In Gibel carp, oogenesis, folliculogenesis, and gonad differentiation occurred under the control of the genes cgfoxl2a-B, cgfoxl2b-A, and cgfoxl2b-B [327]. The correct function of the dmrt1 gene is critical for proper differentiation and maintenance of sperm viability in zebrafish [318,328]. The sdY gene is responsible for testes formation in male rainbow trout [329,330].
Genes whose knockout stops both oocyte and sperm development, namely mettl3 [331] and dnd [332], were found in zebrafish. Transcripts of these genes are critical for the formation of normal gametes. The knockout of the dnd gene with the same result was also obtained in rainbow trout [333] and Atlantic salmon [281].
Gene knockout also was used to show the role of vitellogenin proteins (vtg1, 3, 4, 5) of various forms in the production of mutant zebrafish. When the genes responsible for their synthesis were blocked, various phenotypic manifestations (reduced fecundity of females, impaired maturation of eggs, edema of the pericardium and yolk sac, and spinal lordosis and impaired locomotor activity in larvae), as well as compensatory mechanisms not previously observed, were observed. These results provided evidence that different types of vtg proteins in vertebrates fulfill different essential functions during both reproduction and embryonic development. Interestingly, vtg1 mutants had an increased number of eggs, although the larvae died due to multiple developmental defects during late developmental stages [334]. Defective eggs with disrupted pineal structures in the shell are formed in mutants of the stm gene [335].

2.7. Gene Editing and Disease Resistance in Fishes

Viral and bacterial infections of fish are often responsible for significant economic losses in aquaculture. The study of disease-resistance factors in fish is an emerging area of agricultural genetics. The use of conventional breeding methods for this purpose has a number of limitations. For example, inbreeding effects accumulate rapidly in small populations of disease-resistant animals. Such populations can become a reservoir for newly emerging infections. Unfortunately, under these conditions, there is also a significant possibility that when resistance to a target pathogen emerges, susceptibility to another pathogen will develop. In addition, specimens selected for breeding may be carriers of a pathogen, such as a virus, and transmit it to their progeny [336]. Gene editing promises to overcome these limitations.
Recently, works investigating the function of genes involved in disease resistance by knockout using the CRISPR/Cas system have begun to appear. Of the species under consideration, such works have been performed only on the model object zebrafish.
A series of works is devoted to the study the functions of genes involved in the immune response reaction. The gpr56 gene coordinates the expression of other immune response genes and digestive enzyme genes [193]. The socs3b, mitfa, CD18, and lcp1 genes control the morphology, number, or migration of neutrophils and macrophages to the site of inflammation [154,159,194,195]. Knockout mutants of the fam76b gene produce hyperinflammation in response to antigen activity [337]. The stat5.1 gene controls T-cell lymphopoiesis and fish growth [196]. Switching off all these genes leads to impaired immune response, defects of immune cell development, an increase in their number, impaired functionality, incorrect migration when non-target organs are infiltrated, and inadequately bright inflammation in response to pathogen activity.
The role of two zebrafish genes in resistance to viral diseases was studied using the CRISPR/Cas9 method: the viperin gene in relation to the viral hemorrhagic septicemia virus [197] and the rrm1 gene in relation to the nervous necrosis virus [338]. In both cases, mutants showed greater susceptibility to viruses than wild-type fish. Hence, both of these genes determine resistance to their respective diseases. The prmt7 gene determines susceptibility to spring viraemia of carp virus (SVCV) and grass carp reovirus (GCRV) [339]. The knockout of it is promising for use in aquaculture. In Asian sea bass (Lates calcarifer), the gab3 susceptibility gene for nervous necrosis virus was detected. gab3 plays an important role in virus replication, and its suppression leads to lower virus titers in infected fish and increased survival during infection [340]. A susceptibility gene for grass carp reovirus has been found in grass carp [25]. In the grass carp kidney cell line with gcJAM-A gene knockout, the cytopathogenic effect of the virus was reduced. The gab3 genes in Asian sea bass and gcJAM-A in grass carp are candidates for genomic editing.
For some bacterial infections, resistance genes have also been found in zebrafish. And knockout of them is not desirable. The sting [199] and tnf-α1 [341] genes are responsible for resistance to Edwardsiella piscicida, crp for resistance to Streptococcus pneumoniae [200], and cxc3.3 for resistance to Mycobacterium spp. [342]. At the same time, the cxc3.2 gene determines susceptibility to these bacteria [342]. The itln3 gene is neutral with respect to mycobacteria [62]. It is likely that the specificity of the above resistance genes to bacterial infections is broader than to a single bacterial species. Studies are needed to verify this. In channel catfish, the myostatin gene was found to mediate susceptibility to Edwardsiella ictalurid [343]. The knockout of this gene in aquaculture fish may be of interest.

3. Overcoming Technical Difficulties in Applying Genetic Engineering Approaches in Aquaculture

Genome editing requires a clear and reliable knowledge of the genome of a species; however, data on the genomes of aquatic species are still scarce, although many of the genomes of the most important aquatic animals have been sequenced [344]. Since the study of the first sequenced fish species tiger puffer (Takifugu rubripes) in 2002, which is a significant achievement in recent decades [345], the genomes of more than one hundred fish species have been decoded due to advances in sequencing technology and a relative decrease in sequencing costs. However, the number of such species is still small compared to the total number of species used in aquaculture, which according to FAO exceeds six hundred [1]. Therefore, the application of CRISPR/Cas in aquaculture would benefit from further refinement of databases.
Another important challenge for scientists is to study the functional role of genes associated with important phenotypic traits. Since the genetic study of aquatic organisms lags behind that of humans and plants, it is necessary to identify genes associated with specific traits. It is also important that the further development of genome-editing technologies requires a reduction in the cost of sequencing (preferably to less than ten dollars per sample). This will lead to more species-specific genomes of aquatic animals being decoded in the future, which in turn will provide the necessary information base for future studies on the application of genomic editing [13].
The process of identifying target genes through quantitative trait locus (QTL) mapping or using genetic markers is a time-consuming process. Although re-sequencing technology is now facilitating it, a polygenically determined trait still makes it difficult to accurately identify candidate genes [13]. Improvements in molecular biology methods (e.g., QTL mapping, genome-wide association studies (GWASs) dedicated to detecting variants at genomic loci that are associated with complex traits in the population, comparative genomics, and pooled CRISPR screens, which are a synthesis of large-scale libraries of sgRNA for functional genetic screens) will lead to the identification of more genes associated with the traits under study [346]. On the other hand, individual specific alleles responsible for favorable traits for species and lines should also be considered as candidates for refining genome-editing techniques.
Chromosomal duplication in fish also creates difficulties in working with their genomes. Among aquatic vertebrates, fishes represent the taxonomic group with the largest number of species. Many bony fish species are characterized by whole-genome duplications [347]. The mechanism by which genome-editing efficiency is reduced in polyploid fishes is currently under debate [251,279,348,349]. To clarify this issue, a comparison of different copies of genes within the genome is required for the further efficient application of genomic editing.
It should also be noted that the shell of the egg reduces microinjection success. Despite advances in technology, due to the different biological characteristics of fishes, there is no single standardized protocol for them with a universal needle type, injection dosage, etc. For ovoviviparous fishes, no single platform for gene editing has been developed at present either [13].
Another problem with genome editing is the presence of off-target effects when editing loci that are not targets of manipulation but contain a sequence similar to that of the target gene to which the gRNA of the editing complex binds. Options for preventing or detecting off-target mutations include careful design of annealing RNA by comparison with existing genome assemblies or by screening for unplanned mutations after editing. Regarding the latter, natural genetic variability across families and lineages makes off-target mutations difficult to detect after editing [9].
When working with traits involving the expression of several genes, the simultaneous creation of multigenic knockout mutants using CRISPR/Cas provides the possibility of inducing the desired phenotype. Great technical successes have been achieved for some fish species with the production of various genetically modified (GM) lines, especially Atlantic salmon and Nile tilapia. These species should be used as “aquaculture models” for optimization of CRISPR/Cas protocols and potential off-target effects (for food quality and safety assessment). Knowledge gained from this approach can also be utilized in other fish species [13].
In several aquaculture species, the intergenerational interval is quite long (they tend not to spawn every year) or the full lifecycle cannot be completed in captivity, which makes the detection of edited individuals with homozygous genotype during genome editing very laborious. A possible solution to the problem is to combine genome editing with surrogacy technology to reduce the generation interval or marine phase by using the xenogenic transplantation of germ cells [350].
Individuals that are not capable of producing offspring are thought to be most suitable for maintenance after genome editing for two main reasons. First, the maturation of the gonads consumes a large amount of resources and body energy, which negatively affects the quality of the final aquaculture product. Also, mature animals become more susceptible to disease and stress [351]. Second, when escaping into the environment, sterile animals will not interbreed with wild populations or affect their genetic diversity, and their progeny will not displace wild species from their habitats, even if aquaculture animals have an ecological advantage [352,353]. However, it requires additional effort to maintain heterozygous individuals to sustain the population.
There are several strategies for obtaining sterile fish [354,355]. The first technologies were medical—gonadectomy, exposure to high doses of radiation, feeding or incubation in media with high concentrations of synthetic androgens, and hyperthermia [355]. These have subsequently been supplanted by genetic technologies.
The most common of these is triploidization. For example, triploid Atlantic salmon are produced by applying high hydrostatic pressure to newly fertilized eggs, which leads to the preservation of the second polar body in the egg division, the non-disjunction of chromosomes, and the preservation of two sets of chromosomes from the mother and one from the father in the embryo [356]. Triploids can also be obtained by exposing the cell to colchicine or cytochalasin B at the time of division [357]. In rainbow trout, triploids are obtained by crossing tetraploids and diploids [358]. Triploid salmon are inferior to diploid salmon in terms of their properties: they are smaller in size and poorer in marketability, and they survive in artificial breeding conditions [359]. It may be difficult to use triploids in aquaculture in the future [355].
Sterile offspring also occur in some cases in interspecific hybrids. Such hybrids have a potential heterosis effect, showing improved traits inherited from both parents. However, fish hybrids have not shown increased productivity, and many have been shown to be fertile [360,361,362,363].
There are systems that induce silencing by antisense RNAs of sterility-inducing genes with the possibility of their subsequent activation. The gonadotropin-releasing hormone gene GnRH is often used as a target [364]. Silencing of the dead-end dnd gene with morpholino [365] or Gal4/UAS system [366,367] has also been developed. Potentially, the induced expression of suicide genes or toxalbumin, Diphtheria toxin in fish germinal cells could be used to generate sterility. A disadvantage of this approach is that toxins can accumulate in the body of the fish and then be released into the environment or be potentially harmful to the consumer [354]. Another unsafe method is the use of the Ntr/Met system, which is based on the conversion of metronidazole to cytotoxin using the enzyme nitroreductase. The expression of nitroreductase is controlled by a gonad-specific promoter, and metronidazole is supplied to cultivation water [368,369]. Finally, a nifty tet-on/off system for reversible sterility induction has been developed wherein fish are sterile under normal conditions and become fertile in the presence of tetracycline [370].
The above methods of sterility formation in fish require their genetic modification or transgenesis. This goal can also be achieved by genomic editing. Candidate genes include wnt4a, which leads to sterility in both males and females due to defects in reproductive tract development [319], mettl3 [331], and dnd [332], whose knockout mutants do not form germ cells. Homozygous females with pgr gene knockout and lhb [303] and male double mutants for the fshr and lhcgr genes [304] are also sterile.

4. Conclusions

Genome editing technology is applicable to a large number of fish species and can contribute not only to basic research but also to the realization of useful traits in farmed fish species [371].
An important task in improving economically valuable traits of fish using genome editing is the choice of the target gene. In an ideal situation, it should influence one discrete trait, cause a minimal off-target effect, and form the desired mutant phenotype. While the first two problems can be more or less solved bioinformatically or using modern improved CRISPR/Cas systems, it is still difficult to predict the mutant phenotype. Table S1 allows us to navigate the variety of work already completed in the gene editing of Salmonidae and Cyprinidae species and facilitate target gene selection.
Fish with knockouts of the following genes may be the most promising for use in aquaculture. Work on common carp has shown that mutants of the myostatin gene mstnba have large bodies with increased muscle cell number [24,253]. A similar effect is caused by the knockout of the genes pomc [259] and acvr2 [260] in zebrafish. Experiments on zebrafish and Gibel carp allow fish to be obtained without smaller intramuscular bones in the myoseptae of muscles, the formation of which is driven by the runx2b gene [243]. The disruption of the leptin receptor gene lepr allows the formation of a hyperphagic phenotype, leading to the accelerated growth of fish. [304,306]. The technologies under consideration make it possible to obtain Atlantic salmon with a programmable content of DC-PUFAs in the meat [278,279]. Producing large heterozygous females from the offspring of cyp17a1 knockout fathers and wild-type mothers is promising [7] for common carp. Also of interest are absolutely sterile mutants of the dnd gene. Such experiments have been performed on zebrafish [332], rainbow trout [333], and Atlantic salmon [281]. Pioneering work to restore germ cells in dnd knockout mutants was performed [372]. In order to achieve this paradoxical goal, the investigation introduced full-length stabilized mRNA of the dnd gene into embryos at the time of editing. The restored dnd gene had mutations, but immature gametes were formed in such fish. By developing this approach, it is possible to obtain dnd-/- mutants without crossing heterozygous parents but directly from genetically sterile fish. Studies using rainbow trout revealed that dnd mutants without their own gametes can act as recipients of gametes from wild relatives [333], providing a surrogate parent useful for conservation applications. Sterile fish should be obtained by knockout mettl3 [331] and wnt4a [319] genes. Investigations were performed on zebrafish.
Work on zebrafish has shown that fish with reduced pigmentation and motility with the slc45a2 and chrna1 genes turned off can be useful for laboratory experiments [294].
Also of interest is the knockout of disease susceptibility genes—prmt7 in relation to Spring viraemia of carp virus and Grass carp reovirus [339], work was performed on zebrafish; gab3 in relation to Nervous necrosis virus [336], work was performed on Asian sea bass; gcJAM-A to Grass carp reovirus [25] in grass carp, mstnb to Edwardsiella ictalurid [343] in channel catfish, and cxc3.2 to Mycobacterium spp. [342] in zebrafish.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/genes15060726/s1, Table S1 “Summary of fish genome editing experiments affecting genes controlling economically valuable traits”.

Author Contributions

Conceptualization, N.S.M. and S.Y.O.; investigation, S.Y.O., M.N.R., O.R.E., A.A.S., E.A.C., A.M.O. and N.S.M.; writing—original draft preparation, S.Y.O., M.N.R., O.R.E., A.A.S., E.A.C., A.M.O. and N.S.M.; writing—review and editing, A.M.O., M.N.R. and N.S.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by The Ministry of Science and Higher Education of Russian Federation: 075-15-2021-1084 (contract: # 15.IP.21.0010).

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors want to express gratitude to S.A. Bruskin from VIGG RAS (Moscow) for comments on the first draft of the MS, and two anonymous reviewers for valuable comments and suggestions that allowed for improvement of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. The State of Food and Agriculture 2020; FAO: Rome, Italy, 2020.
  2. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022.
  3. Mair, G.; Lucente, D. What are “farmed types” in aquaculture and why do they matter? FAO Aquac. Newsl. 2020, 61, 40–42. [Google Scholar]
  4. Donaldson, L.R.; Olson, P.R. Development of rainbow trout brood stock by selective breeding. Trans. Am. Fish. Soc. 1957, 85, 93–101. [Google Scholar] [CrossRef]
  5. Thodesen, J.; Gjedrem, T. Breeding programs on Atlantic salmon in Norway: Lessons learned . RePec 2006, 22–26. Available online: https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/1861/WF_2455.pdf?sequence=1&isAllowed=y (accessed on 28 May 2024).
  6. Ponzoni, R.W.; Nguyen, N.H.; Khaw, H.L.; Hamzah, A.; Bakar, K.R.A.; Yee, H.Y. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work wonducted by the WorldFish Center with the GIFT srain. Rev. Aquac. 2011, 3, 27–41. [Google Scholar] [CrossRef]
  7. Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful production of an all-female common carp (Cyprinus carpio L.) population using cyp17a1-deficient neomale carp. Engineering 2022, 8, 181–189. [Google Scholar] [CrossRef]
  8. Yang, Z.; Yu, Y.; Tay, Y.X.; Yue, G.H. Genome editing and its applications in genetic improvement in aquaculture. Rev. Aquac. 2022, 14, 178–191. [Google Scholar] [CrossRef]
  9. Blix, T.B.; Dalmo, R.A.; Wargelius, A.; Myhr, A.I. Genome editing on finfish: Currents and implications for sustainability. Rev. Aquac. 2021, 13, 2344–2363. [Google Scholar] [CrossRef]
  10. Chuang, Y.-F.; Phipps, A.J.; Lin, F.-L.; Hecht, V.; Hewitt, A.W.; Wang, P.-Y.; Liu, G.-S. Approach for in vivo delivery of CRISPR/Cas system: A recent update and future prospect. Cell. Mol. Life Sci. 2021, 78, 2683–2708. [Google Scholar] [CrossRef] [PubMed]
  11. Lu, J.; Fang, W.; Huang, J.; Li, S. The Application of genome editing technology in fish. Mar. Life Sci. Technol. 2021, 3, 326–346. [Google Scholar] [CrossRef] [PubMed]
  12. Roy, S.; Kumar, V.; Behera, B.K.; Parhi, J.; Mohapatra, S.; Chakraborty, T.; Das, B.K. CRISPR/Cas Genome Editing—Can It Become a Game Changer in Future Fisheries Sector? Front. Mar. Sci. 2022, 9, 924475. [Google Scholar] [CrossRef]
  13. Okoli, A.S.; Blix, T.; Myhr, A.I.; Xu, W.; Xu, X. Sustainable use of CRISPR/Cas in fish aquaculture: The biosafety perspective. Transgenic Res. 2022, 31, 1–21. [Google Scholar] [CrossRef]
  14. Iqbal, G.; Quyoom, N.; Singh, L.S.; Ganpatbhai, A.V.K.; Bhat, N.M.; Gul, S.; Malik, M.A.; Mohanty, A.; Mir, S.A.; Dar, S.A. Genome editing technology in fishes. Curr. Appl. Sci. Technol. 2023, 42, 20–26. [Google Scholar] [CrossRef]
  15. Gutási, A.; Hammer, S.E.; El-Matbouli, M.; Saleh, M. Review: Recent applications of gene editing in fish species and aquatic medicine. Animals 2023, 13, 1250. [Google Scholar] [CrossRef] [PubMed]
  16. Mokrani, A.; Liu, S. Harnessing CRISPR/Cas9 system to improve economic traits in aquaculture species. Aquaculture 2024, 579, 740279. [Google Scholar] [CrossRef]
  17. Yang, L.; Xu, Z.; Zeng, H.; Sun, N.; Wu, B.; Wang, C.; Bo, J.; Li, L.; Dong, Y.; He, S. FishDB: An integrated functional genomics database for fishes. BMC Genom. 2020, 21, 801. [Google Scholar] [CrossRef] [PubMed]
  18. Doyon, Y.; McCammon, J.M.; Miller, J.C.; Faraji, F.; Ngo, C.; Katibah, G.E.; Amora, R.; Hocking, T.D.; Zhang, L.; Rebar, E.J.; et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 2008, 26, 702–708. [Google Scholar] [CrossRef] [PubMed]
  19. Sander, J.D.; Cade, L.; Khayter, C.; Reyon, D.; Peterson, R.T.; Joung, J.K.; Yeh, J.-R.J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 2011, 29, 697–698. [Google Scholar] [CrossRef] [PubMed]
  20. Jao, L.-E.; Wente, S.R.; Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA 2013, 110, 13904–13909. [Google Scholar] [CrossRef] [PubMed]
  21. Dong, Z.; Ge, J.; Li, K.; Xu, Z.; Liang, D.; Li, J.; Li, J.; Jia, W.; Li, Y.; Dong, X.; et al. Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE 2011, 6, e28897. [Google Scholar] [CrossRef] [PubMed]
  22. Li, M.; Yang, H.; Zhao, J.; Fang, L.; Shi, H.; Li, M.; Sun, Y.; Zhang, X.; Jiang, D.; Zhou, L.; et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 2014, 197, 591–599. [Google Scholar] [CrossRef] [PubMed]
  23. Edvardsen, R.B.; Leininger, S.; Kleppe, L.; Skaftnesmo, K.O.; Wargelius, A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 2014, 9, e108622. [Google Scholar] [CrossRef] [PubMed]
  24. Zhong, Z.; Niu, P.; Wang, M.; Huang, G.; Xu, S.; Sun, Y.; Xu, X.; Hou, Y.; Sun, X.; Yan, Y.; et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 2016, 6, 22953. [Google Scholar] [CrossRef] [PubMed]
  25. Ma, J.; Fan, Y.; Zhou, Y.; Liu, W.; Jiang, N.; Zhang, J.; Zeng, L. Efficient resistance to Grass Carp Reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish. Shellfish. Immunol. 2018, 76, 206–215. [Google Scholar] [CrossRef] [PubMed]
  26. Cui, Z.; Liu, Y.; Wang, W.; Wang, Q.; Zhang, N.; Lin, F.; Wang, N.; Shao, C.; Dong, Z.; Li, Y.; et al. Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci. Rep. 2017, 7, 42213. [Google Scholar] [CrossRef] [PubMed]
  27. Holtzman, N.G.; Iovine, M.K.; Liang, J.O.; Morris, J. Learning to fish with genetics: A primer on the vertebrate model Danio rerio. Genetics 2016, 203, 1069–1089. [Google Scholar] [CrossRef] [PubMed]
  28. Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 2019, 9, 68–77. [Google Scholar] [CrossRef] [PubMed]
  29. Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
  30. Chang, J.; Chen, X.; Zhang, T.; Wang, R.; Wang, A.; Lan, X.; Zhou, Y.; Ma, S.; Xia, Q. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. Int. J. Biol. Macromol. 2020, 163, 711–717. [Google Scholar] [CrossRef] [PubMed]
  31. Nicolas, H.A.; Hua, K.; Quigley, H.; Ivare, J.; Tesson, F.; Akimenko, M. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev. Dynam 2022, 251, 645–661. [Google Scholar] [CrossRef] [PubMed]
  32. Naef, V.; Marchese, M.; Ogi, A.; Fichi, G.; Galatolo, D.; Licitra, R.; Doccini, S.; Verri, T.; Argenton, F.; Morani, F.; et al. Efficient neuroprotective rescue of sacsin-related disease phenotypes in zebrafish. Int. J. Mol. Sci. 2021, 22, 8401. [Google Scholar] [CrossRef] [PubMed]
  33. Yin, X.; Hao, J.; Yao, Y. CRISPR/Cas9 in zebrafish: An attractive model for FBN1 genetic defects in humans. Mol. Genet. Genomic Med. 2021, 9, e1775. [Google Scholar] [CrossRef] [PubMed]
  34. Douek, A.M.; Amiri Khabooshan, M.; Henry, J.; Stamatis, S.-A.; Kreuder, F.; Ramm, G.; Änkö, M.-L.; Wlodkowic, D.; Kaslin, J. An engineered sgsh mutant zebrafish recapitulates molecular and behavioural pathobiology of Sanfilippo syndrome A/MPS IIIA. Int. J. Mol. Sci. 2021, 22, 5948. [Google Scholar] [CrossRef] [PubMed]
  35. Rusterholz, T.D.S.; Hofmann, C.; Bachmann-Gagescu, R. Insights gained from zebrafish models for the ciliopathy Joubert syndrome. Front. Genet. 2022, 13, 939527. [Google Scholar] [CrossRef] [PubMed]
  36. Lin, Q.; Zhou, R.; Meng, P.; Wu, L.; Yang, L.; Liu, W.; Wu, J.; Cheng, Y.; Shi, L.; Zhang, Y. Establishment of a Bernard-Soulier syndrome model in zebrafish. Haematologica 2021, 107, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
  37. Carvalho, L.M.L.; Branco, E.V.; Sarafian, R.D.; Kobayashi, G.S.; de Araújo, F.T.; Santos Souza, L.; de Paula Moreira, D.; Hsia, G.S.P.; Bertollo, E.M.G.; Buck, C.B.; et al. Establishment of IPSC lines and zebrafish with loss-of-function ahdc1 variants: Models for Xia-Gibbs syndrome. Gene 2023, 871, 147424. [Google Scholar] [CrossRef] [PubMed]
  38. Haroon, S.; Yoon, H.; Seiler, C.; Osei-Frimpong, B.; He, J.; Nair, R.M.; Mathew, N.D.; Burg, L.; Kose, M.; Venkata, C.R.M.; et al. N-acetylcysteine and cysteamine bitartrate prevent azide-induced neuromuscular decompensation by restoring glutathione balance in two novel surf1−/− zebrafish deletion models of Leigh syndrome. Hum. Mol. Genet. 2023, 32, 1988–2004. [Google Scholar] [CrossRef] [PubMed]
  39. Heidary, S.; Awasthi, N.; Page, N.; Allnutt, T.; Lewis, R.S.; Liongue, C.; Ward, A.C. A zebrafish model of growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). Cell Mol. Life Sci. 2023, 80, 109. [Google Scholar] [CrossRef] [PubMed]
  40. Withers, S.E.; Rowlands, C.F.; Tapia, V.S.; Hedley, F.; Mosneag, I.-E.; Crilly, S.; Rice, G.I.; Badrock, A.P.; Hayes, A.; Allan, S.M.; et al. Characterization of a mutant samhd1 zebrafish model implicates dysregulation of cholesterol biosynthesis in Aicardi-Goutières syndrome. Front. Immunol. 2023, 14, 1100967. [Google Scholar] [CrossRef] [PubMed]
  41. Lee, M.-S.; Devi, S.; He, J.C.; Zhou, W. A zebrafish model of congenital nephrotic syndrome of the Finnish type. Front. Cell Dev. Biol. 2022, 10, 976043. [Google Scholar] [CrossRef] [PubMed]
  42. Bao, J.; Yu, X.; Ping, X.; Shentu, X.; Zou, J. Z nf469 plays a critical role in regulating synthesis of ECM: A zebrafish model of Brittle cornea syndrome. Investig. Ophthalmol. Vis. Sci. 2023, 64, 29. [Google Scholar] [CrossRef] [PubMed]
  43. Han, Y.; Shao, W.; Zhong, D.; Ma, C.; Wei, X.; Ahmed, A.; Yu, T.; Jing, W.; Jing, L. Zebrafish mafbb mutants display osteoclast over-activation and bone deformity resembling osteolysis in MCTO patients. Biomolecules 2021, 11, 480. [Google Scholar] [CrossRef]
  44. Gao, P.; Jia, D.; Li, P.; Huang, Y.; Hu, H.; Sun, K.; Lv, Y.; Chen, X.; Han, Y.; Zhang, Z.; et al. Accumulation of lipid droplets in a novel bietti crystalline dystrophy zebrafish model with impaired PPARα pathway. Investig. Ophthalmol. Vis. Sci. 2022, 63, 32. [Google Scholar] [CrossRef] [PubMed]
  45. Dalla Barba, F.; Soardi, M.; Mouhib, L.; Risato, G.; Akyürek, E.E.; Lucon-Xiccato, T.; Scano, M.; Benetollo, A.; Sacchetto, R.; Richard, I.; et al. Modeling sarcoglycanopathy in Danio rerio. Int. J. Mol. Sci. 2023, 24, 12707. [Google Scholar] [CrossRef] [PubMed]
  46. Bögershausen, N.; Krawczyk, H.E.; Jamra, R.A.; Lin, S.; Yigit, G.; Hüning, I.; Polo, A.M.; Vona, B.; Huang, K.; Schmidt, J.; et al. wars1 and sars1: Two tRNA synthetases implicated in autosomal recessive microcephaly. Hum. Mutat. 2022, 43, 1454–1471. [Google Scholar] [CrossRef] [PubMed]
  47. Zhang, T.; Alonzo, I.; Stubben, C.; Geng, Y.; Herdman, C.; Chandler, N.; Doane, K.P.; Pluimer, B.R.; Trauger, S.A.; Peterson, R.T. A Zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. Dis. Model. Mech. 2023, 16, dmm049995. [Google Scholar] [CrossRef] [PubMed]
  48. Facchinello, N.; Laquatra, C.; Locatello, L.; Beffagna, G.; Brañas Casas, R.; Fornetto, C.; Dinarello, A.; Martorano, L.; Vettori, A.; Risato, G.; et al. Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death Dis. 2021, 12, 100. [Google Scholar] [CrossRef] [PubMed]
  49. Zhao, D.; Jones, J.L.; Gasperini, R.J.; Charlesworth, J.C.; Liu, G.-S.; Burdon, K.P. Rapid and efficient cataract gene evaluation in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes. Methods 2021, 194, 37–47. [Google Scholar] [CrossRef] [PubMed]
  50. Jarayseh, T.; Guillemyn, B.; De Saffel, H.; Bek, J.W.; Syx, D.; Symoens, S.; Gansemans, Y.; Van Nieuwerburgh, F.; Jagadeesh, S.; Raja, J.; et al. A tapt1 knock-out zebrafish line with aberrant lens development and impaired vision models human early-onset cataract. Hum. Genet. 2023, 142, 457–476. [Google Scholar] [CrossRef] [PubMed]
  51. Liu, S.; Chen, T.; Chen, B.; Liu, Y.; Lu, X.; Li, J. lrpap1 deficiency leads to myopia through TGF-β-induced apoptosis in zebrafish. Cell Commun. Signal 2022, 20, 162. [Google Scholar] [CrossRef] [PubMed]
  52. Zhang, M.; Sun, S.; Wang, L.; Wang, X.; Chen, T.; Chen, Z.; Jiang, Y. Zonular defects in loxl1-deficient zebrafish. Clin. Exp. Ophthalmol. 2022, 50, 62–73. [Google Scholar] [CrossRef] [PubMed]
  53. Jin, X.; Zhang, Z.; Nie, Z.; Wang, C.; Meng, F.; Yi, Q.; Chen, M.; Sun, J.; Zou, J.; Jiang, P.; et al. An animal model for mitochondrial tyrosyl-TRNA synthetase deficiency reveals links between oxidative phosphorylation and retinal function. J. Biol. Chem. 2021, 296, 100437. [Google Scholar] [CrossRef] [PubMed]
  54. Stemerdink, M.; Broekman, S.; Peters, T.; Kremer, H.; de Vrieze, E.; van Wijk, E. Generation and characterization of a zebrafish model for ADGRV1-associated retinal dysfunction using CRISPR/Cas9 genome editing technology. Cells 2023, 12, 1598. [Google Scholar] [CrossRef] [PubMed]
  55. Gong, K.; Xie, T.; Yang, Y.; Luo, Y.; Deng, Y.; Chen, K.; Tan, Z.; Guo, H.; Xie, L. Establishment of a dihydrofolate reductase gene knock-in zebrafish strain to aid preliminary analysis of congenital heart disease mechanisms. Front. Cardiovasc. Med. 2021, 8, 763851. [Google Scholar] [CrossRef] [PubMed]
  56. Tan, K.S.; Wang, D.; Lu, Z.; Zhang, Y.; Li, S.; Lin, Y.; Tan, W. CNPase, a 2′,3′-cyclic-nucleotide 3′-phosphodiesterase, as a therapeutic target to attenuate cardiac hypertrophy by enhancing mitochondrial energy production. Int. J. Mol. Sci. 2021, 22, 10806. [Google Scholar] [CrossRef] [PubMed]
  57. Chun, Y.W.; Miyamoto, M.; Williams, C.H.; Neitzel, L.R.; Silver-Isenstadt, M.; Cadar, A.G.; Fuller, D.T.; Fong, D.C.; Liu, H.; Lease, R.; et al. Impaired reorganization of centrosome structure underlies human infantile dilated cardiomyopathy. Circulation 2023, 147, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
  58. Cui, S.; Hayashi, K.; Kobayashi, I.; Hosomichi, K.; Nomura, A.; Teramoto, R.; Usuda, K.; Okada, H.; Deng, Y.; Kobayashi-Sun, J.; et al. The utility of zebrafish cardiac arrhythmia model to predict the pathogenicity of KCNQ1 variants. J. Mol. Cell Cardiol. 2023, 177, 50–61. [Google Scholar] [CrossRef] [PubMed]
  59. Wong, H.H.; Seet, S.H.; Maier, M.; Gurel, A.; Traspas, R.M.; Lee, C.; Zhang, S.; Talim, B.; Loh, A.Y.T.; Chia, C.Y.; et al. Loss of c2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am. J. Hum. Genet. 2021, 108, 1301–1317. [Google Scholar] [CrossRef] [PubMed]
  60. Lai, H.-H.; Yeh, K.-Y.; Hsu, H.-M.; Her, G.M. Deficiency of adipose triglyceride lipase induces metabolic syndrome and cardiomyopathy in zebrafish. Int. J. Mol. Sci. 2022, 24, 117. [Google Scholar] [CrossRef] [PubMed]
  61. Sun, S.; Cao, X.; Castro, L.F.C.; Monroig, Ó.; Gao, J. A network-based approach to identify protein kinases critical for regulating srebf1 in lipid deposition causing obesity. Funct. Integr. Genom. 2021, 21, 557–570. [Google Scholar] [CrossRef] [PubMed]
  62. Ojanen, M.J.T.; Uusi-Mäkelä, M.I.E.; Harjula, S.-K.E.; Saralahti, A.K.; Oksanen, K.E.; Kähkönen, N.; Määttä, J.A.E.; Hytönen, V.P.; Pesu, M.; Rämet, M. Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio). Sci. Rep. 2019, 9, 995. [Google Scholar] [CrossRef] [PubMed]
  63. Yang, L.; Wu, L.; Meng, P.; Zhang, X.; Zhao, D.; Lin, Q.; Zhang, Y. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J. Thromb. Haemost. 2022, 20, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
  64. Zada, A.; Kuil, L.E.; de Graaf, B.M.; Kakiailatu, N.; Windster, J.D.; Brooks, A.S.; van Slegtenhorst, M.; de Koning, B.; Wijnen, R.M.H.; Melotte, V.; et al. TFAP2B haploinsufficiency impacts gastrointestinal function and leads to pediatric intestinal pseudo-obstruction. Front. Cell Dev. Biol. 2022, 10, 901824. [Google Scholar] [CrossRef] [PubMed]
  65. Moreno Traspas, R.; Teoh, T.S.; Wong, P.-M.; Maier, M.; Chia, C.Y.; Lay, K.; Ali, N.A.; Larson, A.; Al Mutairi, F.; Al-Sannaa, N.A.; et al. Loss of FOCAD, operating via the SKI messenger RNA surveillance pathway, causes a pediatric syndrome with liver cirrhosis. Nat. Genet. 2022, 54, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
  66. Fang, Y.; Wan, J.-P.; Zhang, R.-J.; Sun, F.; Yang, L.; Zhao, S.-X.; Dong, M.; Song, H.-D. tpo knockout in zebrafish partially recapitulates clinical manifestations of congenital hypothyroidism and reveals the involvement of Th in proper development of glucose homeostasis. Gen. Comp. Endocrinol. 2022, 323–324, 114033. [Google Scholar] [CrossRef] [PubMed]
  67. Shihana, F.; Cholan, P.M.; Fraser, S.; Oehlers, S.H.; Seth, D. Investigating the role of lipid genes in liver disease using fatty liver models of alcohol and high fat in zebrafish (Danio rerio). Liver Int. 2023, 43, 2455–2468. [Google Scholar] [CrossRef] [PubMed]
  68. Seda, M.; Crespo, B.; Corcelli, M.; Osborn, D.P.; Jenkins, D. A CRISPR/Cas9-generated mutation in the zebrafish orthologue of PPP2R3B causes idiopathic scoliosis. Sci. Rep. 2023, 13, 6783. [Google Scholar] [CrossRef] [PubMed]
  69. Rebello, D.; Wohler, E.; Erfani, V.; Li, G.; Aguilera, A.N.; Santiago-Cornier, A.; Zhao, S.; Hwang, S.W.; Steiner, R.D.; Zhang, T.J.; et al. COL11A2 as a candidate gene for vertebral malformations and congenital scoliosis. Hum. Mol. Genet. 2023, 32, 2913–2928. [Google Scholar] [CrossRef] [PubMed]
  70. Luo, J.; Lu, C.; Feng, M.; Dai, L.; Wang, M.; Qiu, Y.; Zheng, H.; Liu, Y.; Li, L.; Tang, B.; et al. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J. Exp. Clin. Cancer Res. 2021, 40, 262. [Google Scholar] [CrossRef] [PubMed]
  71. Dona, M.; Waaijers, S.; Richter, S.; Eisenhofer, G.; Korving, J.; Kamel, S.M.; Bakkers, J.; Rapizzi, E.; Rodenburg, R.J.; Zethof, J.; et al. Loss of sdhb in zebrafish larvae recapitulates human paraganglioma characteristics. Endocr. Relat. Cancer 2021, 28, 65–77. [Google Scholar] [CrossRef] [PubMed]
  72. Moral-Sanz, J.; Fernandez-Rojo, M.A.; Colmenarejo, G.; Kurdyukov, S.; Brust, A.; Ragnarsson, L.; Andersson, Å.; Vila, S.F.; Cabezas-Sainz, P.; Wilhelm, P.; et al. The structural conformation of the tachykinin domain drives the anti-tumoural activity of an octopus peptide in melanoma BRAFV600E. Br. J. Pharmacol. 2022, 179, 4878–4896. [Google Scholar] [CrossRef] [PubMed]
  73. Oppel, F.; Shao, S.; Gendreizig, S.; Zimmerman, M.W.; Schürmann, M.; Flavian, V.F.; Goon, P.; Chi, S.N.; Aster, J.C.; Sudhoff, H.; et al. P53 pathway inactivation drives SMARCB1-deficient P53-wildtype epithelioid sarcoma onset indicating therapeutic vulnerability through MDM2 inhibition. Mol. Cancer Ther. 2022, 21, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
  74. Russell, K.L.; Downie, J.M.; Gibson, S.B.; Tsetsou, S.; Keefe, M.D.; Duran, J.A.; Figueroa, K.P.; Bromberg, M.B.; Murtaugh, L.C.; Bonkowsky, J.L.; et al. Pathogenic effect of TP73 gene variants in people with amyotrophic lateral sclerosis. Neurology 2021, 97, e225–e235. [Google Scholar] [CrossRef] [PubMed]
  75. Griffin, A.; Carpenter, C.; Liu, J.; Paterno, R.; Grone, B.; Hamling, K.; Moog, M.; Dinday, M.T.; Figueroa, F.; Anvar, M.; et al. Phenotypic analysis of catastrophic childhood epilepsy genes. Commun. Biol. 2021, 4, 680. [Google Scholar] [CrossRef] [PubMed]
  76. Rodríguez-Ortiz, R.; Martínez-Torres, A. Mutants of the zebrafish K+ channel hcn2b exhibit epileptic-like behaviors. Int. J. Mol. Sci. 2021, 22, 11471. [Google Scholar] [CrossRef] [PubMed]
  77. Miguel Sanz, C.; Martinez Navarro, M.; Caballero Diaz, D.; Sanchez-Elexpuru, G.; Di Donato, V. Toward the use of novel alternative methods in epilepsy modeling and drug discovery. Front. Neurol. 2023, 14, 1213969. [Google Scholar] [CrossRef] [PubMed]
  78. Lin, H.; Chen, Y.-H. SCAF4 variants associated with focal epilepsy accompanied by multisystem disorders. Seizure-Eur. J. Epilep 2023, 116, 65–73. [Google Scholar] [CrossRef] [PubMed]
  79. Dogra, D.; Meza-Santoscoy, P.L.; Gavrilovici, C.; Rehak, R.; de la Hoz, C.L.R.; Ibhazehiebo, K.; Rho, J.M.; Kurrasch, D.M. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023, 64, 2186–2199. [Google Scholar] [CrossRef] [PubMed]
  80. Kuil, L.E.; MacKenzie, K.C.; Tang, C.S.; Windster, J.D.; Le, T.L.; Karim, A.; de Graaf, B.M.; van der Helm, R.; van Bever, Y.; Sloots, C.E.J.; et al. Size matters: Large copy number losses in hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet. 2021, 17, e1009698. [Google Scholar] [CrossRef] [PubMed]
  81. Zheng, J.; Long, F.; Cao, X.; Xiong, B.; Li, Y. Knockout of katnal2 leads to autism-like behaviors and developmental delay in zebrafish. Int. J. Mol. Sci. 2022, 23, 8389. [Google Scholar] [CrossRef] [PubMed]
  82. Chen, Z.; Long, H.; Guo, J.; Wang, Y.; He, K.; Tao, C.; Li, X.; Jiang, K.; Guo, S.; Pi, Y. Autism-risk gene necab2 regulates psychomotor and social behavior as a neuronal modulator of MGluR1 signaling. Front. Mol. Neurosci. 2022, 15, 901682. [Google Scholar] [CrossRef] [PubMed]
  83. Deng, J.; Wang, Y.; Hu, M.; Lin, J.; Li, Q.; Liu, C.; Xu, X. Deleterious variation in BR serine/threonine kinase 2 classified a subtype of autism. Front. Mol. Neurosci. 2022, 15, 904935. [Google Scholar] [CrossRef] [PubMed]
  84. Sumathipala, S.H.; Khan, S.; Kozol, R.A.; Araki, Y.; Syed, S.; Huganir, R.L.; Dallman, J.E. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish autism models. bioRxiv 2023, 557316. [Google Scholar] [CrossRef]
  85. Li, Y.; Zhang, C.; Peng, G. ap4s1 truncation leads to axonal defects in a zebrafish model of spastic paraplegia 52. Int. J. Dev. Neurosci. 2023, 83, 753–764. [Google Scholar] [CrossRef]
  86. Jiang, Y.-J.; Fann, C.S.-J.; Fuh, J.-L.; Chung, M.-Y.; Huang, H.-Y.; Chu, K.-C.; Wang, Y.-F.; Hsu, C.-L.; Kao, L.-S.; Chen, S.-P.; et al. Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J. Headache Pain. 2022, 23, 39. [Google Scholar] [CrossRef] [PubMed]
  87. Sonti, S.; Littleton, S.H.; Pahl, M.C.; Zimmerman, A.J.; Chesi, A.; Palermo, J.; Lasconi, C.; Brown, E.B.; Pippin, J.A.; Wells, A.D.; et al. Perturbation of the insomnia wdr90 GWAS locus pinpoints Rs3752495 as a causal variant influencing distal expression of neighboring gene, PIG-Q. bioRxiv 2023, 553739. [Google Scholar] [CrossRef] [PubMed]
  88. Leggieri, A.; García-González, J.; Torres-Perez, J.V.; Havelange, W.; Hosseinian, S.; Mech, A.M.; Keatinge, M.; Busch-Nentwich, E.M.; Brennan, C.H. ankk1 loss of function disrupts dopaminergic pathways in zebrafish. Front. Neurosci. 2022, 16, 794653. [Google Scholar] [CrossRef]
  89. Baronio, D.; Chen, Y.; Decker, A.R.; Enckell, L.; Fernández-López, B.; Semenova, S.; Puttonen, H.A.J.; Cornell, R.A.; Panula, P. Vesicular monoamine transporter 2 (SLC18A2) regulates monoamine turnover and brain development in zebrafish. Acta Physiol. 2022, 234, e13725. [Google Scholar] [CrossRef]
  90. Brożko, N.; Baggio, S.; Lipiec, M.A.; Jankowska, M.; Szewczyk, Ł.M.; Gabriel, M.O.; Chakraborty, C.; Ferran, J.L.; Wiśniewska, M.B. Genoarchitecture of the early postmitotic pretectum and the role of wnt signaling in shaping pretectal neurochemical anatomy in zebrafish. Front. Neuroanat. 2022, 16, 838567. [Google Scholar] [CrossRef]
  91. Yao, Y.; Baronio, D.; Chen, Y.-C.; Jin, C.; Panula, P. The roles of histamine receptor 1 (hrh1) in neurotransmitter system regulation, behavior, and neurogenesis in zebrafish. Mol. Neurobiol. 2023, 60, 6660–6675. [Google Scholar] [CrossRef]
  92. Maili, L.; Tandon, B.; Yuan, Q.; Menezes, S.; Chiu, F.; Hashmi, S.S.; Letra, A.; Eisenhoffer, G.T.; Hecht, J.T. Disruption of fos causes craniofacial anomalies in developing zebrafish. Front. Cell Dev. Biol. 2023, 11, 1141893. [Google Scholar] [CrossRef] [PubMed]
  93. Mankiewicz, J.L.; Picklo, M.J.; Idso, J.; Cleveland, B.M. Leptin receptor deficiency results in hyperphagia and increased fatty acid mobilization during fasting in rainbow trout (Oncorhynchus mykiss). Biomolecules 2022, 12, 516. [Google Scholar] [CrossRef] [PubMed]
  94. Gemmer, A.; Mirkes, K.; Anneser, L.; Eilers, T.; Kibat, C.; Mathuru, A.; Ryu, S.; Schuman, E. Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio). Sci. Rep. 2022, 12, 4322. [Google Scholar] [CrossRef] [PubMed]
  95. Zoodsma, J.D.; Keegan, E.J.; Moody, G.R.; Bhandiwad, A.A.; Napoli, A.J.; Burgess, H.A.; Wollmuth, L.P.; Sirotkin, H.I. Disruption of grin2b, an ASD-Associated gene, produces social deficits in zebrafish. Mol. Autism 2022, 13, 38. [Google Scholar] [CrossRef] [PubMed]
  96. Barnaby, W.; Dorman Barclay, H.E.; Nagarkar, A.; Perkins, M.; Teicher, G.; Trapani, J.G.; Downes, G.B. GABAA α subunit control of hyperactive behavior in developing zebrafish. Genetics 2022, 220, iyac011. [Google Scholar] [CrossRef] [PubMed]
  97. Torres-Pérez, J.V.; Anagianni, S.; Mech, A.M.; Havelange, W.; García-González, J.; Fraser, S.E.; Vallortigara, G.; Brennan, C.H. baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience 2023, 26, 105704. [Google Scholar] [CrossRef] [PubMed]
  98. D’Agostino, Y.; Frigato, E.; Noviello, T.M.R.; Toni, M.; Frabetti, F.; Cigliano, L.; Ceccarelli, M.; Sordino, P.; Cerulo, L.; Bertolucci, C.; et al. Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. iScience 2022, 25, 104054. [Google Scholar] [CrossRef] [PubMed]
  99. Wang, K.; Vorontsova, I.; Hoshino, M.; Uesugi, K.; Yagi, N.; Hall, J.E.; Schilling, T.F.; Pierscionek, B.K. Aquaporins have regional functions in development of refractive index in the zebrafish eye lens. Investig. Ophthalmol. Vis. Sci. 2021, 62, 23. [Google Scholar] [CrossRef] [PubMed]
  100. Liu, F.; Qin, Y.; Huang, Y.; Gao, P.; Li, J.; Yu, S.; Jia, D.; Chen, X.; Lv, Y.; Tu, J.; et al. Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration. PLoS Genet. 2022, 18, e1009841. [Google Scholar] [CrossRef] [PubMed]
  101. Letelier, J.; Buono, L.; Almuedo-Castillo, M.; Zang, J.; Mounieres, C.; González-Díaz, S.; Polvillo, R.; Sanabria-Reinoso, E.; Corbacho, J.; Sousa-Ortega, A.; et al. Mutation of vsx genes in zebrafish highlights the robustness of the retinal specification network. eLife 2023, 12, e85594. [Google Scholar] [CrossRef] [PubMed]
  102. Zhang, J.; Jing, M.; Li, P.; Sun, L.; Pi, X.; Jiang, N.; Zhu, K.; Li, H.; Li, J.; Wang, M.; et al. Knockout of DLIC1 leads to retinal cone degeneration via disturbing Rab8 transport in zebrafish. Biochim. Biophys. Acta 2023, 1869, 166645. [Google Scholar] [CrossRef] [PubMed]
  103. Davison, C.; Zolessi, F.R. slit2 is necessary for optic axon organization in the zebrafish ventral midline. Cells Dev. 2021, 166, 203677. [Google Scholar] [CrossRef] [PubMed]
  104. Davison, C.; Bedó, G.; Zolessi, F.R. Zebrafish slit2 and slit3 act together to regulate retinal axon crossing at the midline. J. Dev. Biol. 2022, 10, 41. [Google Scholar] [CrossRef] [PubMed]
  105. Halabi, R.; Watterston, C.; Hehr, C.L.; Mori-Kreiner, R.; Childs, S.J.; McFarlane, S. Semaphorin 3fa controls ocular vascularization from the embryo through to the adult. Investig. Ophthalmol. Vis. Sci. 2021, 62, 21. [Google Scholar] [CrossRef] [PubMed]
  106. Wohlfart, D.P.; Lou, B.; Middel, C.S.; Morgenstern, J.; Fleming, T.; Sticht, C.; Hausser, I.; Hell, R.; Hammes, H.-P.; Szendrödi, J.; et al. Accumulation of acetaldehyde in aldh2.1 zebrafish causes increased retinal angiogenesis and impaired glucose metabolism. Redox Biol. 2022, 50, 102249. [Google Scholar] [CrossRef] [PubMed]
  107. Salazar-Silva, R.; Dantas, V.L.G.; Alves, L.U.; Batissoco, A.C.; Oiticica, J.; Lawrence, E.A.; Kawafi, A.; Yang, Y.; Nicastro, F.S.; Novaes, B.C.; et al. ncoa3 identified as a new candidate to explain autosomal dominant progressive hearing loss. Hum. Mol. Genet. 2021, 29, 3691–3705. [Google Scholar] [CrossRef] [PubMed]
  108. Chen, X.; Huang, Y.; Gao, P.; Lv, Y.; Jia, D.; Sun, K.; Han, Y.; Hu, H.; Tang, Z.; Ren, X.; et al. Knockout of mafba causes inner-ear developmental defects in zebrafish via the impairment of proliferation and differentiation of ionocyte progenitor cells. Biomedicines 2021, 9, 1699. [Google Scholar] [CrossRef] [PubMed]
  109. Tan, A.L.; Mohanty, S.; Guo, J.; Lekven, A.C.; Riley, B.B. pax2a, sp5a and sp5l act downstream of fgf and wnt to coordinate sensory-neural patterning in the inner ear. Dev. Biol. 2022, 492, 139–153. [Google Scholar] [CrossRef] [PubMed]
  110. Ezhkova, D.; Schwarzer, S.; Spieß, S.; Geffarth, M.; Machate, A.; Zöller, D.; Stucke, J.; Alexopoulou, D.; Lesche, M.; Dahl, A.; et al. Transcriptome analysis reveals an atoh1b-dependent gene set downstream of dlx3b/4b during early inner ear development in zebrafish. Biol. Open 2023, 12, bio059911. [Google Scholar] [CrossRef] [PubMed]
  111. Sun, L.; Ping, L.; Gao, R.; Zhang, B.; Chen, X. lmo4a contributes to zebrafish inner ear and vestibular development via regulation of the Bmp pathway. Genes 2023, 14, 1371. [Google Scholar] [CrossRef] [PubMed]
  112. Yuan, M.; Zeng, C.; Lu, H.; Yue, Y.; Sun, T.; Zhou, X.; Li, G.; Ai, N.; Ge, W. Genetic and epigenetic evidence for nonestrogenic disruption of otolith development by bisphenol a in zebrafish. Environ. Sci. Technol. 2023, 57, 16190–16205. [Google Scholar] [CrossRef] [PubMed]
  113. Jami, M.S.; Murata, H.; Barnhill, L.M.; Li, S.; Bronstein, J.M. Diesel exhaust exposure alters the expression of networks implicated in neurodegeneration in zebrafish brains. Cell Biol. Toxicol. 2023, 39, 641–655. [Google Scholar] [CrossRef]
  114. Guo, Y.; Oliveros, C.F.; Ohshima, T. CRMP2 and CRMP4 are required for the formation of commissural tracts in the developing zebrafish forebrain. Dev. Neurobiol. 2022, 82, 533–544. [Google Scholar] [CrossRef] [PubMed]
  115. Wu, C.-S.; Lu, Y.-F.; Liu, Y.-H.; Huang, C.-J.; Hwang, S.-P.L. Zebrafish cdx1b modulates epithalamic asymmetry by regulating ndr2 and lft1 expression. Dev. Biol. 2021, 470, 21–36. [Google Scholar] [CrossRef] [PubMed]
  116. Antón-Galindo, E.; Dalla Vecchia, E.; Orlandi, J.G.; Castro, G.; Gualda, E.J.; Young, A.M.J.; Guasch-Piqueras, M.; Arenas, C.; Herrera-Úbeda, C.; Garcia-Fernàndez, J.; et al. Deficiency of the ywhaz gene, involved in neurodevelopmental disorders, alters brain activity and behaviour in zebrafish. Mol. Psychiatry 2022, 27, 3739–3748. [Google Scholar] [CrossRef] [PubMed]
  117. Yan, C.-Y.; Wu, F.-Y.; Sun, F.; Fang, Y.; Zhang, R.-J.; Zhang, C.-R.; Zhang, C.-X.; Wang, Z.; Yang, R.-M.; Yang, L.; et al. The Isl2a transcription factor regulates pituitary development in zebrafish. Front. Endocrinol. 2023, 14, 920548. [Google Scholar] [CrossRef] [PubMed]
  118. Wu, Y.; Huang, S.; Zhao, H.; Cao, K.; Gan, J.; Yang, C.; Xu, Z.; Li, S.; Su, B. Zebrafish minichromosome maintenance protein 5 gene regulates the development and migration of facial motor neurons via fibroblast growth factor signaling. Dev. Neurosci. 2021, 43, 84–94. [Google Scholar] [CrossRef] [PubMed]
  119. Wasserman-Bartov, T.; Admati, I.; Lebenthal-Loinger, I.; Sharabany, J.; Lerer-Goldshtein, T.; Appelbaum, L. tsh induces Agrp1 neuron proliferation in oatp1c1-deficient zebrafish. J. Neurosci. 2022, 42, 8214–8224. [Google Scholar] [CrossRef] [PubMed]
  120. Poulain, F.E. Analyzing the role of heparan sulfate proteoglycans in axon guidance in vivo in zebrafish. Methods Mol. Biol. 2022, 1229, 469–482. [Google Scholar]
  121. Soto, X.; Burton, J.; Manning, C.S.; Minchington, T.; Lea, R.; Lee, J.; Kursawe, J.; Rattray, M.; Papalopulu, N. Sequential and additive expression of MIR-9 precursors control timing of neurogenesis. Development 2022, 149, dev200474. [Google Scholar] [CrossRef] [PubMed]
  122. Limbach, L.E.; Penick, R.L.; Casseday, R.S.; Hyland, M.A.; Pontillo, E.A.; Ayele, A.N.; Pitts, K.M.; Ackerman, S.D.; Harty, B.L.; Herbert, A.L.; et al. Peripheral nerve development in zebrafish requires muscle patterning by tcf15/paraxis. Dev. Biol. 2022, 490, 37–49. [Google Scholar] [CrossRef] [PubMed]
  123. Vaz, R.; Edwards, S.; Dueñas-Rey, A.; Hofmeister, W.; Lindstrand, A. Loss of ctnnd2b affects neuronal differentiation and behavior in zebrafish. Front. Neurosci. 2023, 17, 1205653. [Google Scholar] [CrossRef] [PubMed]
  124. Saraswathy, V.M.; Zhou, L.; Mokalled, M.H. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. bioRxiv 2023, 541505. [Google Scholar] [CrossRef] [PubMed]
  125. Altbürger, C.; Holzhauser, J.; Driever, W. CRISPR/Cas9-based QF2 knock-in at the tyrosine hydroxylase (Th) locus reveals novel Th-expressing neuron populations in the zebrafish mid- and hindbrain. Front. Neuroanat. 2023, 17, 1196868. [Google Scholar] [CrossRef] [PubMed]
  126. Wu, L.; Xue, R.; Chen, J.; Xu, J. dock8 deficiency attenuates microglia colonization in early zebrafish larvae. Cell Death Discov. 2022, 8, 366. [Google Scholar] [CrossRef] [PubMed]
  127. Shi, L.; Wang, Z.; Li, Y.; Song, Z.; Yin, W.; Hu, B. Deletion of the chd7 hinders oligodendrocyte progenitor cell development and myelination in zebrafish. Int. J. Mol. Sci. 2023, 24, 13535. [Google Scholar] [CrossRef] [PubMed]
  128. Feng, G.; Sun, Y. The polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front. Neurosci. 2022, 16, 960149. [Google Scholar] [CrossRef] [PubMed]
  129. Smits, D.J.; Dekker, J.; Schot, R.; Tabarki, B.; Alhashem, A.; Demmers, J.A.A.; Dekkers, D.H.W.; Romito, A.; van der Spek, P.J.; van Ham, T.J.; et al. CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum. Genet. 2023, 142, 379–397. [Google Scholar] [CrossRef] [PubMed]
  130. Paz, D.; Reyes-Nava, N.G.; Pinales, B.E.; Perez, I.; Gil, C.B.; Gonzales, A.V.; Grajeda, B.; Estevao, I.L.; Ellis, C.C.; Castro, V.L.; et al. Characterization of the zebrafish Gabra1sa43718/Sa43718 germline loss of function allele confirms a function for gabra1 in motility and nervous system development. bioRxiv 2023, 525860. [Google Scholar] [CrossRef] [PubMed]
  131. Bu, H.; Ding, Y.; Li, J.; Zhu, P.; Shih, Y.-H.; Wang, M.; Zhang, Y.; Lin, X.; Xu, X. Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI Insight 2021, 6, e154215. [Google Scholar] [CrossRef] [PubMed]
  132. Peng, X.; Feng, G.; Zhang, Y.; Sun, Y. PRC1 stabilizes cardiac contraction by regulating cardiac sarcomere assembly and cardiac conduction system construction. Int. J. Mol. Sci. 2021, 22, 11368. [Google Scholar] [CrossRef] [PubMed]
  133. Kamel, S.M.; Koopman, C.D.; Kruse, F.; Willekers, S.; Chocron, S.; Bakkers, J. A heterozygous mutation in cardiac troponin T promotes Ca2+ dysregulation and adult cardiomyopathy in zebrafish. J. Cardiovasc. Dev. Dis. 2021, 8, 46. [Google Scholar] [CrossRef] [PubMed]
  134. Lv, F.; Ge, X.; Qian, P.; Lu, X.; Liu, D.; Chen, C. Neuron navigator 3 (NAV3) is required for heart development in zebrafish. Fish. Physiol. Biochem. 2022, 48, 173–183. [Google Scholar] [CrossRef] [PubMed]
  135. Zink, M.; Seewald, A.; Rohrbach, M.; Brodehl, A.; Liedtke, D.; Williams, T.; Childs, S.J.; Gerull, B. Altered expression of TMEM43 causes abnormal cardiac structure and function in zebrafish. Int. J. Mol. Sci. 2022, 23, 9530. [Google Scholar] [CrossRef] [PubMed]
  136. Derrick, C.J.; Sánchez-Posada, J.; Hussein, F.; Tessadori, F.; Pollitt, E.J.G.; Savage, A.M.; Wilkinson, R.N.; Chico, T.J.; van Eeden, F.J.; Bakkers, J.; et al. Asymmetric hapln1a drives regionalized cardiac ECM Expansion and promotes heart morphogenesis in zebrafish development. Cardiovasc. Res. 2022, 118, 226–240. [Google Scholar] [CrossRef]
  137. Huttner, I.G.; Santiago, C.F.; Jacoby, A.; Cheng, D.; Trivedi, G.; Cull, S.; Cvetkovska, J.; Chand, R.; Berger, J.; Currie, P.D.; et al. Loss of Sec-1 family domain-containing 1 (Scfd1) causes severe cardiac defects and endoplasmic reticulum stress in zebrafish. J. Cardiovasc. Dev. Dis. 2023, 10, 408. [Google Scholar] [CrossRef] [PubMed]
  138. Leid, J.; Gray, R.; Rakita, P.; Koenig, A.L.; Tripathy, R.; Fitzpatrick, J.A.J.; Kaufman, C.; Solnica-Krezel, L.; Lavine, K.J. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol. Open 2023, 12, bio059905. [Google Scholar] [CrossRef] [PubMed]
  139. Singh Angom, R.; Wang, Y.; Wang, E.; Dutta, S.K.; Mukhopadhyay, D. Conditional, Tissue-specific CRISPR/Cas9 vector system in zebrafish reveals the role of nrp1b in heart regeneration. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1921–1934. [Google Scholar] [CrossRef] [PubMed]
  140. Müller, M.; Eghbalian, R.; Boeckel, J.-N.; Frese, K.S.; Haas, J.; Kayvanpour, E.; Sedaghat-Hamedani, F.; Lackner, M.K.; Tugrul, O.F.; Ruppert, T.; et al. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat. Commun. 2022, 13, 6209. [Google Scholar] [CrossRef] [PubMed]
  141. Perl, E.; Ravisankar, P.; Beerens, M.E.; Mulahasanovic, L.; Smallwood, K.; Sasso, M.B.; Wenzel, C.; Ryan, T.D.; Komár, M.; Bove, K.E.; et al. stx4 is required to regulate cardiomyocyte Ca2+ handling during vertebrate cardiac development. Hum. Genet. Genom. Adv. 2022, 3, 100115. [Google Scholar] [CrossRef] [PubMed]
  142. Martin, K.E.; Ravisankar, P.; Beerens, M.; MacRae, C.A.; Waxman, J.S. nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023, 12, e77408. [Google Scholar] [CrossRef] [PubMed]
  143. Vaparanta, K.; Jokilammi, A.; Paatero, I.; Merilahti, J.A.; Heliste, J.; Hemanthakumar, K.A.; Kivelä, R.; Alitalo, K.; Taimen, P.; Elenius, K. STAT5b is a key effector of NRG-1/ERBB4/Scp-mediated Myocardial growth. EMBO Rep. 2023, 24, e56689. [Google Scholar] [CrossRef] [PubMed]
  144. Hesaraki, M.; Bora, U.; Pahlavan, S.; Salehi, N.; Mousavi, S.A.; Barekat, M.; Rasouli, S.J.; Baharvand, H.; Ozhan, G.; Totonchi, M. A novel missense variant in actin binding domain of MYH7 is associated with left ventricular noncompaction. Front. Cardiovasc. Med. 2022, 9, 839862. [Google Scholar] [CrossRef] [PubMed]
  145. Joyce, W.; Pan, Y.K.; Garvey, K.; Saxena, V.; Perry, S.F. Regulation of heart rate following genetic deletion of the SS1 adrenergic receptor in larval zebrafish. Acta Physiol. 2022, 235, e13849. [Google Scholar] [CrossRef] [PubMed]
  146. Li, W.; Tran, V.; Shaked, I.; Xue, B.; Moore, T.; Lightle, R.; Kleinfeld, D.; Awad, I.A.; Ginsberg, M.H. Abortive intussusceptive angiogenesis causes multi-cavernous vascular malformations. eLife 2021, 10, e62155. [Google Scholar] [CrossRef] [PubMed]
  147. Khajavi, M.; Zhou, Y.; Schiffer, A.J.; Bazinet, L.; Birsner, A.E.; Zon, L.; D’Amato, R.J. Identification of basp1 as a novel angiogenesis-regulating gene by multi-model system studies. FASEB J. 2021, 35, e21404. [Google Scholar] [CrossRef] [PubMed]
  148. Parial, R.; Li, H.; Li, J.; Archacki, S.; Yang, Z.; Wang, I.Z.; Chen, Q.; Xu, C.; Wang, Q.K. Role of epigenetic m6A RNA methylation in vascular development: mettl3 regulates vascular development through PHLPP2/MTOR-AKT signaling. FASEB J. 2021, 35, e21465. [Google Scholar] [CrossRef] [PubMed]
  149. Kempers, L.; Wakayama, Y.; van der Bijl, I.; Furumaya, C.; De Cuyper, I.M.; Jongejan, A.; Kat, M.; van Stalborch, A.-M.D.; van Boxtel, A.L.; Hubert, M.; et al. The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 2021, 24, 695–714. [Google Scholar] [CrossRef] [PubMed]
  150. Wang, Y.; Chen, Y.; Wu, C. Functional characterization of stap2b in zebrafish vascular development. FASEB J. 2023, 37, e23053. [Google Scholar] [CrossRef] [PubMed]
  151. Hopfenmüller, V.L.; Perner, B.; Reuter, H.; Bates, T.J.D.; Große, A.; Englert, C. The Wilms tumor gene wt1a contributes to blood-cerebrospinal fluid barrier function in zebrafish. Front. Cell Dev. Biol. 2022, 9, 809962. [Google Scholar] [CrossRef] [PubMed]
  152. Pak, B.; Schmitt, C.E.; Oh, S.; Kim, J.-D.; Choi, W.; Han, O.; Kim, M.; Kim, M.-J.; Ham, H.-J.; Kim, S.; et al. pax9 is essential for granulopoiesis but dispensable for erythropoiesis in zebrafish. Biochem. Biophys. Res. Commun. 2021, 534, 359–366. [Google Scholar] [CrossRef] [PubMed]
  153. Isiaku, A.I.; Zhang, Z.; Pazhakh, V.; Manley, H.R.; Thompson, E.R.; Fox, L.C.; Yerneni, S.; Blombery, P.; Lieschke, G.J. Transient, flexible gene editing in zebrafish neutrophils and macrophages for determination of cell-autonomous functions. Dis. Model. Mech. 2021, 14, dmm047431. [Google Scholar] [CrossRef] [PubMed]
  154. Bader, A.; Gao, J.; Rivière, T.; Schmid, B.; Walzog, B.; Maier-Begandt, D. Molecular insights into neutrophil biology from the zebrafish perspective: Lessons from CD18 deficiency. Front. Immunol. 2021, 12, 677994. [Google Scholar] [CrossRef] [PubMed]
  155. Castillo-Castellanos, F.; Ramírez, L.; Lomelí, H. zmiz1a Zebrafish mutants have defective erythropoiesis, altered expression of autophagy genes, and a deficient response to vitamin D. Life Sci. 2021, 284, 119900. [Google Scholar] [CrossRef] [PubMed]
  156. Chung, H.; Lin, B.; Lin, Y.; Chang, C.; Tzou, W.; Pei, T.; Hu, C. Meis1, Hi1α, and GATA1 are integrated into a hierarchical regulatory network to mediate primitive erythropoiesis. FASEB J. 2021, 35, e21915. [Google Scholar] [CrossRef] [PubMed]
  157. Suzuki, H.; Ogawa, T.; Fujita, S.; Sone, R.; Kawahara, A. Cooperative contributions of the klf1 and klf17 genes in zebrafish primitive erythropoiesis. Sci. Rep. 2023, 13, 12279. [Google Scholar] [CrossRef] [PubMed]
  158. Huang, M.; Ahmed, A.; Wang, W.; Wang, X.; Ma, C.; Jiang, H.; Li, W.; Jing, L. Negative Elongation Factor (NELF) inhibits premature granulocytic development in zebrafish. Int. J. Mol. Sci. 2022, 23, 3833. [Google Scholar] [CrossRef] [PubMed]
  159. Linehan, J.B.; Lucas Zepeda, J.; Mitchell, T.A.; LeClair, E.E. Follow that cell: Leukocyte migration in L-plastin mutant zebrafish. Cytoskeleton 2022, 79, 26–37. [Google Scholar] [CrossRef] [PubMed]
  160. Elworthy, S.; Rutherford, H.A.; Prajsnar, T.K.; Hamilton, N.M.; Vogt, K.; Renshaw, S.A.; Condliffe, A.M. Activated PI3K delta syndrome 1 mutations cause neutrophilia in zebrafish larvae. Dis. Model. Mech. 2023, 16, dmm049841. [Google Scholar] [CrossRef] [PubMed]
  161. Jiang, X.; Sun, Y.; Yang, S.; Wu, Y.; Wang, L.; Zou, W.; Jiang, N.; Chen, J.; Han, Y.; Huang, C.; et al. Novel Chemical-sructure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via MTOR and ERK signalings. Phytomedicine 2023, 110, 154637. [Google Scholar] [CrossRef] [PubMed]
  162. Li, X.; Song, G.; Zhao, Y.; Ren, J.; Li, Q.; Cui, Z. Functions of SMC2 in the development of zebrafish liver. Biomedicines 2021, 9, 1240. [Google Scholar] [CrossRef] [PubMed]
  163. Serifi, I.; Besta, S.; Karetsou, Z.; Giardoglou, P.; Beis, D.; Niewiadomski, P.; Papamarcaki, T. Targeting of SET/I2PP2A oncoprotein inhibits gli1 transcription revealing a new modulator of hedgehog signaling. Sci. Rep. 2021, 11, 13940. [Google Scholar] [CrossRef] [PubMed]
  164. Deng, Y.; Han, X.; Chen, H.; Zhao, C.; Chen, Y.; Zhou, J.; de The, H.; Zhu, J.; Yuan, H. ypel5 regulates liver development and function in zebrafish. J. Mol. Cell Biol. 2023, 15, mjad019. [Google Scholar] [CrossRef] [PubMed]
  165. Ali, R.Q.; Meyer-Miner, A.; David-Rachel, M.; Lee, F.J.H.; Wilkins, B.J.; Karpen, S.J.; Ciruna, B.; Ghanekar, A.; Kamath, B.M. Loss of zebrafish pkd1l1 causes biliary defects that have implications for biliary atresia splenic malformation. Dis. Model. Mech. 2023, 16, dmm049326. [Google Scholar] [CrossRef] [PubMed]
  166. Tao, Z.; Yang, D.; Ni, R. tmed10 deficiency results in impaired exocrine pancreatic differentiation in zebrafish larvae. Dev. Biol. 2023, 503, 43–52. [Google Scholar] [CrossRef] [PubMed]
  167. Elsaid, H.O.A.; Furriol, J.; Blomqvist, M.; Diswall, M.; Leh, S.; Gharbi, N.; Anonsen, J.H.; Babickova, J.; Tøndel, C.; Svarstad, E.; et al. Reduced α-galactosidase A activity in zebrafish (Danio rerio) mirrors distinct features of fabry nephropathy phenotype. Mol. Genet. Metab. Rep. 2022, 31, 100851. [Google Scholar] [CrossRef] [PubMed]
  168. Wang, S.; Qin, Y.; Sheng, J.; Duan, X.; Shen, L.; Liu, D. Aquaporin 8ab is required in zebrafish embryonic intestine development. Acta Biochim. Biophys. Sin. 2022, 54, 952–960. [Google Scholar] [CrossRef] [PubMed]
  169. Morales, R.A.; Rabahi, S.; Diaz, O.E.; Salloum, Y.; Kern, B.C.; Westling, M.; Luo, X.; Parigi, S.M.; Monasterio, G.; Das, S.; et al. Interleukin-10 regulates goblet cell numbers through notch signaling in the developing zebrafish intestine. Mucosal Immunol. 2022, 15, 940–951. [Google Scholar] [CrossRef] [PubMed]
  170. Wiweger, M.; Majewski, L.; Adamek-Urbanska, D.; Wasilewska, I.; Kuznicki, J. npc2-deficient zebrafish reproduce neurological and inflammatory symptoms of Niemann-pick type C disease. Front. Cell Neurosci. 2021, 15, 647860. [Google Scholar] [CrossRef] [PubMed]
  171. Zhang, W.; Yang, X.; Li, Y.; Yu, L.; Zhang, B.; Zhang, J.; Cho, W.J.; Venkatarangan, V.; Chen, L.; Burugula, B.B.; et al. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat. Commun. 2022, 13, 5351. [Google Scholar] [CrossRef] [PubMed]
  172. Chen, Y.; Jia, J.; Zhao, Q.; Zhang, Y.; Huang, B.; Wang, L.; Tian, J.; Huang, C.; Li, M.; Li, X. Novel loss-of-function variant in HNF1a induces β-Cell dysfunction through endoplasmic reticulum stress. Int. J. Mol. Sci. 2022, 23, 13022. [Google Scholar] [CrossRef] [PubMed]
  173. Naylor, R.W.; Watson, E.; Williamson, S.; Preston, R.; Davenport, J.B.; Thornton, N.; Lowe, M.; Williams, M.; Lennon, R. Basement membrane defects in CD151-associated glomerular disease. Pediatr. Nephrol. 2022, 37, 3105–3115. [Google Scholar] [CrossRef] [PubMed]
  174. Liu, X.; Zhang, R.; Fatehi, M.; Wang, Y.; Long, W.; Tian, R.; Deng, X.; Weng, Z.; Xu, Q.; Light, P.E.; et al. Regulation of PKD2 channel function by TACAN. J. Physiol. 2023, 601, 83–98. [Google Scholar] [CrossRef] [PubMed]
  175. Waldmann, L.; Leyhr, J.; Zhang, H.; Öhman-Mägi, C.; Allalou, A.; Haitina, T. The broad role of nkx3.2 in the development of the zebrafish axial skeleton. PLoS ONE 2021, 16, e0255953. [Google Scholar] [CrossRef] [PubMed]
  176. Xie, H.; Wang, X.; Jin, M.; Li, L.; Zhu, J.; Kang, Y.; Chen, Z.; Sun, Y.; Zhao, C. Cilia regulate meiotic recombination in zebrafish. J. Mol. Cell Biol. 2022, 14, mjac049. [Google Scholar] [CrossRef] [PubMed]
  177. Kim, H.; Park, H.; Schulz, E.T.; Azuma, Y.; Azuma, M. EWSR1 prevents the induction of aneuploidy through direct regulation of Aurora B. Front. Cell Dev. Biol. 2023, 11, 987153. [Google Scholar] [CrossRef] [PubMed]
  178. Liu, F.; Kambakam, S.; Almeida, M.P.; Ming, Z.; Welker, J.M.; Wierson, W.A.; Schultz-Rogers, L.E.; Ekker, S.C.; Clark, K.J.; Essner, J.J.; et al. Cre/Lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. eLife 2022, 11, e71478. [Google Scholar] [CrossRef] [PubMed]
  179. Anderson, R.A.; Oyarbide, U. Neuronal expression of ndst3 in early zebrafish development is responsive to wnt signaling manipulation. Gene Expr. Patterns 2023, 47, 119300. [Google Scholar] [CrossRef] [PubMed]
  180. Xu, H.; Wang, G.; Chi, Y.-Y.; Kou, Y.-X.; Li, Y. Expression profiling and functional characterization of the duplicated oxr1b gene in zebrafish. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2021, 39, 100857. [Google Scholar] [CrossRef] [PubMed]
  181. Lane, B.M.; Chryst-Stangl, M.; Wu, G.; Shalaby, M.; El Desoky, S.; Middleton, C.C.; Huggins, K.; Sood, A.; Ochoa, A.; Malone, A.F.; et al. Steroid-sensitive nephrotic syndrome candidate gene CLVS1 regulates podocyte oxidative stress and endocytosis. JCI Insight 2022, 7, e152102. [Google Scholar] [CrossRef] [PubMed]
  182. Watanabe, A.; Muraki, K.; Tamaoki, J.; Kobayashi, M. Soy-derived equol induces antioxidant activity in zebrafish in an nrf2-independent manner. Int. J. Mol. Sci. 2022, 23, 5243. [Google Scholar] [CrossRef] [PubMed]
  183. Xu, Y.; Peng, T.; Zhou, Q.; Zhu, J.; Liao, G.; Zou, F.; Meng, X. Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 266, 109550. [Google Scholar] [CrossRef] [PubMed]
  184. Mazumdar, R.; Eberhart, J.K. Loss of nicotinamide nucleotide transhydrogenase sensitizes embryos to ethanol-induced neural crest and neural apoptosis via generation of reactive oxygen species. Front. Neurosci. 2023, 17, 1154621. [Google Scholar] [CrossRef] [PubMed]
  185. Kevin Pan, Y.; Julian, T.; Garvey, K.; Perry, S.F. Catecholamines modulate the hypoxic ventilatory response of larval zebrafish (Danio rerio). J. Exp. Biol. 2023, 226, jeb245051. [Google Scholar] [CrossRef] [PubMed]
  186. Lelièvre, E.; Bureau, C.; Bordat, Y.; Frétaud, M.; Langevin, C.; Jopling, C.; Kissa, K. Deficiency in hereditary hemorrhagic telangiectasia-associated endoglin elicits hypoxia-driven heart failure in zebrafish. Dis. Model. Mech. 2023, 16, dmm049488. [Google Scholar] [CrossRef] [PubMed]
  187. Dinarello, A.; Betto, R.M.; Diamante, L.; Tesoriere, A.; Ghirardo, R.; Cioccarelli, C.; Meneghetti, G.; Peron, M.; Laquatra, C.; Tiso, N.; et al. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell Death Discov. 2023, 9, 226. [Google Scholar] [CrossRef] [PubMed]
  188. Zimmer, A.M.; Perry, S.F. The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish (Danio rerio). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 247, 110722. [Google Scholar] [CrossRef] [PubMed]
  189. Zimmer, A.M.; Shir-Mohammadi, K.; Kwong, R.W.M.; Perry, S.F. Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (Danio rerio) using CRISPR/Cas9 gene editing. J. Exp. Biol. 2019, 223 Pt 2, jeb215111. [Google Scholar] [CrossRef] [PubMed]
  190. Zimmer, A.M.; Mandic, M.; Yew, H.M.; Kunert, E.; Pan, Y.K.; Ha, J.; Kwong, R.W.M.; Gilmour, K.M.; Perry, S.F. Use of a carbonic anhydrase ca17a knockout to investigate mechanisms of ion uptake in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R55–R68. [Google Scholar] [CrossRef] [PubMed]
  191. Linnerz, T.; Sung, Y.J.; Rolland, L.; Astin, J.W.; Dalbeth, N.; Hall, C.J. Uricase-deficient larval zebrafish with elevated urate levels demonstrate suppressed acute inflammatory response to monosodium urate crystals and prolonged crystal persistence. Genes 2022, 13, 2179. [Google Scholar] [CrossRef] [PubMed]
  192. Solman, M.; Blokzijl-Franke, S.; Piques, F.; Yan, C.; Yang, Q.; Strullu, M.; Kamel, S.M.; Ak, P.; Bakkers, J.; Langenau, D.M.; et al. Inflammatory response in hematopoietic stem and progenitor cells triggered by activating SHP2 mutations evokes blood defects. eLife 2022, 11, e73040. [Google Scholar] [CrossRef] [PubMed]
  193. Sun, L.; Yang, B.; Peng, Z.; Yang, T.; Qin, B.; Ao, J.; Yang, Y.; Wang, J.; Zheng, L.; Xie, H. Transcriptomics and phenotypic analysis of gpr56 knockout in zebrafish. Int. J. Mol. Sci. 2023, 24, 7740. [Google Scholar] [CrossRef] [PubMed]
  194. Sobah, M.L.; Scott, A.C.; Laird, M.; Koole, C.; Liongue, C.; Ward, A.C. socs3b regulates the development and function of innate immune cells in zebrafish. Front. Immunol. 2023, 14, 1119727. [Google Scholar] [CrossRef] [PubMed]
  195. Bian, W.-P.; Xie, S.-L.; Wang, C.; Martinovich, G.G.; Ma, Y.-B.; Jia, P.-P.; Pei, D.-S. mitfa deficiency promotes immune vigor and potentiates antitumor effects in zebrafish. Fish. Shellfish. Immunol. 2023, 142, 109130. [Google Scholar] [CrossRef] [PubMed]
  196. Awasthi, N.; Ward, A.C.; Liongue, C. Analysis of potential non-canonical or alternate STAT5 functions in immune development and growth. Front. Biosci.-Landmark 2023, 28, 187. [Google Scholar] [CrossRef]
  197. Shanaka, K.A.S.N.; Jung, S.; Madushani, K.P.; Wijerathna, H.M.S.M.; Neranjan Tharuka, M.D.; Kim, M.-J.; Lee, J. Generation of viperin-knockout zebrafish by CRISPR/Cas9-mediated genome engineering and the effect of this mutation under VHSV infection. Fish. Shellfish. Immunol. 2022, 131, 672–681. [Google Scholar] [CrossRef] [PubMed]
  198. Streiff, C.; He, B.; Morvan, L.; Zhang, H.; Delrez, N.; Fourrier, M.; Manfroid, I.; Suárez, N.M.; Betoulle, S.; Davison, A.J.; et al. Susceptibility and permissivity of zebrafish (Danio rerio) larvae to Cypriniviruses. Viruses 2023, 15, 768. [Google Scholar] [CrossRef] [PubMed]
  199. Sellaththurai, S.; Jung, S.; Kim, M.-J.; Nadarajapillai, K.; Ganeshalingam, S.; Jeong, J.B.; Lee, J. CRISPR/Cas9-induced knockout of sting increases susceptibility of zebrafish to bacterial infection. Biomolecules 2023, 13, 324. [Google Scholar] [CrossRef] [PubMed]
  200. Saralahti, A.K.; Harjula, S.-K.E.; Rantapero, T.; Uusi-Mäkelä, M.I.E.; Kaasinen, M.; Junno, M.; Piippo, H.; Nykter, M.; Lohi, O.; Rounioja, S.; et al. Characterization of the innate immune response to streptococcus pneumoniae infection in zebrafish. PLoS Genet. 2023, 19, e1010586. [Google Scholar] [CrossRef] [PubMed]
  201. Wright, K.; de Silva, K.; Plain, K.M.; Purdie, A.C.; Blair, T.A.; Duggin, I.G.; Britton, W.J.; Oehlers, S.H. Mycobacterial infection-induced MiR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis. PLoS Pathog. 2021, 17, e1009186. [Google Scholar] [CrossRef]
  202. Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016, 351, 84–88. [Google Scholar] [CrossRef] [PubMed]
  203. Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [PubMed]
  204. Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef] [PubMed]
  205. Casini, A.; Olivieri, M.; Petris, G.; Montagna, C.; Reginato, G.; Maule, G.; Lorenzin, F.; Prandi, D.; Romanel, A.; Demichelis, F.; et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 2018, 36, 265–271. [Google Scholar] [CrossRef] [PubMed]
  206. Vakulskas, C.A.; Dever, D.P.; Rettig, G.R.; Turk, R.; Jacobi, A.M.; Collingwood, M.A.; Bode, N.M.; McNeill, M.S.; Yan, S.; Camarena, J.; et al. FDA, Briefing Packet AquAdvantage Salmon; FDA Center for Veterinary Medicine: Laurel, MD, USA, 2010; p. 61. [Google Scholar]
  207. Prykhozhij, S.V.; Cordeiro-Santanach, A.; Caceres, L.; Berman, J.N. Genome editing in zebrafish using high-fidelity Cas9 nucleases: Choosing the right nuclease for the task. Methods Mol. Biol. 2020, 2115, 385–405. [Google Scholar] [PubMed]
  208. Liu, P.; Luk, K.; Shin, M.; Idrizi, F.; Kwok, S.; Roscoe, B.; Mintzer, E.; Suresh, S.; Morrison, K.; Frazão, J.B.; et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 2019, 47, 4169–4180. [Google Scholar] [CrossRef] [PubMed]
  209. Álvarez, M.M.; Biayna, J.; Supek, F. TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat. Commun. 2022, 13, 4520. [Google Scholar] [CrossRef] [PubMed]
  210. Ferreira, F.J.; Carvalho, L.; Logarinho, E.; Bessa, J. foxm1 modulates cell non-autonomous response in zebrafish skeletal muscle homeostasis. Cells 2021, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
  211. Ah-Fong, A.M.V.; Boyd, A.M.; Matson, M.E.H.; Judelson, H.S. A Cas12a-based gene editing system for Phytophthora Infestans reveals monoallelic expression of an elicitor. Mol. Plant Pathol. 2021, 22, 737–752. [Google Scholar] [CrossRef] [PubMed]
  212. Wu, R.S.; Lam, I.I.; Clay, H.; Duong, D.N.; Deo, R.C.; Coughlin, S.R. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 2018, 46, 112–125. [Google Scholar] [CrossRef] [PubMed]
  213. Uusi-Mäkelä, M.I.E.; Barker, H.R.; Bäuerlein, C.A.; Häkkinen, T.; Nykter, M.; Rämet, M. Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio). PLoS ONE 2018, 13, e0196238. [Google Scholar] [CrossRef] [PubMed]
  214. Zhi, L.I.; Zhou, L.; Zhang, J.; Wang, Y.; Gui, J.F. A fast and efficient microinjection method in the fertilized eggs of teleost fish with adhesive eggs. Acta Hydrobiol. Sin. 2016, 40, 76–82. [Google Scholar]
  215. Goto, R.; Saito, T.; Matsubara, T.; Yamaha, E. Microinjection of marine fish eggs. Methods Mol. Biol. 2019, 1874, 475–487. [Google Scholar] [PubMed]
  216. JoVE. Science Education Database Biology II: Mouse, Zebrafish, and Chick. Zebrafish Microinjection Techniques. Available online: https://www.jove.com/v/5130/introduction-to-microinjection-of-early-zebrafish-embryos (accessed on 29 May 2024).
  217. Putri, R.R.; Chen, L. Spatiotemporal control of zebrafish (Danio rerio) gene expression using a light-activated CRISPR activation system. Gene 2018, 677, 273–279. [Google Scholar] [CrossRef] [PubMed]
  218. Huang, Y.; Shang, M.; Liu, T.; Wang, K. High-throughput methods for genome editing: The more the better. Plant Physiol. 2022, 188, 1731–1745. [Google Scholar] [CrossRef] [PubMed]
  219. Shah, A.N.; Davey, C.F.; Whitebirch, A.C.; Miller, A.C.; Moens, C.B. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods 2015, 12, 535–540. [Google Scholar] [CrossRef] [PubMed]
  220. Datlinger, P.; Rendeiro, A.F.; Schmidl, C.; Krausgruber, T.; Traxler, P.; Klughammer, J.; Schuster, L.C.; Kuchler, A.; Alpar, D.; Bock, C. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 2017, 14, 297–301. [Google Scholar] [CrossRef] [PubMed]
  221. Dalgin, G.; Prince, V.E. Midline Morphogenesis of zebrafish foregut endoderm is dependent on hoxb5b. Dev. Biol. 2021, 471, 1–9. [Google Scholar] [CrossRef] [PubMed]
  222. Chrystal, P.W.; French, C.R.; Jean, F.; Havrylov, S.; van Baarle, S.; Peturson, A.-M.; Xu, P.; Crump, J.G.; Pilgrim, D.B.; Lehmann, O.J.; et al. The axenfeld–rieger syndrome gene foxc1 contributes to left–right patterning. Genes 2021, 12, 170. [Google Scholar] [CrossRef] [PubMed]
  223. Dong, X.-R.; Wan, S.-M.; Zhou, J.-J.; Nie, C.-H.; Chen, Y.-L.; Diao, J.-H.; Gao, Z.-X. Functional differentiation of bmp7 genes in zebrafish: bmp7a for dorsal-ventral pattern and bmp7b for melanin synthesis and eye development. Front. Cell Dev. Biol. 2022, 10, 10:838721. [Google Scholar] [CrossRef] [PubMed]
  224. Livne, H.; Avital, T.; Ruppo, S.; Harazi, A.; Mitrani-Rosenbaum, S.; Daya, A. Generation and characterization of a novel gne knockout model in zebrafish. Front. Cell Dev. Biol. 2022, 24, 976111. [Google Scholar] [CrossRef] [PubMed]
  225. Seni-Silva, A.C.; Maleski, A.L.A.; Souza, M.M.; Falcao, M.A.P.; Disner, G.R.; Lopes-Ferreira, M.; Lima, C. Natterin-like depletion by CRISPR/Cas9 impairs zebrafish (Danio rerio) embryonic development. BMC Genom. 2022, 23, 123. [Google Scholar] [CrossRef] [PubMed]
  226. Huang, L.; Han, F.; Huang, Y.; Liu, J.; Liao, X.; Cao, Z.; Li, W. sphk1 deficiency induces apoptosis and developmental defects and premature death in zebrafish. Fish. Physiol. Biochem. 2023, 49, 737–750. [Google Scholar] [CrossRef] [PubMed]
  227. Cui, J.; Wen, D.; Wang, L.; Meng, C.; Wang, Y.; Zhao, Z.; Wu, C. CRISPR/Cas9-induced asap1a and asap1b co-knockout mutant zebrafish displayed abnormal embryonic development and impaired neutrophil migration. Gene Expr. Patterns 2023, 49, 119331. [Google Scholar] [CrossRef] [PubMed]
  228. Weinstein, R.; Bishop, K.; Broadbridge, E.; Yu, K.; Carrington, B.; Elkahloun, A.; Zhen, T.; Pei, W.; Burgess, S.M.; Liu, P.; et al. zrsr2 is essential for the embryonic development and splicing of minor introns in RNA and protein processing genes in zebrafish. Int. J. Mol. Sci. 2022, 23, 10668. [Google Scholar] [CrossRef] [PubMed]
  229. Dasgupta, S.; LaDu, J.K.; Garcia, G.R.; Li, S.; Tomono-Duval, K.; Rericha, Y.; Huang, L.; Tanguay, R.L. A CRISPR-Cas9 mutation in sox9b long intergenic noncoding RNA (slincR) affects zebrafish development, behavior, and regeneration. Toxicol. Sci. 2023, 194, 153–166. [Google Scholar] [CrossRef] [PubMed]
  230. Niu, X.; Zhang, F.; Ping, L.; Wang, Y.; Zhang, B.; Wang, J.; Chen, X. vwa1 knockout in zebrafish causes abnormal craniofacial chondrogenesis by regulating FGF pathway. Genes 2023, 14, 838. [Google Scholar] [CrossRef] [PubMed]
  231. Tonelli, F.; Leoni, L.; Daponte, V.; Gioia, R.; Cotti, S.; Fiedler, I.A.K.; Larianova, D.; Willaert, A.; Coucke, P.J.; Villani, S.; et al. Zebrafish tric-b is required for skeletal development and bone cells differentiation. Front. Endocrinol. 2023, 14, 1002914. [Google Scholar] [CrossRef] [PubMed]
  232. McGowan, L.M.; Kague, E.; Vorster, A.; Newham, E.; Cross, S.; Hammond, C.L. wnt16 elicits a protective effect against fractures and supports bone repair in zebrafish. JBMR Plus 2021, 5, e10461. [Google Scholar] [CrossRef] [PubMed]
  233. Qu, X.; Liao, M.; Liu, W.; Cai, Y.; Yi, Q.; Long, J.; Tan, L.; Deng, Y.; Deng, H.; Chen, X. Loss of wnt16 leads to skeletal deformities and downregulation of bone developmental pathway in zebrafish. Int. J. Mol. Sci. 2021, 22, 6673. [Google Scholar] [CrossRef] [PubMed]
  234. Yamada, K.; Maeno, A.; Araki, S.; Kikuchi, M.; Suzuki, M.; Ishizaka, M.; Satoh, K.; Akama, K.; Kawabe, Y.; Suzuki, K.; et al. An atlas of seven zebrafish HOX cluster mutants provides insights into sub/neofunctionalization of vertebrate HOX clusters. Development 2021, 148, dev198325. [Google Scholar] [CrossRef] [PubMed]
  235. Wu, Y.; Sun, A.; Nie, C.; Gao, Z.; Wan, S.-M. Functional differentiation of bmp2a and bmp2b genes in zebrafish. Gene Expr. Patterns 2022, 46, 119288. [Google Scholar] [CrossRef] [PubMed]
  236. Camacho-Macorra, C.; Sintes, M.; Tabanera, N.; Grasa, I.; Bovolenta, P.; Cardozo, M.J. mosmo is required for zebrafish craniofacial formation. Front. Cell Dev. Biol. 2021, 22, 767048. [Google Scholar] [CrossRef] [PubMed]
  237. Kague, E.; Hughes, S.M.; Lawrence, E.A.; Cross, S.; Martin-Silverstone, E.; Hammond, C.L.; Hinits, Y. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. FASEB J. 2019, 33, 9116–9130. [Google Scholar] [CrossRef] [PubMed]
  238. Alexandre-Moreno, S.; Bonet-Fernández, J.-M.; Atienzar-Aroca, R.; Aroca-Aguilar, J.-D.; Escribano, J. Null cyp1b1 activity in zebrafish leads to variable craniofacial defects associated with altered expression of extracellular matrix and lipid metabolism genes. Int. J. Mol. Sci. 2021, 22, 6430. [Google Scholar] [CrossRef] [PubMed]
  239. Wang, C.; Zhang, X.; Wang, X.; Zhai, Y.; Li, M.; Pan, J.; Bai, Y.; Rong, X.; Zhou, J. Genetic deletion of hspa8 leads to selective tissue malformations in zebrafish embryonic development. J. Cell Sci. 2022, 135, jcs259734. [Google Scholar] [CrossRef] [PubMed]
  240. Xiong, S.; Wu, J.; Jing, J.; Huang, P.; Li, Z.; Mei, J.; Gui, J.-F. Loss of stat3 function leads to spine malformation and immune disorder in zebrafish. Sci. Bull. 2017, 62, 185–196. [Google Scholar] [CrossRef] [PubMed]
  241. Terhune, E.A.; Cuevas, M.T.; Monley, A.M.; Wethey, C.I.; Chen, X.; Cattell, M.V.; Bayrak, M.N.; Bland, M.R.; Sutphin, B.; Trahan, G.D.; et al. Mutations in kif7 implicated in idiopathic scoliosis in humans and axial curvatures in zebrafish. Hum. Mutat. 2021, 42, 392–407. [Google Scholar] [CrossRef] [PubMed]
  242. Waldmann, L.; Leyhr, J.; Zhang, H.; Allalou, A.; Öhman-Mägi, C.; Haitina, T. The role of gdf5 in the development of the zebrafish fin endoskeleton. Dev. Dyn. 2022, 251, 1535–1549. [Google Scholar] [CrossRef] [PubMed]
  243. Nie, C.-H.; Wan, S.-M.; Chen, Y.-L.; Huysseune, A.; Wu, Y.-M.; Zhou, J.-J.; Hilsdorf, A.W.S.; Wang, W.-M.; Witten, P.E.; Lin, Q.; et al. Single-cell transcriptomes and runx2b−/− mutants reveal the genetic signatures of intermuscular bone formation in zebrafish. Natl. Sci. Rev. 2022, 9, nwac152. [Google Scholar] [CrossRef] [PubMed]
  244. Gan, R.-H.; Li, Z.; Wang, Z.-W.; Li, X.-Y.; Wang, Y.; Zhang, X.-J.; Tong, J.-F.; Wu, Y.; Xia, L.-Y.; Gao, Z.-X.; et al. Creation of intermuscular bone-free mutants in amphitriploid gibel carp by editing two duplicated runx2b homeologs. Aquaculture 2023, 567, 739300. [Google Scholar] [CrossRef]
  245. Ka, H.I.; Seo, H.; Choi, Y.; Kim, J.; Cho, M.; Choi, S.-Y.; Park, S.; Han, S.; An, J.; Chung, H.S.; et al. Loss of splicing factor IK impairs normal skeletal muscle development. BMC Biol. 2021, 19, 44. [Google Scholar] [CrossRef] [PubMed]
  246. Bhat, N.; Narayanan, A.; Fathzadeh, M.; Shah, K.; Dianatpour, M.; Abou Ziki, M.D.; Mani, A. dyrk1b promotes autophagy during skeletal muscle differentiation by upregulating 4e-Bp1. Cell Signal 2022, 90, 110186. [Google Scholar] [CrossRef] [PubMed]
  247. Voisard, P.; Diofano, F.; Glazier, A.A.; Rottbauer, W.; Just, S. CRISPR/Cas9-mediated constitutive loss of VCP (valosin-containing protein) impairs proteostasis and leads to defective striated muscle structure and function in vivo. Int. J. Mol. Sci. 2022, 23, 6722. [Google Scholar] [CrossRef] [PubMed]
  248. Rice, K.L.; Webb, S.E.; Miller, A.L. Localized TPC1-mediated Ca2+ release from endolysosomes contributes to myoseptal junction development in zebrafish. J. Cell Sci. 2022, 135, jcs259564. [Google Scholar] [CrossRef] [PubMed]
  249. Zhu, W.; Shi, Y.; Zhang, C.; Peng, Y.; Wan, Y.; Xu, Y.; Liu, X.; Han, B.; Zhao, S.; Kuang, Y.; et al. In-frame deletion of SMC5 related with the phenotype of primordial dwarfism, chromosomal instability and insulin resistance. Clin. Transl. Med. 2023, 13, e1007. [Google Scholar] [CrossRef] [PubMed]
  250. Xiong, S.; Mei, J.; Huang, P.; Jing, J.; Li, Z.; Kang, J.; Gui, J.-F. Essential roles of stat5.1/stat5b in controlling fish somatic growth. J. Genet. Genom. 2017, 44, 577–585. [Google Scholar] [CrossRef] [PubMed]
  251. Cleveland, B.M.; Yamaguchi, G.; Radler, L.M.; Shimizu, M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 16054. [Google Scholar] [CrossRef] [PubMed]
  252. Cleveland, B.M.; Habara, S.; Oikawa, J.; Radler, L.M.; Shimizu, M. Compensatory response of the somatotropic axis from IGFBP-2b gene editing in rainbow trout (Oncorhynchus mykiss). Genes 2020, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
  253. Shahi, N.; Mallik, S.K.; Sarma, D. Muscle growth in targeted knockout common carp (Cyprinus carpio) mstn gene with low off-target effects. Aquaculture 2022, 547, 737423. [Google Scholar] [CrossRef]
  254. Dong, Z.; Ge, J.; Xu, Z.; Dong, X.; Cao, S.; Pan, J.; Zhao, Q. Generation of myostatin b knockout yellow catfish (Tachysurus fulvidraco) using transcription activator-like effector nucleases. Zebrafish 2014, 11, 265–274. [Google Scholar] [CrossRef] [PubMed]
  255. Khalil, K.; Elayat, M.; Khalifa, E.; Daghash, S.; Elaswad, A.; Miller, M.; Abdelrahman, H.; Ye, Z.; Odin, R.; Drescher, D.; et al. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci. Rep. 2017, 7, 7301. [Google Scholar] [CrossRef] [PubMed]
  256. Kim, J.; Cho, J.Y.; Kim, J.-W.; Kim, H.-C.; Noh, J.K.; Kim, Y.-O.; Hwang, H.-K.; Kim, W.-J.; Yeo, S.-Y.; An, C.M.; et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder (Paralichthys olivaceus). Aquaculture 2019, 512, 734336. [Google Scholar] [CrossRef]
  257. Yeh, Y.-C.; Kinoshita, M.; Ng, T.H.; Chang, Y.-H.; Maekawa, S.; Chiang, Y.-A.; Aoki, T.; Wang, H.-C. Using CRISPR/Cas9-mediated gene editing to further explore growth and trade-off effects in myostatin-mutated F4 medaka (Oryzias latipes). Sci. Rep. 2017, 7, 11435. [Google Scholar] [CrossRef] [PubMed]
  258. Wu, Y.; Wu, T.; Yang, L.; Su, Y.; Zhao, C.; Li, L.; Cai, J.; Dai, X.; Wang, D.; Zhou, L. Generation of fast growth Nile tilapia (Oreochromis niloticus) by myostatin gene mutation. Aquaculture 2023, 562, 738762. [Google Scholar] [CrossRef]
  259. Yang, Z.; Wong, J.; Wang, L.; Sun, F.; Yue, G.H. pomc knockout increases growth in zebrafish. Aquaculture 2023, 574, 739707. [Google Scholar] [CrossRef]
  260. Che, J.; Hu, C.; Wang, Q.; Fan, C.; Si, Y.; Gong, X.; Bao, B. The double mutations of acvr2aa and acvr2ba leads to muscle hypertrophy in zebrafish. Aquac. Fish. 2023, 8, 706–712. [Google Scholar] [CrossRef]
  261. Li, S.-Z.; Liu, W.; Li, Z.; Li, W.-H.; Wang, Y.; Zhou, L.; Gui, J.-F. greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 2017, 627, 176–187. [Google Scholar] [CrossRef] [PubMed]
  262. Song, J.; Lu, Y.; Cheng, X.; Shi, C.; Lou, Q.; Jin, X.; He, J.; Zhai, G.; Yin, Z. Functions of the thyroid-stimulating hormone on key developmental features revealed in a series of zebrafish dyshormonogenesis models. Cells 2021, 10, 1984. [Google Scholar] [CrossRef] [PubMed]
  263. Sun, F.; Fang, Y.; Zhang, M.-M.; Zhang, R.-J.; Wu, F.-Y.; Yang, R.-M.; Tu, P.-H.; Dong, M.; Zhao, S.-X.; Song, H.-D. Genetic manipulation on zebrafish duox recapitulate the clinical manifestations of congenital hypothyroidism. Endocrinology 2021, 162, bqab101. [Google Scholar] [CrossRef] [PubMed]
  264. Del Vecchio, G.; Murashita, K.; Verri, T.; Gomes, A.S.; Rønnestad, I. Leptin receptor-deficient (knockout) zebrafish: Effects on nutrient acquisition. Gen. Comp. Endocrinol. 2021, 310, 113832. [Google Scholar] [CrossRef] [PubMed]
  265. He, J.; Ding, Y.; Nowik, N.; Jager, C.; Eeza, M.N.H.; Alia, A.; Baelde, H.J.; Spaink, H.P. Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. J. Endocrinol. 2021, 249, 125–134. [Google Scholar] [CrossRef] [PubMed]
  266. Hu, Z.; Ai, N.; Chen, W.; Wong, Q.W.-L.; Ge, W. Leptin and its signaling are not involved in zebrafish puberty onset. Biol. Reprod. 2022, 106, 928–942. [Google Scholar] [CrossRef] [PubMed]
  267. Lu, J.; Cheng, C.; Cheng, Z.-C.; Wu, Q.; Shen, H.; Yuan, M.; Zhang, B.; Yang, J.-K. The dual role of rfx6 in directing β cell development and insulin production. J. Mol. Endocrinol. 2021, 66, 129–140. [Google Scholar] [CrossRef] [PubMed]
  268. Qi, H.; Schmöhl, F.; Li, X.; Qian, X.; Tabler, C.T.; Bennewitz, K.; Sticht, C.; Morgenstern, J.; Fleming, T.; Volk, N.; et al. Reduced acrolein detoxification in akr1a1a zebrafish mutants causes impaired insulin receptor signaling and microvascular alterations. Adv. Sci. 2021, 8, e2101281. [Google Scholar] [CrossRef] [PubMed]
  269. Zeng, N.; Bao, J.; Shu, T.; Shi, C.; Zhai, G.; Jin, X.; He, J.; Lou, Q.; Yin, Z. Sexual dimorphic effects of igf1 deficiency on metabolism in zebrafish. Front. Endocrinol. 2022, 13, 879962. [Google Scholar] [CrossRef] [PubMed]
  270. Mattis, K.K.; Krentz, N.A.J.; Metzendorf, C.; Abaitua, F.; Spigelman, A.F.; Sun, H.; Ikle, J.M.; Thaman, S.; Rottner, A.K.; Bautista, A.; et al. Loss of RREB1 in pancreatic β cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023, 66, 674–694. [Google Scholar] [CrossRef] [PubMed]
  271. Tabler, C.T.; Lodd, E.; Bennewitz, K.; Middel, C.S.; Erben, V.; Ott, H.; Poth, T.; Fleming, T.; Morgenstern, J.; Hausser, I.; et al. Loss of glyoxalase 2 alters the glucose metabolism in zebrafish. Redox Biol. 2023, 59, 102576. [Google Scholar] [CrossRef] [PubMed]
  272. Xu, Y.; Tian, J.; Kang, Q.; Yuan, H.; Liu, C.; Li, Z.; Liu, J.; Li, M. Knockout of nur77 leads to amino acid, lipid, and glucose metabolism disorders in zebrafish. Front. Endocrinol. 2022, 13, 864631. [Google Scholar] [CrossRef] [PubMed]
  273. Zhao, Y.; Castro, L.F.C.; Monroig, Ó.; Cao, X.; Sun, Y.; Gao, J. A zebrafish pparγ gene deletion reveals a protein kinase network associated with defective lipid metabolism. Funct. Integr. Genom. 2022, 22, 435–450. [Google Scholar] [CrossRef] [PubMed]
  274. Balamurugan, K.; Medishetti, R.; Kotha, J.; Behera, P.; Chandra, K.; Mavuduru, V.A.; Joshi, M.B.; Samineni, R.; Katika, M.R.; Ball, W.B.; et al. PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. iScience 2022, 25, 103766. [Google Scholar] [CrossRef] [PubMed]
  275. Schlosser, A.; Helfenrath, K.; Wisniewsky, M.; Hinrichs, K.; Burmester, T.; Fabrizius, A. The knockout of cytoglobin 1 in zebrafish (Danio rerio) alters lipid metabolism, iron homeostasis and oxidative stress response. Biochim. Biophys. Acta 2023, 1870, 119558. [Google Scholar] [CrossRef] [PubMed]
  276. Sun, S.; Wang, Y.; Goh, P.-T.; Lopes-Marques, M.; Castro, L.F.C.; Monroig, Ó.; Kuah, M.-K.; Cao, X.; Shu-Chien, A.C.; Gao, J. Evolution and functional characteristics of the novel elovl8 that play pivotal roles in fatty acid biosynthesis. Genes 2021, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
  277. Bláhová, Z.; Franěk, R.; Let, M.; Bláha, M.; Pšenička, M.; Mráz, J. Partial fads2 gene knockout diverts LC-PUFA Biosynthesis via an alternative δ8 pathway with an impact on the reproduction of female zebrafish (Danio rerio). Genes 2022, 13, 700. [Google Scholar] [CrossRef] [PubMed]
  278. Datsomor, A.K.; Olsen, R.E.; Zic, N.; Madaro, A.; Bones, A.M.; Edvardsen, R.B.; Wargelius, A.; Winge, P. CRISPR/Cas9-mediated editing of δ5 and δ6 desaturases impairs δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci. Rep. 2019, 9, 16888. [Google Scholar] [CrossRef] [PubMed]
  279. Datsomor, A.K.; Zic, N.; Li, K.; Olsen, R.E.; Jin, Y.; Vik, J.O.; Edvardsen, R.B.; Grammes, F.; Wargelius, A.; Winge, P. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces srebp-1 and target genes. Sci. Rep. 2019, 9, 7533. [Google Scholar] [CrossRef] [PubMed]
  280. Cai, W.-J.; Li, J.; Li, L.; Chen, X.; Wei, J.-R.; Yin, Z.; He, S.; Liang, X.-F. Knockout of t1r1 gene in zebrafish (Danio rerio) by CRISPR/Cas9 reveals its roles in regulating feeding behavior. Aquaculture 2021, 545, 737189. [Google Scholar] [CrossRef]
  281. Wargelius, A.; Leininger, S.; Skaftnesmo, K.O.; Kleppe, L.; Andersson, E.; Taranger, G.L.; Schulz, R.W.; Edvardsen, R.B. dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 2016, 6, 21284. [Google Scholar] [CrossRef] [PubMed]
  282. Williams, J.S.; Hsu, J.Y.; Rossi, C.C.; Artinger, K.B. Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration. Dev. Biol. 2018, 444, S274–S286. [Google Scholar] [CrossRef] [PubMed]
  283. Saunders, L.M.; Mishra, A.K.; Aman, A.J.; Lewis, V.M.; Toomey, M.B.; Packer, J.S.; Qiu, X.; McFaline-Figueroa, J.L.; Corbo, J.C.; Trapnell, C.; et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019, 8, e45181. [Google Scholar] [CrossRef] [PubMed]
  284. Nagao, Y.; Takada, H.; Miyadai, M.; Adachi, T.; Seki, R.; Kamei, Y.; Hara, I.; Taniguchi, Y.; Naruse, K.; Hibi, M.; et al. Distinct interactions of sox5 and sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet. 2018, 14, e1007260. [Google Scholar] [CrossRef] [PubMed]
  285. Miyadai, M.; Takada, H.; Shiraishi, A.; Kimura, T.; Watakabe, I.; Kobayashi, H.; Nagao, Y.; Naruse, K.; Higashijima, S.; Shimizu, T.; et al. A gene regulatory network combining pax3/7, sox10 and mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023, 150, dev202114. [Google Scholar] [CrossRef]
  286. Granneman, J.G.; Kimler, V.A.; Zhang, H.; Ye, X.; Luo, X.; Postlethwait, J.H.; Thummel, R. Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. eLife 2017, 6, e21771. [Google Scholar] [CrossRef] [PubMed]
  287. Verwilligen, R.A.F.; Mulder, L.; Araújo, P.M.; Carneiro, M.; Bussmann, J.; Hoekstra, M.; Van Eck, M. Zebrafish as outgroup model to study evolution of scavenger receptor class B type I functions. Biochim. Biophys. Acta 2023, 1868, 159308. [Google Scholar] [CrossRef] [PubMed]
  288. Mo, E.S.; Cheng, Q.; Reshetnyak, A.V.; Schlessinger, J.; Nicoli, S. Alk and Ltk ligands are essential for iridophore development in zebrafish mediated by the receptor tyrosine kinase LTK. Proc. Natl. Acad. Sci. USA 2017, 114, 12027–12032. [Google Scholar] [CrossRef] [PubMed]
  289. Spiewak, J.E.; Bain, E.J.; Liu, J.; Kou, K.; Sturiale, S.L.; Patterson, L.B.; Diba, P.; Eisen, J.S.; Braasch, I.; Ganz, J.; et al. Evolution of endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet. 2018, 14, e1007538. [Google Scholar] [CrossRef] [PubMed]
  290. Chen, H.; Wang, J.; Du, J.; Si, Z.; Yang, H.; Xu, X.; Wang, C. ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture 2019, 498, 230–235. [Google Scholar] [CrossRef]
  291. Mandal, B.K.; Chen, H.; Si, Z.; Hou, X.; Yang, H.; Xu, X.; Wang, J.; Wang, C. Shrunk and scattered black spots turn out due to MC1R knockout in a white-black Oujiang color common carp (Cyprinus carpio Var. color). Aquaculture 2020, 518, 734822. [Google Scholar] [CrossRef]
  292. Chen, H.; Wang, J.; Du, J.; Mandal, B.K.; Si, Z.; Xu, X.; Yang, H.; Wang, C. Analysis of recently duplicated tyrp1 genes and their effect on the formation of black patches in Oujiang-color common carp (Cyprinus carpio var. color). Anim. Genet. 2021, 52, 451–460. [Google Scholar] [CrossRef] [PubMed]
  293. Liu, Q.; Qi, Y.; Liang, Q.; Song, J.; Liu, J.; Li, W.; Shu, Y.; Tao, M.; Zhang, C.; Qin, Q.; et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 2019, 62, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
  294. Davis, A.E.; Castranova, D.; Weinstein, B.M. Rapid generation of pigment free, immobile zebrafish embryos and larvae in any genetic background using CRISPR-Cas9 DgRNPs. Zebrafish 2021, 18, 235–242. [Google Scholar] [CrossRef] [PubMed]
  295. Cal, L.; Suarez-Bregua, P.; Braasch, I.; Irion, U.; Kelsh, R.; Cerdá-Reverter, J.M.; Rotllant, J. Loss-of-function mutations in the melanocortin 1 receptor cause disruption of dorso-ventral countershading in teleost fish. Pigment. Cell Melanoma Res. 2019, 32, 817–828. [Google Scholar] [CrossRef] [PubMed]
  296. Cal, L.; Suarez-Bregua, P.; Comesaña, P.; Owen, J.; Braasch, I.; Kelsh, R.; Cerdá-Reverter, J.M.; Rotllant, J. Countershading in zebrafish results from an asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci. Rep. 2019, 9, 3449. [Google Scholar] [CrossRef] [PubMed]
  297. Mei, J.; Gui, J.-F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci. China Life Sci. 2015, 58, 124–136. [Google Scholar] [CrossRef] [PubMed]
  298. Kichigin, I.G.; Andreyushkova, D.A.; Pobedintseva, M.A.; Trifonov, V.A. Diversity of sex determining mechanisms in ray-finned fishes (Actinopterygii). Tsitologiya 2016, 58, 405–411. [Google Scholar]
  299. Lau, E.S.-W.; Zhang, Z.; Qin, M.; Ge, W. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci. Rep. 2016, 6, 37357. [Google Scholar] [CrossRef] [PubMed]
  300. Dranow, D.B.; Hu, K.; Bird, A.M.; Lawry, S.T.; Adams, M.T.; Sanchez, A.; Amatruda, J.F.; Draper, B.W. bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet. 2016, 12, e1006323. [Google Scholar] [CrossRef] [PubMed]
  301. Yin, Y.; Tang, H.; Liu, Y.; Chen, Y.; Li, G.; Liu, X.; Lin, H. Targeted disruption of aromatase reveals dual functions of cyp19a1a during sex differentiation in zebrafish. Endocrinology 2017, 158, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
  302. WU, K.; Song, W.; Zhang, Z.; Ge, W. Disruption of dmrt1 rescues the all-male phenotype of cyp19a1a mutant in zebrafish—A novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development 2020, 147, dev182758. [Google Scholar] [CrossRef] [PubMed]
  303. Zhang, Z.; Zhu, B.; Ge, W. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol. Endocrinol. 2015, 29, 76–98. [Google Scholar] [CrossRef] [PubMed]
  304. Zhang, Z.; Lau, S.-W.; Zhang, L.; Ge, W. Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 2015, 156, 3747–3762. [Google Scholar] [CrossRef] [PubMed]
  305. Zhu, Y.; Liu, D.; Shaner, Z.C.; Chen, S.; Hong, W.; Stellwag, E.J. Nuclear progestin receptor (pgr) knockouts in zebrafish demonstrate role for pgr in ovulation but not in rapid non-genomic steroid mediated meiosis resumption. Front. Endocrinol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
  306. Yan, Y.; Desvignes, T.; Bremiller, R.; Wilson, C.; Dillon, D.; High, S.; Draper, B.; Buck, C.L.; Postlethwait, J. gonadal soma controls ovarian follicle proliferation through gsdf in zebrafish. Dev. Dyn. 2017, 246, 925–945. [Google Scholar] [CrossRef] [PubMed]
  307. Lu, H.; Cui, Y.; Jiang, L.; Ge, W. Functional analysis of nuclear estrogen receptors in zebrafish reproduction by genome editing approach. Endocrinology 2017, 158, 2292–2308. [Google Scholar] [CrossRef] [PubMed]
  308. Hong, Q.; Li, C.; Ying, R.; Lin, H.; Li, J.; Zhao, Y.; Cheng, H.; Zhou, R. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish. Protein Cell 2019, 10, 347–364. [Google Scholar] [CrossRef] [PubMed]
  309. Zhao, C.; Zhai, Y.; Geng, R.; Wu, K.; Song, W.; Ai, N.; Ge, W. Genetic analysis of activin/inhibin β subunits in zebrafish development and reproduction. PLoS Genet. 2022, 18, e1010523. [Google Scholar] [CrossRef] [PubMed]
  310. Zhai, Y.; Zhang, X.; Zhao, C.; Geng, R.; Wu, K.; Yuan, M.; Ai, N.; Ge, W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet. 2023, 19, e1010954. [Google Scholar] [CrossRef] [PubMed]
  311. Zhai, G.; Shu, T.; Xia, Y.; Jin, X.; He, J.; Yin, Z. Androgen signaling regulates the transcription of anti-müllerian hormone via synergy with SRY-related protein SOX9A. Sci. Bull. 2017, 62, 197–203. [Google Scholar] [CrossRef] [PubMed]
  312. Shu, T.; Zhai, G.; Pradhan, A.; Olsson, P.-E.; Yin, Z. Zebrafish cyp17a1 knockout reveals that androgen-mediated signaling is important for male brain sex differentiation. Gen. Comp. Endocrinol. 2020, 295, 113490. [Google Scholar] [CrossRef] [PubMed]
  313. Zhang, Q.; Ye, D.; Wang, H.; Wang, Y.; Hu, W.; Sun, Y. Zebrafish cyp11c1 knockout reveals the roles of 11-ketotestosterone and cortisol in sexual development and reproduction. Endocrinology 2020, 161, bqaa048s. [Google Scholar] [CrossRef] [PubMed]
  314. Yu, G.; Zhang, D.; Liu, W.; Wang, J.; Liu, X.; Zhou, C.; Gui, J.; Xiao, W. Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 2018, 9, 24320–24334. [Google Scholar] [CrossRef] [PubMed]
  315. Crowder, C.M.; Lassiter, C.S.; Gorelick, D.A. Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology 2018, 159, 980–993. [Google Scholar] [CrossRef] [PubMed]
  316. Tang, H.; Chen, Y.; Wang, L.; Yin, Y.; Li, G.; Guo, Y.; Liu, Y.; Lin, H.; Cheng, C.H.K.; Liu, X. Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol. Reprod. 2018, 98, 227–238. [Google Scholar] [CrossRef] [PubMed]
  317. Zhang, Z.; Wu, K.; Ren, Z.; Ge, W. Genetic evidence for amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signalling through Bmpr2a receptor. Development 2020, 147, dev189811. [Google Scholar] [CrossRef] [PubMed]
  318. Lin, Q.; Mei, J.; Li, Z.; Zhang, X.; Zhou, L.; Gui, J.-F. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 2017, 207, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
  319. Kossack, M.E.; High, S.K.; Hopton, R.E.; Yan, Y.; Postlethwait, J.H.; Draper, B.W. Female sex development and reproductive duct formation depend on wnt4a in zebrafish. Genetics 2019, 211, 219–233. [Google Scholar] [CrossRef] [PubMed]
  320. Atienzar-Aroca, R.; Aroca-Aguilar, J.-D.; Alexandre-Moreno, S.; Ferre-Fernández, J.-J.; Bonet-Fernández, J.-M.; Cabañero-Varela, M.-J.; Escribano, J. Knockout of myoc provides evidence for the role of myocilin in zebrafish sex determination associated with wnt signalling downregulation. Biology 2021, 10, 98. [Google Scholar] [CrossRef] [PubMed]
  321. Song, Y.; Chen, W.; Zhu, B.; Ge, W. Disruption of Epidermal growth factor receptor but not EGF blocks follicle activation in zebrafish ovary. Front. Cell Dev. Biol. 2022, 9, 750888. [Google Scholar] [CrossRef] [PubMed]
  322. Qin, M.; Xie, Q.; Wu, K.; Zhou, X.; Ge, W. Loss of nobox prevents ovarian differentiation from juvenile ovaries in zebrafish. Biol. Reprod. 2022, 106, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
  323. Nanjappa, D.P.; De Saffel, H.; Kalladka, K.; Arjuna, S.; Babu, N.; Prasad, K.; Sips, P.; Chakraborty, A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci. Rep. 2023, 13, 10026. [Google Scholar] [CrossRef] [PubMed]
  324. Fontana, C.M.; Terrin, F.; Facchinello, N.; Meneghetti, G.; Dinarello, A.; Gambarotto, L.; Zuccarotto, A.; Caichiolo, M.; Brocca, G.; Verin, R.; et al. Zebrafish ambra1b knockout reveals a novel role for ambra1 in primordial germ cells survival, sex differentiation and reproduction. Biol. Res. 2023, 56, 19. [Google Scholar] [CrossRef] [PubMed]
  325. Mitchell, K.; Mikwar, M.; Da Fonte, D.; Lu, C.; Tao, B.; Peng, D.; Erandani, W.K.C.U.; Hu, W.; Trudeau, V.L. Secretoneurin is a secretogranin-2 derived hormonal peptide in vertebrate neuroendocrine systems. Gen. Comp. Endocrinol. 2020, 299, 113588. [Google Scholar] [CrossRef] [PubMed]
  326. Ramachandran, D.; Sharma, K.; Saxena, V.; Nipu, N.; Rajapaksha, D.C.; Mennigen, J.A. Knock-out of vasotocin reduces reproductive success in female zebrafish (Danio rerio). Front. Endocrinol. 2023, 14, 1151299. [Google Scholar] [CrossRef] [PubMed]
  327. Gan, R.-H.; Wang, Y.; Li, Z.; Yu, Z.-X.; Li, X.-Y.; Tong, J.-F.; Wang, Z.-W.; Zhang, X.-J.; Zhou, L.; Gui, J.-F. Functional divergence of multiple duplicated foxl2 homeologs and alleles in a recurrent polyploid fish. Mol. Biol. Evol. 2021, 38, 1995–2013. [Google Scholar] [CrossRef] [PubMed]
  328. Webster, K.A.; Schach, U.; Ordaz, A.; Steinfeld, J.S.; Draper, B.W.; Siegfried, K.R. dmrt1 is necessary for male sexual development in zebrafish. Dev. Biol. 2017, 422, 33–46. [Google Scholar] [CrossRef] [PubMed]
  329. Yano, A.; Guyomard, R.; Nicol, B.; Jouanno, E.; Quillet, E.; Klopp, C.; Cabau, C.; Bouchez, O.; Fostier, A.; Guiguen, Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout (Oncorhynchus mykiss). Curr. Biol. 2012, 22, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
  330. Yano, A.; Nicol, B.; Jouanno, E.; Guiguen, Y. Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar. Biotechnol. 2014, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
  331. Xia, H.; Zhong, C.; Wu, X.; Chen, J.; Tao, B.; Xia, X.; Shi, M.; Zhu, Z.; Trudeau, V.L.; Hu, W. mettl3 mutation disrupts gamete maturation and reduces fertility in zebrafish. Genetics 2018, 208, 729–743. [Google Scholar] [CrossRef] [PubMed]
  332. Chu, W.-K.; Huang, S.-C.; Chang, C.-F.; Wu, J.-L.; Gong, H.-Y. Infertility control of transgenic fluorescent zebrafish with targeted mutagenesis of the dnd1 gene by CRISPR/Cas9 genome editing. Front. Genet. 2023, 14, 1029200. [Google Scholar] [CrossRef] [PubMed]
  333. Fujihara, R.; Katayama, N.; Sadaie, S.; Miwa, M.; Sanchez Matias, G.A.; Ichida, K.; Fujii, W.; Naito, K.; Hayashi, M.; Yoshizaki, G. Production of germ cell-less rainbow trout by dead end gene knockout and their use as recipients for germ cell transplantation. Mar. Biotechnol. 2022, 24, 417–429. [Google Scholar] [CrossRef] [PubMed]
  334. Yilmaz, O.; Patinote, A.; Nguyen, T.; Com, E.; Pineau, C.; Bobe, J. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio). Mol. Reprod. Dev. 2019, 86, 1168–1188s. [Google Scholar] [CrossRef] [PubMed]
  335. Pachoensuk, T.; Fukuyo, T.; Rezanujjaman, M.; Wanlada, K.; Yamamoto, C.; Maeno, A.; Rahaman, M.M.; Ali, M.H.; Tokumoto, T. Zebrafish stm is involved in the development of otoliths and of the fertilization envelope. J. Reprod. Infertil. 2021, 2, 7–16. [Google Scholar] [CrossRef] [PubMed]
  336. Yang, Z.; Yue, G.H.; Wong, S.-M. VNN disease and status of breeding for resistance to NNV in aquaculture. Aquac. Fish. 2022, 7, 147–157. [Google Scholar] [CrossRef]
  337. Zhu, J.; Yang, J.; Wen, H.; Wang, M.; Zheng, X.; Zhao, J.; Sun, X.; Yang, P.; Mao, Q.; Li, Y.; et al. Expression and functional analysis of fam76b in zebrafish. Fish. Shellfish. Immunol. 2023, 142, 109161. [Google Scholar] [CrossRef] [PubMed]
  338. Yang, Z.; Wong, S.M.; Yue, G.H. Effects of rrm1 on NNV resistance revealed by RNA-seq and gene editing. Mar. Biotechnol. 2021, 23, 854–869. [Google Scholar] [CrossRef] [PubMed]
  339. Zhu, J.; Liu, X.; Cai, X.; Ouyang, G.; Fan, S.; Wang, J.; Xiao, W. Zebrafish prmt7 negatively regulates antiviral responses by suppressing the retinoic acid-inducible gene-I-like receptor signaling. FASEB J. 2020, 34, 988–1000. [Google Scholar] [CrossRef] [PubMed]
  340. Yang, Z.; Yu, Y.; Wang, L.; Wong, S.-M.; Yue, G.H. Silencing Asian seabass gab3 inhibits Nervous Necrosis Virus replication. Mar. Biotechnol. 2022, 24, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
  341. Nadarajapillai, K.; Jung, S.; Sellaththurai, S.; Ganeshalingam, S.; Kim, M.-J.; Lee, J. CRISPR/Cas9-mediated knockout of tnf-α1 in zebrafish reduces disease resistance after Edwardsiella piscicida bacterial infection. Fish. Shellfish. Immunol. 2024, 144, 109249. [Google Scholar] [CrossRef] [PubMed]
  342. Sommer, F.; Torraca, V.; Kamel, S.M.; Lombardi, A.; Meijer, A.H. Frontline science: Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish. J. Leukoc. Biol. 2020, 107, 185–203. [Google Scholar] [CrossRef] [PubMed]
  343. Coogan, M.; Alston, V.; Su, B.; Khalil, K.; Elaswad, A.; Khan, M.; Simora, R.M.C.; Johnson, A.; Xing, D.; Li, S.; et al. CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture 2022, 557, 738290. [Google Scholar] [CrossRef]
  344. Lu, G.; Luo, M. Genomes of major fishes in world fisheries and aquaculture: Status, application and perspective. Aquac. Fish. 2020, 5, 163–173. [Google Scholar] [CrossRef]
  345. Aparicio, S.; Chapman, J.; Stupka, E.; Putnam, N.; Chia, J.; Dehal, P.; Christoffels, A.; Rash, S.; Hoon, S.; Smit, A.; et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002, 297, 1301–1310. [Google Scholar] [CrossRef]
  346. Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
  347. Glasauer, S.M.K.; Neuhauss, S.C.F. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
  348. Chen, G.; Xiong, L.; Wang, Y.; He, L.; Huang, R.; Liao, L.; Zhu, Z.; Wang, Y. ITGB1b-deficient rare minnows delay Grass Carp Reovirus (GCRV) entry and attenuate GCRV-triggered apoptosis. Int. J. Mol. Sci. 2018, 19, 3175. [Google Scholar] [CrossRef] [PubMed]
  349. Gratacap, R.L.; Regan, T.; Dehler, C.E.; Martin, S.A.M.; Boudinot, P.; Collet, B.; Houston, R.D. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol. 2020, 20, 35. [Google Scholar] [CrossRef] [PubMed]
  350. Jin, Y.H.; Robledo, D.; Hickey, J.M.; McGrew, M.J.; Houston, R.D. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol. Adv. 2021, 49, 107756. [Google Scholar] [CrossRef] [PubMed]
  351. Zohar, Y. Endocrinology and fish farming: Aspects in reproduction, growth, and smoltification. Fish. Physiol. Biochem. 1989, 7, 395–405. [Google Scholar] [CrossRef] [PubMed]
  352. Muir, W.M.; Howard, R.D. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the trojan gene hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 13853–13856. [Google Scholar] [CrossRef] [PubMed]
  353. Stigebrandt, A.; Aure, J.; Ervik, A.; Hansen, P.K. Regulating the local environmental impact of intensive marine fish farming. Aquaculture 2004, 234, 239–261. [Google Scholar] [CrossRef]
  354. Zhang, Y.; Xia, H.; Liu, L.; Yang, P.; Shao, L.; Tang, L. Progress in infertility control technology of fish. Isr. J. Aquacult.-Bamid. 2022, 74, 1–9. [Google Scholar] [CrossRef]
  355. Xu, L.; Zhao, M.; Ryu, J.H.; Hayman, E.S.; Fairgrieve, W.T.; Zohar, Y.; Luckenbach, J.A.; Wong, T. Reproductive sterility in aquaculture: A review of induction methods and an emerging approach with application to pacific northwest finfish species. Rev. Aquac. 2023, 15, 220–241. [Google Scholar] [CrossRef]
  356. Benfey, T.J.; Sutterlin, A.M. Triploidy induced by heat shock and hydrostatic pressure in landlocked Atlantic salmon (Salmo salar L.). Aquaculture 1984, 36, 359–367. [Google Scholar] [CrossRef]
  357. Bazaz, A.I.; Ahmad, I.; Nafath-ul-Arab, I.; Shah, T.H.; Asimi, O.; Bhat, B.A.; Yousuf, Z.; Baba, S.H.; Razak, N.; Fatima, A. A Review on induction of triploidy in fish using heat, pressure and cold shock treatments. J. Entomol. Zool. Stud. 2020, 8, 381–385. [Google Scholar]
  358. Chourrout, D.; Nakayama, I. Chromosome studies of progenies of tetraploid female rainbow trout. Theor. Appl. Genet. 1987, 74, 687–692. [Google Scholar] [CrossRef] [PubMed]
  359. Madaro, A.; Kjøglum, S.; Hansen, T.; Fjelldal, P.G.; Stien, L.H. A Comparison of triploid and diploid Atlantic salmon (Salmo salar) performance and welfare under commercial farming conditions in Norway. J. Appl. Aquac. 2022, 34, 1021–1035. [Google Scholar] [CrossRef]
  360. Chevassus, B. Hybridization in fish. Aquaculture 1983, 33, 245–262. [Google Scholar] [CrossRef]
  361. Hulata, G. A Review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquaculture 1995, 129, 143–155. [Google Scholar] [CrossRef]
  362. Smitherman, R.O.; Dunham, R.A. Genetics and Breeding. In Channel Catfish Culture; Tucker, C.S., Ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1985. [Google Scholar]
  363. Hulata, G. Genetic manipulations in aquaculture: A review of stock improvement by classical and modern technologies. Genetica 2001, 111, 155–173. [Google Scholar] [CrossRef] [PubMed]
  364. Cao, M.; Chen, J.; Peng, W.; Wang, Y.; Liao, L.; Li, Y.; Trudeau, V.L.; Zhu, Z.; Hu, W. Effects of Growth hormone over-expression on reproduction in the common carp (Cyprinus carpio L.). Gen. Comp. Endocrinol. 2014, 195, 47–57. [Google Scholar] [CrossRef] [PubMed]
  365. Wong, T.-T.; Zohar, Y. Production of reproductively sterile fish by a non-transgenic gene silencing technology. Sci. Rep. 2015, 5, 15822. [Google Scholar] [CrossRef] [PubMed]
  366. Osterwalder, T.; Yoon, K.S.; White, B.H.; Keshishian, H. A Conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 2001, 98, 12596–12601. [Google Scholar] [CrossRef] [PubMed]
  367. Distel, M.; Wullimann, M.F.; Köster, R.W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc. Natl. Acad. Sci. USA 2009, 106, 13365–13370. [Google Scholar] [CrossRef] [PubMed]
  368. Hu, S.-Y.; Lin, P.-Y.; Liao, C.-H.; Gong, H.-Y.; Lin, G.-H.; Kawakami, K.; Wu, J.-L. Nitroreductase-mediated gonadal dysgenesis for infertility control of genetically modified zebrafish. Mar. Biotechnol. 2010, 12, 569–578. [Google Scholar] [CrossRef] [PubMed]
  369. Hsu, C.-C.; Hou, M.-F.; Hong, J.-R.; Wu, J.-L.; Her, G.M. Inducible male infertility by targeted cell ablation in zebrafish testis. Mar. Biotechnol. 2010, 12, 466–478. [Google Scholar] [CrossRef]
  370. Wong, A.C.; Van Eenennaam, A.L. Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture 2008, 275, 1–12. [Google Scholar] [CrossRef]
  371. Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
  372. Güralp, H.; Skaftnesmo, K.O.; Kjærner-Semb, E.; Straume, A.H.; Kleppe, L.; Schulz, R.W.; Edvardsen, R.B.; Wargelius, A. Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Sci. Rep. 2020, 10, 18042. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Number of articles on zebrafish genome editing in the PubMed article database from 2008 to 2023 using ZFN, TALEN, and CRISPR/Cas9 technologies.
Figure 1. Number of articles on zebrafish genome editing in the PubMed article database from 2008 to 2023 using ZFN, TALEN, and CRISPR/Cas9 technologies.
Genes 15 00726 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Orlova, S.Y.; Ruzina, M.N.; Emelianova, O.R.; Sergeev, A.A.; Chikurova, E.A.; Orlov, A.M.; Mugue, N.S. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes 2024, 15, 726. https://doi.org/10.3390/genes15060726

AMA Style

Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes. 2024; 15(6):726. https://doi.org/10.3390/genes15060726

Chicago/Turabian Style

Orlova, Svetlana Yu., Maria N. Ruzina, Olga R. Emelianova, Alexey A. Sergeev, Evgeniya A. Chikurova, Alexei M. Orlov, and Nikolai S. Mugue. 2024. "In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species" Genes 15, no. 6: 726. https://doi.org/10.3390/genes15060726

APA Style

Orlova, S. Y., Ruzina, M. N., Emelianova, O. R., Sergeev, A. A., Chikurova, E. A., Orlov, A. M., & Mugue, N. S. (2024). In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes, 15(6), 726. https://doi.org/10.3390/genes15060726

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop