Genetic Insights into the Historical Attribution of Variety Names of Sweet Chestnut (Castanea sativa Mill.) in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, DNA Extraction and Amplification
2.2. Data Analysis
3. Results
3.1. Population Genetic Structure
3.2. Genetic Variability and Differentiation
3.3. Demographic Analysis and Divergence
4. Discussion
4.1. Do Historical Names Reflect Genetics?
4.2. Did We Identify “Heirloom” Varieties?
4.3. Reconstruction of the Varieties’ Diffusion
4.4. “Involuntary” Artificial Selection
4.5. Final Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkins, J.W.; Shiklomanov, A.; Mathes, K.C.; Bond-Lamberty, B.; Gough, C.M. Effects of Forest Structural and Compositional Change on Forest Microclimates across a Gradient of Disturbance Severity. Agric. For. Meteorol. 2023, 339, 109566. [Google Scholar] [CrossRef]
- Xiao, C.; Feng, G.; Long, W. Pattern and Driver of the Compositional Variations in a Tropical Cloud Forest: Comparing Vascular Epiphytes with Terrestrial Woody Plants. Oikos 2024, 2024, e10158. [Google Scholar] [CrossRef]
- Ette, J.-S.; Sallmannshofer, M.; Geburek, T. Assessing Forest Biodiversity: A Novel Index to Consider Ecosystem, Species, and Genetic Diversity. Forests 2023, 14, 709. [Google Scholar] [CrossRef]
- Mattioni, C.; Martin, M.A.; Pollegioni, P.; Cherubini, M.; Villani, F. Microsatellite Markers Reveal a Strong Geographical Structure in European Populations of Castanea sativa (Fagaceae): Evidence for Multiple Glacial Refugia. Am. J. Bot. 2013, 100, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Krebs, P.; Pezzatti, G.B.; Beffa, G.; Tinner, W.; Conedera, M. Revising the Sweet Chestnut (Castanea sativa Mill.) Refugia History of the Last Glacial Period with Extended Pollen and Macrofossil Evidence. Quat. Sci. Rev. 2019, 206, 111–128. [Google Scholar] [CrossRef]
- Krebs, P.; Conedera, M.; Pradella, M.; Torriani, D.; Felber, M.; Tinner, W. Quaternary Refugia of the Sweet Chestnut (Castanea sativa Mill.): An Extended Palynological Approach. Veg. Hist. Archaeobot 2004, 13, 145–160. [Google Scholar] [CrossRef]
- Villani, F.; Pigliucci, M.; Benedettelli, S.; Cherubini, M. Genetic Differentiation among Turkish Chestnut (Castanea sativa Mill.) Populations. Heredity 1991, 1, 131–136. [Google Scholar] [CrossRef]
- Lang, P.; Dane, F.; Kubisiak, T.L.; Huang, H. Molecular Evidence for an Asian Origin and a Unique Westward Migration of Species in the Genus Castanea via Europe to North America. Mol. Phylogenet. Evol. 2007, 43, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The Cultivation of Castanea sativa (Mill.) in Europe, from Its Origin to Its Diffusion on a Continental Scale. Veg. Hist. Archaeobot 2004, 13, 161–179. [Google Scholar] [CrossRef]
- Pavari, A. Studio Preliminare Sulla Coltura Di Specie Forestali Esotiche in Italia: Parte Generale; Ricci, M., Ed.; University of California: Berkeley, CA, USA, 1916; Volume 1. [Google Scholar]
- Broggini, R. Jus Plantandi Nel Canton Ticino e Val Mesolcina; ProQuest: Bern, Switzerland, 1968. [Google Scholar]
- Mattioni, C.; Martin, M.A.; Chiocchini, F.; Cherubini, M.; Gaudet, M.; Pollegioni, P.; Velichkov, I.; Jarman, R.; Chambers, F.M.; Paule, L.; et al. Landscape Genetics Structure of European Sweet Chestnut (Castanea sativa Mill): Indications for Conservation Priorities. Tree Genet. Genomes 2017, 13, 39. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Barreneche, T.; Mattioni, C.; Villani, F.; Díaz-Hernández, M.B.; Martín, L.M.; Martín, Á. Database of European Chestnut Cultivars and Definition of a Core Collection Using Simple Sequence Repeats. Tree Genet. Genomes 2017, 13, 114. [Google Scholar] [CrossRef]
- Martin, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic Diversity in European Chestnut Populations by Means of Genomic and Genic Microsatellite Markers. Tree Genet. Genomes 2010, 6, 735–744. [Google Scholar] [CrossRef]
- Alessandri, S.; Krznar, M.; Ajolfi, D.; Ramos Cabrer, A.M.; Pereira-Lorenzo, S.; Dondini, L. Genetic Diversity of Castanea sativa Mill. Accessions from the Tuscan-Emilian Apennines and Emilia Romagna Region (Italy). Agronomy 2020, 10, 1319. [Google Scholar] [CrossRef]
- Cavallini, M.; Lombardo, G.; Binelli, G.; Cantini, C. Assessing the Genetic Identity of Tuscan Sweet Chestnut (Castanea sativa Mill.). Forests 2022, 13, 967. [Google Scholar] [CrossRef]
- Martín, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic Characterisation of Traditional Chestnut Varieties in Italy Using Microsatellites (Simple Sequence Repeats) Markers. Ann. Appl. Biol. 2010, 157, 37–44. [Google Scholar] [CrossRef]
- Alessandri, S.; Cabrer, A.M.R.; Martìn, M.A.; Mattioni, C.; Pereira-Lorenzo, S.; Dondini, L. Genetic Characterization of Italian and Spanish Wild and Domesticated Chestnut Trees. Sci. Hortic. 2022, 295, 110882. [Google Scholar] [CrossRef]
- Marinoni, D.; Akkak, A.; Bounous, G.; Edwards, K.J.; Botta, R. Development and Characterization of Microsatellite Markers in Castanea sativa (Mill.). Mol. Breed. 2003, 11, 127–136. [Google Scholar] [CrossRef]
- Buck, E.J.; Hadonou, M.; James, C.J.; Blakesley, D.; Russell, K. Isolation and Characterization of Polymorphic Microsatellites in European Chestnut (Castanea sativa Mill.). Mol. Ecol. Notes 2003, 3, 239–241. [Google Scholar] [CrossRef]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Bonhomme, F. GENETIX 4.05, Logiciel Sous Windows TM Pour La Génétique Des Populations; Laboratoire Génome, Populations, Interactions: Montpellier, France, 2004. [Google Scholar]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358. [Google Scholar] [CrossRef]
- Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package “Ggplot2”; CRAN: El Dorado Hills, CA, USA, 2016; pp. 1–189. [Google Scholar]
- Ligges, U.; Ligges, M.U. The Scatterplot3d Package; CRAN: El Dorado Hills, CA, USA, 2007. [Google Scholar]
- Peakall, R.; Smouse, P.E. Genalex: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring Weak Population Structure with the Assistance of Sample Group Information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, U. Crimp: An Efficient Tool for Summarizing Multiple Clusterings in Population Structure Analysis and Beyond. Mol. Ecol. Resour. 2023, 23, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, N.G.; Angelini, C. StructuRly: A Novel Shiny App to Produce Comprehensive, Detailed and Interactive Plots for Population Genetic Analysis. PLoS ONE 2020, 15, e0229330. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.S. Bayesian Inference of Phylogeny Using Variable Number of Tandem Repeats and Markov Chain Monte Carlo. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2016. [Google Scholar]
- Sainudiin, R.; Durrett, R.T.; Aquadro, C.F.; Nielsen, R. Microsatellite Mutation Models. Genetics 2004, 168, 383–395. [Google Scholar] [CrossRef]
- Barthe, S.; Binelli, G.; Hérault, B.; Scotti-Saintagne, C.; Sabatier, D.; Scotti, I. Tropical Rainforests That Persisted: Inferences from the Quaternary Demographic History of Eight Tree Species in the Guiana Shield. Mol. Ecol. 2017, 26, 1161–1174. [Google Scholar] [CrossRef]
- Bertolasi, B.; Zago, L.; Gui, L.; Cossu, P.; Vanetti, I.; Rizzi, S.; Cavallini, M.; Lombardo, G.; Binelli, G. Genetic Variability and Admixture Zones in the Italian Populations of Turkey Oak (Quercus cerris L.). Life 2022, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Portoghesi, L.; Manetti, M.C.; Salvati, L.; Romagnoli, M. Gaps and Perspectives for the Improvement of the Sweet Chestnut Forest-Wood Chain in Italy. Ann. Silvic. Res. 2021, 46, 112–127. [Google Scholar]
- Bini, L.; Gori, M.; Nin, S.; Natale, R.; Meacci, E.; Giordani, E.; Biricolti, S. Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy). Agronomy 2023, 13, 1947. [Google Scholar] [CrossRef]
- Caré, O.; Kuchma, O.; Hosius, B.; Voth, W.; Thurm, E.A.; Leinemann, L. Patterns of Genetic Variation and the Potential Origin of Sweet Chestnut (Castanea sativa Mill.) Stands Far from Its Natural Northern Distribution Edge. Silvae Genet. 2023, 72, 200–210. [Google Scholar] [CrossRef]
- Janfaza, S.; Yousefzadeh, H.; Hosseini Nasr, S.M.; Botta, R.; Asadi Abkenar, A.; Marinoni, D.T. Genetic Diversity of Castanea sativa an Endangered Species in the Hyrcanian Forest. Silva Fenn. 2017, 51, 1–15. [Google Scholar] [CrossRef]
- Villani, F.; Pigliucci, M.; Cherubini, M. Evolution of Castanea sativa Mill, in Turkey and Europe. Genet. Res. 1994, 63, 109–116. [Google Scholar] [CrossRef]
He | Ho | Na | Nea | Npa | FIS | % pl | |
---|---|---|---|---|---|---|---|
Marrone di Limonta | 0.558 | 0.821 | 4.000 | 2.332 | 0.00 | −0.471 | 100.00 |
Bianchit | 0.698 | 0.696 | 8.267 | 4.019 | 0.333 | 0.003 | 100.00 |
Agostana | 0.720 | 0.724 | 9.600 | 4.200 | 0.267 | −0.005 | 100.00 |
Marronessa | 0.671 | 0.815 | 7.733 | 3.264 | 0.200 | −0.215 | 100.00 |
Marrone di Perledo | 0.699 | 0.727 | 6.600 | 3.567 | 0.067 | −0.040 | 100.00 |
Garavina | 0.694 | 0.673 | 9.267 | 3.684 | 0.533 | 0.030 | 100.00 |
Gulpàt | 0.553 | 0.645 | 6.933 | 2.422 | 0.467 | −0.166 | 100.00 |
Bunèla | 0.585 | 0.695 | 6.067 | 2.561 | 0.267 | −0.188 | 100.00 |
Luina | 0.595 | 0.694 | 5.267 | 2.600 | 0.133 | −0.166 | 100.00 |
Maronaia | 0.630 | 0.714 | 6.733 | 3.180 | 0.267 | −0.133 | 93.33 |
Vardèe | 0.648 | 0.752 | 4.867 | 3.011 | 0.133 | −0.160 | 100.00 |
Marrone di Santa Croce | 0.841 | 0.720 | 12.000 | 6.907 | 1.600 | 0.144 | 100.00 |
Bianchit | Agostana | Marronessa | Perledo | Garavina | Gulpàt | Bunèla | Luina | Maronaia | Vardèe | S. Croce | |
---|---|---|---|---|---|---|---|---|---|---|---|
Limonta | 0.181 | 0.211 | 0.139 | 0.064 | 0.212 | 0.319 | 0.328 | 0.286 | 0.216 | 0.269 | 0.111 |
Bianchit | - | 0.066 | 0.079 | 0.066 | 0.074 | 0.110 | 0.156 | 0.116 | 0.087 | 0.115 | 0.073 |
Agostana | - | - | 0.110 | 0.083 | 0.051 | 0.182 | 0.162 | 0.124 | 0.088 | 0.123 | 0.082 |
Marronessa | - | - | - | 0.054 | 0.103 | 0.180 | 0.183 | 0.142 | 0.083 | 0.110 | 0.073 |
Perledo | - | - | - | - | 0.095 | 0.190 | 0.168 | 0.113 | 0.073 | 0.116 | 0.039 |
Garavina | - | - | - | - | - | 0.157 | 0.139 | 0.125 | 0.107 | 0.097 | 0.097 |
Gulpàt | - | - | - | - | - | - | 0.157 | 0.162 | 0.182 | 0.150 | 0.179 |
Bunèla | - | - | - | - | - | - | - | 0.080 | 0.162 | 0.052 | 0.174 |
Luina | - | - | - | - | - | - | - | - | 0.085 | 0.079 | 0.125 |
Maronaia | - | - | - | - | - | - | - | - | - | 0.128 | 0.098 |
Vardèe | - | - | - | - | - | - | - | - | - | - | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallini, M.; Lombardo, G.; Cantini, C.; Gerosa, M.; Binelli, G. Genetic Insights into the Historical Attribution of Variety Names of Sweet Chestnut (Castanea sativa Mill.) in Northern Italy. Genes 2024, 15, 866. https://doi.org/10.3390/genes15070866
Cavallini M, Lombardo G, Cantini C, Gerosa M, Binelli G. Genetic Insights into the Historical Attribution of Variety Names of Sweet Chestnut (Castanea sativa Mill.) in Northern Italy. Genes. 2024; 15(7):866. https://doi.org/10.3390/genes15070866
Chicago/Turabian StyleCavallini, Marta, Gianluca Lombardo, Claudio Cantini, Mauro Gerosa, and Giorgio Binelli. 2024. "Genetic Insights into the Historical Attribution of Variety Names of Sweet Chestnut (Castanea sativa Mill.) in Northern Italy" Genes 15, no. 7: 866. https://doi.org/10.3390/genes15070866
APA StyleCavallini, M., Lombardo, G., Cantini, C., Gerosa, M., & Binelli, G. (2024). Genetic Insights into the Historical Attribution of Variety Names of Sweet Chestnut (Castanea sativa Mill.) in Northern Italy. Genes, 15(7), 866. https://doi.org/10.3390/genes15070866