Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
3. Results
3.1. Search Strategy
3.2. Emerging Infectious Diseases
3.3. Bacterial Infectious Diseases
3.3.1. Antimicrobial Resistance
3.3.2. Antimicrobial Resistance and the Microbiota Interaction
3.3.3. Antimicrobial Resistance and Bacteriophages
3.4. Viruses
3.5. Fungal Diseases
3.6. Parasites
4. Approaches to Control Infectious Disease
4.1. Multi-Omics Approaches to Infectious Disease for One Health Vision
4.2. Genomic Sequencing for Outbreaks
4.3. Epigenomics for Outbreaks
4.4. Proteomics for Outbreaks
4.5. Metabolomics for Outbreaks
4.6. Data Integration Omics
4.7. Artificial Intelligence and Clinical Decision Support System in Outbreaks
5. Conclusions: Creating a Driven, Shared Vision for Health
- Collect samples and data on human, animal, and environmental health;
- Analyze the samples through omics platforms;
- Integrate all the obtained data;
- Create artificial intelligence models that can be queried;
- Implement protocols and approaches, including instrumental ones, to be prepared for possible new infections;
- Deepen and study all the gaps that still exist in our knowledge about the circulation of microorganisms between humans, animals, and the environment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 9 November 2023).
- WHO EMRO|Emerging Diseases|Health Topics. Available online: http://www.emro.who.int/health-topics/emerging-diseases/index.html (accessed on 8 November 2023).
- McArthur, D.B. Emerging Infectious Diseases. Nurs. Clin. N. Am. 2019, 54, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Diseases & Conditions|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions (accessed on 14 November 2023).
- Morens, D.M.; Fauci, A.S. Emerging Infectious Diseases: Threats to Human Health and Global Stability. PLoS Pathog. 2013, 9, e1003467. [Google Scholar] [CrossRef] [PubMed]
- NIAID Emerging Infectious Diseases/Pathogens|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens (accessed on 14 November 2023).
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E. Risk Factors for Human Disease Emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Leifels, M.; Khalilur Rahman, O.; Sam, I.-C.; Cheng, D.; Chua, F.J.D.; Nainani, D.; Kim, S.Y.; Ng, W.J.; Kwok, W.C.; Sirikanchana, K.; et al. The One Health Perspective to Improve Environmental Surveillance of Zoonotic Viruses: Lessons from COVID-19 and Outlook Beyond. ISME Commun. 2022, 2, 107. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Khan, A.; Nafisah, S.B.; Mzahim, B.; Aleid, B.; Almatrafi, D.; Assiri, A.; Jokhdar, H. MERS-CoV in the COVID-19 Era: Update from Saudi Arabia, 2019–2020. East. Mediterr. Health J. 2021, 27, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wu, M.; He, Y.; Jiang, B.; He, M.-L. Metabolic Alterations upon SARS-CoV-2 Infection and Potential Therapeutic Targets against Coronavirus Infection. Signal Transduct. Target. Ther. 2023, 8, 237. [Google Scholar] [CrossRef]
- Influenza|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions/influenza (accessed on 27 December 2023).
- Fauci, A.S. Emerging and Re-Emerging Infectious Diseases: Influenza as a Prototype of the Host-Pathogen Balancing Act. Cell 2006, 124, 665–670. [Google Scholar] [CrossRef]
- Babkin, I.V.; Babkina, I.N. The Origin of the Variola Virus. Viruses 2015, 7, 1100–1112. [Google Scholar] [CrossRef]
- Jani, C.; Kakoullis, L.; Abdallah, N.; Mouchati, C.; Page, S.; Colgrove, R.; Chen, L.H. West Nile Virus: Another Emerging Arboviral Risk for Travelers? Curr. Infect. Dis. Rep. 2022, 24, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.B.; Schaefer, T.J. West Nile Virus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lei, C.; Kumar, S. Yersinia pestis Antibiotic Resistance: A Systematic Review. Osong Public Health Res. Perspect. 2022, 13, 24–36. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; Public Health Service Prevention of Plague. Recommendations of the Advisory Committee on Immunization Practices (ACIP); U.S. Department of Health and Human Services: Washington, DC, USA, 1996; Volume 45. [Google Scholar]
- Stenseth, N.C.; Atshabar, B.B.; Begon, M.; Belmain, S.R.; Bertherat, E.; Carniel, E.; Gage, K.L.; Leirs, H.; Rahalison, L. Plague: Past, Present, and Future. PLoS Med. 2008, 5, e3. [Google Scholar] [CrossRef] [PubMed]
- Racaniello, V.R. Emerging Infectious Diseases. J. Clin. Investig. 2004, 113, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Britton, R.A.; Young, V.B. Interaction between the Intestinal Microbiota and Host in Clostridium difficile Colonization Resistance. Trends Microbiol. 2012, 20, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Jarchum, I.; Equinda, M.; Lipuma, L.; Gobourne, A.; Viale, A.; Ubeda, C.; Xavier, J.; Pamer, E.G. Profound Alterations of Intestinal Microbiota Following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis. Infect. Immun. 2012, 80, 62–73. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Wiederhold, N.P. Emerging Fungal Infections: New Species, New Names, and Antifungal Resistance. Clin. Chem. 2021, 68, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Spallone, A.; Schwartz, I.S. Emerging Fungal Infections. Infect. Dis. Clin. N. Am. 2021, 35, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, J.; Dittmer, S.; Houbraken, J.; Buer, J.; Rath, P.-M. In Vitro Activity of Isavuconazole against Rasamsonia Species. Antimicrob. Agents Chemother. 2016, 60, 6890–6891. [Google Scholar] [CrossRef]
- de Lima Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef]
- Kano, R.; Kimura, U.; Kakurai, M.; Hiruma, J.; Kamata, H.; Suga, Y.; Harada, K. Trichophyton indotineae Sp. Nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species. Mycopathologia 2020, 185, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High Terbinafine Resistance in Trichophyton interdigitale Isolates in Delhi, India Harbouring Mutations in the Squalene Epoxidase Gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Pascale, R.; Cricca, M.; Rinaldi, M.; Maccaro, A.; Bussini, L.; Fornaro, G.; Tonetti, T.; Pizzilli, G.; Francalanci, E.; et al. Epidemiology of Invasive Pulmonary Aspergillosis Among Intubated Patients with COVID-19: A Prospective Study. Clin. Infect. Dis. 2021, 73, e3606–e3614. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Dhillon, R.; Cordey, A.; Hughes, H.; Faggian, F.; Soni, S.; Pandey, M.; Whitaker, H.; May, A.; Morgan, M.; et al. A National Strategy to Diagnose Coronavirus Disease 2019-Associated Invasive Fungal Disease in the Intensive Care Unit. Clin. Infect. Dis. 2021, 73, e1634–e1644. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.J.C.; Enabulele, E.E. Schistosoma mansoni . Trends Parasitol. 2021, 37, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Nation, C.S.; Da’dara, A.A.; Marchant, J.K.; Skelly, P.J. Schistosome Migration in the Definitive Host. PLoS Negl. Trop. Dis. 2020, 14, e0007951. [Google Scholar] [CrossRef] [PubMed]
- Skelly, P.J.; Nation, C.S.; Da’Dara, A.A. Schistosoma mansoni and the Purinergic Halo. Trends Parasitol. 2022, 38, 1080–1088. [Google Scholar] [CrossRef]
- Dunders, G. Risposta Immunitaria in Microbiologia; Cambridge Stanford Books: Cambridge, UK, 2020. [Google Scholar]
- Autophagy and Bacterial Infection|SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-981-15-4272-5_29 (accessed on 27 December 2023).
- Morse, S.S. Factors in the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Vouga, M.; Greub, G. Emerging Bacterial Pathogens: The Past and Beyond. Clin. Microbiol. Infect. 2016, 22, 12–21. [Google Scholar] [CrossRef]
- White, N.J. Antimalarial Drug Resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef]
- Liebenberg, D.; Gordhan, B.G.; Kana, B.D. Drug Resistant Tuberculosis: Implications for Transmission, Diagnosis, and Disease Management. Front. Cell. Infect. Microbiol. 2022, 12, 943545. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. N. Am. 2020, 34, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Toleman, M.A. The Emergence of Pan-Resistant Gram-Negative Pathogens Merits a Rapid Global Political Response. J. Antimicrob. Chemother. 2012, 67, 1–3. [Google Scholar] [CrossRef] [PubMed]
- EpiCentro Peste. Available online: https://www.epicentro.iss.it/peste/ (accessed on 28 May 2024).
- Brandl, K.; Plitas, G.; Mihu, C.N.; Ubeda, C.; Jia, T.; Fleisher, M.; Schnabl, B.; DeMatteo, R.P.; Pamer, E.G. Vancomycin-Resistant Enterococci Exploit Antibiotic-Induced Innate Immune Deficits. Nature 2008, 455, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Ranallo, R.T.; McDonald, L.C.; Halpin, A.L.; Hiltke, T.; Young, V.B. The State of Microbiome Science at the Intersection of Infectious Diseases and Antimicrobial Resistance. J. Infect. Dis. 2021, 223, S187–S193. [Google Scholar] [CrossRef] [PubMed]
- Federal Task Force Combating Antibiotic-Resistant Bacteria; National Action Plan for Combating Antibiotic-Resistant Bacteria, 2020–2025. Available online: https://www.hhs.gov/sites/default/files/carb-national-action-plan-2020-2025.pdf (accessed on 30 May 2024).
- Anthony, W.E.; Burnham, C.-A.D.; Dantas, G.; Kwon, J.H. The Gut Microbiome as a Reservoir for Antimicrobial Resistance. J. Infect. Dis. 2021, 223, S209–S213. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Ghosh, T.S.; Banerjee, S.; Mehta, O.; Verma, J.; Dayal, M.; Desigamani, A.; Kumar, P.; Saha, B.; Kedia, S.; et al. Molecular Insights into Antimicrobial Resistance Traits of Commensal Human Gut Microbiota. Microb. Ecol. 2019, 77, 546–557. [Google Scholar] [CrossRef]
- Fantin, B.; Duval, X.; Massias, L.; Alavoine, L.; Chau, F.; Retout, S.; Andremont, A.; Mentré, F. Ciprofloxacin Dosage and Emergence of Resistance in Human Commensal Bacteria. J. Infect. Dis. 2009, 200, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Griffin, C.M.; Hooper, D.C. Citrobacter Spp. as a Source of qnrB Alleles. Antimicrob. Agents Chemother. 2011, 55, 4979–4984. [Google Scholar] [CrossRef]
- Twort, F.W. An investigation on the nature of ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef]
- Moelling, K.; Broecker, F.; Willy, C. A Wake-Up Call: We Need Phage Therapy Now. Viruses 2018, 10, 688. [Google Scholar] [CrossRef]
- Egido, J.E.; Costa, A.R.; Aparicio-Maldonado, C.; Haas, P.-J.; Brouns, S.J.J. Mechanisms and Clinical Importance of Bacteriophage Resistance. FEMS Microbiol. Rev. 2022, 46, fuab048. [Google Scholar] [CrossRef]
- Isaev, A.; Drobiazko, A.; Sierro, N.; Gordeeva, J.; Yosef, I.; Qimron, U.; Ivanov, N.V.; Severinov, K. Phage T7 DNA Mimic Protein Ocr Is a Potent Inhibitor of BREX Defence. Nucleic Acids Res. 2020, 48, 5397–5406. [Google Scholar] [CrossRef]
- Mendoza, S.D.; Nieweglowska, E.S.; Govindarajan, S.; Leon, L.M.; Berry, J.D.; Tiwari, A.; Chaikeeratisak, V.; Pogliano, J.; Agard, D.A.; Bondy-Denomy, J. A Bacteriophage Nucleus-like Compartment Shields DNA from CRISPR Nucleases. Nature 2020, 577, 244–248. [Google Scholar] [CrossRef]
- Wiegand, T.; Karambelkar, S.; Bondy-Denomy, J.; Wiedenheft, B. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annu. Rev. Microbiol. 2020, 74, 21–37. [Google Scholar] [CrossRef]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage Therapy: A Potential Solution for the Antibiotic Resistance Crisis. J. Infect. Dev. Ctries. 2014, 8, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophage Therapy of Bacterial Infections: An Update of Our Institute’s Experience. Arch. Immunol. Ther. Exp. 2000, 48, 547–551. [Google Scholar]
- Matsuzaki, S.; Rashel, M.; Uchiyama, J.; Sakurai, S.; Ujihara, T.; Kuroda, M.; Ikeuchi, M.; Tani, T.; Fujieda, M.; Wakiguchi, H.; et al. Bacteriophage Therapy: A Revitalized Therapy against Bacterial Infectious Diseases. J. Infect. Chemother. 2005, 11, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Bedhomme, S.; Carrasco, P.; Cuevas, J.M.; de la Iglesia, F.; Lafforgue, G.; Lalić, J.; Pròsper, A.; Tromas, N.; Zwart, M.P. The Evolutionary Genetics of Emerging Plant RNA Viruses. Mol. Plant Microbe Interact. 2011, 24, 287–293. [Google Scholar] [CrossRef]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef]
- Dennehy, J.J. Evolutionary Ecology of Virus Emergence. Ann. N. Y. Acad. Sci. 2017, 1389, 124–146. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, E.; Ruiz-Jarabo, C.M.; Pariente, N.; Verdaguer, N.; Domingo, E. Evolution of Cell Recognition by Viruses: A Source of Biological Novelty with Medical Implications. Adv. Virus Res. 2003, 62, 19–111. [Google Scholar] [CrossRef]
- Boyd, M.T.; Simpson, G.R.; Cann, A.J.; Johnson, M.A.; Weiss, R.A. A Single Amino Acid Substitution in the V1 Loop of Human Immunodeficiency Virus Type 1 Gp120 Alters Cellular Tropism. J. Virol. 1993, 67, 3649–3652. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Losada, M.; Arenas, M.; Galán, J.C.; Palero, F.; González-Candelas, F. Recombination in Viruses: Mechanisms, Methods of Study, and Evolutionary Consequences. Infect. Genet. Evol. 2015, 30, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Vijaykrishna, D.; Mukerji, R.; Smith, G.J.D. RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathog. 2015, 11, e1004902. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, S.; Laurenson, M.K.; Taylor, L.H. Diseases of Humans and Their Domestic Mammals: Pathogen Characteristics, Host Range and the Risk of Emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Frydman, J.; Andino, R. The Role of Mutational Robustness in RNA Virus Evolution. Nat. Rev. Microbiol. 2013, 11, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.; Dierig, A.; Rashid, H.; King, C.; Heron, L.; Booy, R. Systematic Review of Clinical and Epidemiological Features of the Pandemic Influenza A (H1N1) 2009. Influenza Other Respir. Viruses 2011, 5, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Thèves, C.; Biagini, P.; Crubézy, E. The Rediscovery of Smallpox. Clin. Microbiol. Infect. 2014, 20, 210–218. [Google Scholar] [CrossRef]
- Pennington, H. Smallpox and Bioterrorism. Bull. World Health Organ. 2003, 81, 762–767. [Google Scholar]
- Luo, F.; Wang, Q.; Chen, S. Editorial: Prevention of Viral Diseases by Gene Targeting. Front. Genome Ed. 2024, 6, 1395468. [Google Scholar] [CrossRef]
- Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.-J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation of SARS-CoV-2-Related Coronavirus from Malayan Pangolins. Nature 2020, 583, 286–289. [Google Scholar] [CrossRef]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef]
- Houbraken, J.; Giraud, S.; Meijer, M.; Bertout, S.; Frisvad, J.C.; Meis, J.F.; Bouchara, J.P.; Samson, R.A. Taxonomy and Antifungal Susceptibility of Clinically Important Rasamsonia Species. J. Clin. Microbiol. 2013, 51, 22–30. [Google Scholar] [CrossRef]
- Clark, C.; Drummond, R.A. The Hidden Cost of Modern Medical Interventions: How Medical Advances Have Shaped the Prevalence of Human Fungal Disease. Pathogens 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Roilides, E. Emerging Fungi Causing Human Infection: New or Better Identified? Clin. Microbiol. Infect. 2016, 22, 660–661. [Google Scholar] [CrossRef]
- Del Castillo, M.; Romero, F.A.; Argüello, E.; Kyi, C.; Postow, M.A.; Redelman-Sidi, G. The Spectrum of Serious Infections Among Patients Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin. Infect. Dis. 2016, 63, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Kim, Y.H.; Kanai, O.; Yoshida, H.; Mio, T.; Hirai, T. Emerging Concerns of Infectious Diseases in Lung Cancer Patients Receiving Immune Checkpoint Inhibitor Therapy. Respir. Med. 2019, 146, 66–70. [Google Scholar] [CrossRef]
- Ahmad, S.; Alfouzan, W. Candida Auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Seagle, E.E.; Williams, S.L.; Chiller, T.M. Recent Trends in the Epidemiology of Fungal Infections. Infect. Dis. Clin. N. Am. 2021, 35, 237–260. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Zhou, J.-K.; Pan, W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front. Immunol. 2021, 12, 661241. [Google Scholar] [CrossRef]
- Alvar, J.; Alves, F.; Bucheton, B.; Burrows, L.; Büscher, P.; Carrillo, E.; Felger, I.; Hübner, M.P.; Moreno, J.; Pinazo, M.-J.; et al. Implications of Asymptomatic Infection for the Natural History of Selected Parasitic Tropical Diseases. Semin. Immunopathol. 2020, 42, 231–246. [Google Scholar] [CrossRef]
- Moreira, D.; Estaquier, J.; Cordeiro-da-Silva, A.; Silvestre, R. Metabolic Crosstalk Between Host and Parasitic Pathogens. Exp. Suppl. 2018, 109, 421–458. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-Infection with Respiratory Pathogens among COVID-2019 Cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Nemati Zargaran, F.; Rostamian, M.; Kooti, S.; Madanchi, H.; Ghadiri, K. Co-Infection of COVID-19 and Parasitic Diseases: A Systematic Review. Parasite Epidemiol. Control. 2023, 21, e00299. [Google Scholar] [CrossRef]
- Christie, J.D.; Garcia, L.S. Emerging Parasitic Infections. Clin. Lab. Med. 2004, 24, 737–772, vii. [Google Scholar] [CrossRef]
- Fredericks, D.N.; Relman, D.A. Sequence-Based Identification of Microbial Pathogens: A Reconsideration of Koch’s Postulates. Clin. Microbiol. Rev. 1996, 9, 18–33. [Google Scholar] [CrossRef]
- World Health Organization. The One Health Approach and Key Recommendations of the Quadripartite; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Maria, D.; Flavia, R.; Alessia, M.; Claudia, R.; Agrimi, U.; Stefano, M.; Mario, C.; Stefania, M.; Mantovani, A.; Laura, M.; et al. One Health-Based Conceptual Frameworks for Comprehensive and Coordinated Prevention. Int. J. Infect. Dis. 2022, 116, S108–S109. [Google Scholar]
- One Health. Available online: https://www.iss.it/one-health (accessed on 30 May 2024).
- OnuItalia. Nasce l’Intergruppo Parlamentare One Health: “Tra ambiente e salute umana e animale tutto si tiene”. In Agenda 2030 Ambientein Prima Fila; Onu Italia: Rome, Italy, 2023. [Google Scholar]
- Topics. Available online: https://www.worldbank.org/en/topic (accessed on 30 May 2024).
- Bernardes, J.P.; Mishra, N.; Tran, F.; Bahmer, T.; Best, L.; Blase, J.I.; Bordoni, D.; Franzenburg, J.; Geisen, U.; Josephs-Spaulding, J.; et al. Longitudinal Multi-Omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity 2020, 53, 1296–1314.e9. [Google Scholar] [CrossRef]
- Zhang, S.; Cooper-Knock, J.; Weimer, A.K.; Shi, M.; Kozhaya, L.; Unutmaz, D.; Harvey, C.; Julian, T.H.; Furini, S.; Frullanti, E.; et al. Multiomic Analysis Reveals Cell-Type-Specific Molecular Determinants of COVID-19 Severity. Cell Syst. 2022, 13, 598–614.e6. [Google Scholar] [CrossRef]
- Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect. Dis. 2018, 66, 778–788. [Google Scholar] [CrossRef]
- Cameron, A.; Bohrhunter, J.L.; Taffner, S.; Malek, A.; Pecora, N.D. Clinical Pathogen Genomics. Clin. Lab. Med. 2020, 40, 447–458. [Google Scholar] [CrossRef]
- Kulkarni, S.; Arumugam, T.; Chuturgoon, A.; An, P.; Ramsuran, V. Editorial: Epigenetics of Infectious Diseases. Front. Immunol. 2022, 13, 1054151. [Google Scholar] [CrossRef]
- Qin, W.; Scicluna, B.P.; van der Poll, T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front. Immunol. 2021, 12, 696280. [Google Scholar] [CrossRef]
- Sperk, M.; van Domselaar, R.; Rodriguez, J.E.; Mikaeloff, F.; Sá Vinhas, B.; Saccon, E.; Sönnerborg, A.; Singh, K.; Gupta, S.; Végvári, Á.; et al. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J. Proteome Res. 2020, 19, 4259–4274. [Google Scholar] [CrossRef]
- Tounta, V.; Liu, Y.; Cheyne, A.; Larrouy-Maumus, G. Metabolomics in Infectious Diseases and Drug Discovery. Mol. Omics 2021, 17, 376–393. [Google Scholar] [CrossRef]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-Omics Data Integration Considerations and Study Design for Biological Systems and Disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef]
- Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of Integrating Data to Uncover Genotype-Phenotype Interactions. Nat. Rev. Genet. 2015, 16, 85–97. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef]
- López de Maturana, E.; Alonso, L.; Alarcón, P.; Martín-Antoniano, I.A.; Pineda, S.; Piorno, L.; Calle, M.L.; Malats, N. Challenges in the Integration of Omics and Non-Omics Data. Genes 2019, 10, 238. [Google Scholar] [CrossRef]
- Bess, A.; Berglind, F.; Mukhopadhyay, S.; Brylinski, M.; Griggs, N.; Cho, T.; Galliano, C.; Wasan, K.M. Artificial Intelligence for the Discovery of Novel Antimicrobial Agents for Emerging Infectious Diseases. Drug Discov. Today 2022, 27, 1099–1107. [Google Scholar] [CrossRef]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using Machine Learning Approaches for Multi-Omics Data Analysis: A Review. Biotechnol. Adv. 2021, 49, 107739. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N.; Rawson, T.M.; Ahmad, R.; Buchard, A.; Georgiou, P.; Lescure, F.-X.; Birgand, G.; Holmes, A.H. Machine Learning for Clinical Decision Support in Infectious Diseases: A Narrative Review of Current Applications. Clin. Microbiol. Infect. 2020, 26, 584–595. [Google Scholar] [CrossRef]
Agent | Type of Microorganism | Transmission | Human Disease | Zoonotic or Non-Zoonotic | Reference |
---|---|---|---|---|---|
Virus | |||||
SARS-CoV | Virus | Droplets and aerosols | Severe acute respiratory syndrome | Zoonotic | [9] |
MERS-CoV | Virus | Droplets and aerosols | Middle Eastern respiratory syndrome | Zoonotic | [10] |
SARS-CoV-2 | Virus | Droplets and aerosols | Acute severe coronavirus 2 respiratory syndrome | Zoonotic | [9,11,12] |
Influenza viruses | Virus | Droplets and aerosols | Respiratory disease | Zoonotic | [13,14] |
Variola virus | Virus | Droplets or direct contact | Smallpox | Non-zoonotic | [15] |
West Nile | Virus | Bitten by a infected mosquito | West Nile Fever | Zoonotic | [16,17] |
Bacteria | |||||
Y. pestis | Bacterium | Bitten by a rodent flea | Plague | Zoonotic | [18,19,20] |
S. aureus | Bacterium | Contact contagion | Skin infections and sometimes pneumonia, endocarditis, and osteomyelitis | Non-zoonotic | [21] |
C. difficile | Bacterium | Fecal–oral | Pseudomembranous colitis | Non-zoonotic | [22,23] |
Fungi | |||||
C. auris | Fungi | Direct contact | Infections are generally low-level; however, in immunocompromised individuals, it can cause serious infections and presents a high lethality in invasive forms | Non-zoonotic | [6,24] |
Blastomyces | Fungi | Inhalation | Atypical and disseminated blastomycosis in immunocompromised humans and companion animals. Cases reported in western states and provinces of the US and Canada | Non-zoonotic | [25] |
E. species | Fungi | Breathing | Disseminated infections in patients with advanced HIV/AIDS. Systemic infections in other immunocompromised patients | Non-zoonotic | [25,26] |
R. argillacea | Fungi | Unknown | Chronic granulomatous disease, hematologic malignancies, and colonization in cystic fibrosis patients. Intrinsic resistance to voriconazole and isavuconazole | Non-zoonotic | [27] |
S. brasiliensis | Fungi | Cat-transmitted | Zoonotic transmission can occur with outbreaks in humans reported due to infected cats | Zoonotic | [28] |
T. indotinae | Fungi | Sexual contact | Outbreaks of dermatophytosis with emerging resistance to terbinafine, fluconazole, and griseofulvin in patients in northern India, leading to clinical failures in the treatment of tinea corporis/cruris infections | Non-zoonotic | [29,30] |
A. fumigatus | Fungi | Droplet or airborne | Pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, invasive aspergillosis, and superficial aspergillosis | Non-zoonotic | [31,32] |
Parasite | |||||
Schistosoma mansoni | Parasite | Contact-contaminated water | Schistosomiasis | Non-zoonotic | [33,34,35] |
Schistosoma haematobium | Parasite | Contact-contaminated water | Schistosomiasis | Non-zoonotic | [33,34,35] |
Schistosoma japonicum | Parasite | Contact-contaminated water | Schistosomiasis | Non-zoonotic | [33,34,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristori, M.V.; Guarrasi, V.; Soda, P.; Petrosillo, N.; Gurrieri, F.; Longo, U.G.; Ciccozzi, M.; Riva, E.; Angeletti, S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes 2024, 15, 908. https://doi.org/10.3390/genes15070908
Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes. 2024; 15(7):908. https://doi.org/10.3390/genes15070908
Chicago/Turabian StyleRistori, Maria Vittoria, Valerio Guarrasi, Paolo Soda, Nicola Petrosillo, Fiorella Gurrieri, Umile Giuseppe Longo, Massimo Ciccozzi, Elisabetta Riva, and Silvia Angeletti. 2024. "Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision" Genes 15, no. 7: 908. https://doi.org/10.3390/genes15070908
APA StyleRistori, M. V., Guarrasi, V., Soda, P., Petrosillo, N., Gurrieri, F., Longo, U. G., Ciccozzi, M., Riva, E., & Angeletti, S. (2024). Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes, 15(7), 908. https://doi.org/10.3390/genes15070908