Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Measurements
2.2.1. CGG and AGG Determination
2.2.2. Hormonal Determination
2.2.3. Antral Follicle Count Determination
2.2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Treatment Received by the Young DOR Population
3.3. FMR1 Allele Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, G.; Webb, T.; Wake, S.; Robinson, H. Prevalence of fragile X syndrome. Am. J. Med. Genet. 1996, 64, 196–197. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Pieretti, M.; Sutcliffe, J.S.; Richards, S.; Verkerk, A.J.; Holden, J.J.; Fenwick, R.G., Jr.; Warren, S.T.; et al. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 1991, 67, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Cronister, A.; Schreiner, R.; Wittenberger, M.; Amiri, K.; Harris, K.; Hagerman, R.J. Heterozygous fragile X female: Historical, physical, cognitive, and cytogenetic features. Am. J. Med. Genet. 1991, 38, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Amiri, K.; Cronister, A. Fragile X checklist. Am. J. Med. Genet. 1991, 38, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, W.; Liu, Y.; Liu, Y.; Wang, J.; Jiang, H. Association between the FMR1 CGG repeat lengths and the severity of idiopathic primary ovarian insufficiency: A meta analysis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3116–3122. [Google Scholar] [CrossRef] [PubMed]
- Karimov, C.B.; Moragianni, V.A.; Cronister, A.; Srouji, S.; Petrozza, J.; Racowsky, C.; Ginsburg, E.; Thornton, K.L.; Welt, C.K. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum. Reprod. 2011, 26, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- European Society of Human Reproduction and Embryology, (ESHRE). Evidence-Based Guideline: Premature Ovarian Insufficiency. 2024, Draft for Review. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.eshre.eu/-/media/sitecore-files/Guidelines/POI/2024/ESHRE-GUIDELINE_POI_DRAFT-FOR-REVIEW_2024.pdf&ved=2ahUKEwj1u8WJydCHAxWQzQIHHSBbELsQFnoECBgQAQ&usg=AOvVaw1PpYJ3qMrOFGvRf3ONVaKT (accessed on 29 July 2024).
- Streuli, I.; Fraisse, T.; Ibecheole, V.; Moix, I.; Morris, M.A.; de Ziegler, D. Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil. Steril. 2009, 92, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Eslami, A.; Farahmand, K.; Totonchi, M.; Madani, T.; Asadpour, U.; Zari Moradi, S.; Gourabi, H.; Mohseni-Meybodi, A. FMR1 premutation: Not only important in premature ovarian failure but also in diminished ovarian reserve. Hum. Fertil. 2017, 20, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Pastore, L.M.; Young, S.L.; Manichaikul, A.; Baker, V.L.; Wang, X.Q.; Finkelstein, J.S. Distribution of the FMR1 gene in females by race/ethnicity: Women with diminished ovarian reserve versus women with normal fertility (SWAN study). Fertil. Steril. 2017, 107, 205–211.e1. [Google Scholar] [CrossRef] [PubMed]
- Lekovich, J.; Man, L.; Xu, K.; Canon, C.; Lilienthal, D.; Stewart, J.D.; Pereira, N.; Rosenwaks, Z.; Gerhardt, J. CGG repeat length and AGG interruptions as indicators of fragile X-associated diminished ovarian reserve. Genet. Med. 2018, 20, 957–964. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Infertility Prevalence Estimates; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-006831-5. [Google Scholar]
- Sociedad Española de Fertilidad. Registro Nacional de Actividad 2021. Registro SEF. 2021. Available online: https://www.registrosef.com/public/docs/sef2021_IAFIV.pdf (accessed on 29 July 2024).
- Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T., Jr. The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014, 101, 656–663.e1. [Google Scholar] [CrossRef] [PubMed]
- Asadi, R.; Omrani, M.D.; Ghaedi, H.; Mirfakhraie, R.; Azargashb, E.; Habibi, M.; Pouresmaeili, F. Premutations of FMR1 CGG repeats are not related to idiopathic premature ovarian failure in Iranian patients: A case control study. Gene 2018, 676, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulos, P.; Bardhi, E.; Boudry, L.; Vaiarelli, A.; Makrigiannakis, A.; Esteves, S.C.; Tournaye, H.; Blockeel, C. Update on the management of poor ovarian response in IVF: The shift from Bologna criteria to the Poseidon concept. Ther. Adv. Reprod. Health 2020, 14, 2633494120941480. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Yarali, H.; Vuong, L.N.; Conforti, A.; Humaidan, P.; Alviggi, C. POSEIDON groups and their distinct reproductive outcomes: Effectiveness and cost-effectiveness insights from real-world data research. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 85, 159–187. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.G.; Sullivan, A.K.; Marcus, M.; Small, C.; Dominguez, C.; Epstein, M.P.; Charen, K.; He, W.; Taylor, K.C.; Sherman, S.L. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum. Reprod. 2007, 22, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, R.D.; Braat, D.D.; Kiemeney, L.A.; Smits, A.P.; Thomas, C.M. Increased serum FSH in female fragile X premutation carriers with either regular menstrual cycles or on oral contraceptives. Hum. Reprod. 2001, 16, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Murray, A. Premature ovarian failure and the FMR1 gene. Semin. Reprod. Med. 2000, 18, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.K.; Marcus, M.; Epstein, M.P.; Allen, E.G.; Anido, A.E.; Paquin, J.J.; Yadav-Shah, M.; Sherman, S.L. Association of FMR1 repeat size with ovarian dysfunction. Hum. Reprod. 2005, 20, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Hagerman, R.J.; Taylor, A.K.; Mills, J.B.; Harris, S.W.; Gane, L.W.; Hagerman, P.J. Clinical involvement and protein expression in individuals with the FMR1 premutation. Am. J. Med. Genet. 2000, 91, 144–152. [Google Scholar] [CrossRef]
- Mila, M.; Alvarez-Mora, M.I.; Madrigal, I.; Rodriguez-Revenga, L. Fragile X syndrome: An overview and update of the FMR1 gene. Clin. Genet. 2018, 93, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Elizur, S.E.; Lebovitz, O.; Derech-Haim, S.; Dratviman-Storobinsky, O.; Feldman, B.; Dor, J.; Orvieto, R.; Cohen, Y. Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers. PLoS ONE 2014, 9, e105121. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.L.; Curnow, E.C.; Easley, C.A.; Jin, P.; Hukema, R.K.; Tejada, M.I.; Willemsen, R.; Usdin, K. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J. Neurodev. Disord. 2014, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, P. Fragile X-associated tremor/ataxia syndrome (FXTAS): Pathology and mechanisms. Acta Neuropathol. 2013, 126, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Buijsen, R.A.; Visser, J.A.; Kramer, P.; Severijnen, E.A.; Gearing, M.; Charlet-Berguerand, N.; Sherman, S.L.; Berman, R.F.; Willemsen, R.; Hukema, R.K. Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum. Reprod. 2016, 31, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Friedman-Gohas, M.; Elizur, S.E.; Dratviman-Storobinsky, O.; Aizer, A.; Haas, J.; Raanani, H.; Orvieto, R.; Cohen, Y. FMRpolyG accumulates in FMR1 premutation granulosa cells. J. Ovarian Res. 2020, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Bretherick, K.L.; Fluker, M.R.; Robinson, W.P. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum. Genet. 2005, 117, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Bodega, B.; Bione, S.; Dalpra, L.; Toniolo, D.; Ornaghi, F.; Vegetti, W.; Ginelli, E.; Marozzi, A. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum. Reprod. 2006, 21, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Gleicher, N.; Weghofer, A.; Barad, D.H. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Mullerian hormone. Fertil. Steril. 2009, 91, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.E.; Conway, G.S.; Macpherson, J.N.; Jacobs, P.A.; Murray, A. Intermediate sized CGG repeats are not a common cause of idiopathic premature ovarian failure. Hum. Reprod. 2010, 25, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Schoemaker, M.J.; Bennett, C.E.; Ennis, S.; Macpherson, J.N.; Jones, M.; Morris, D.H.; Orr, N.; Ashworth, A.; Jacobs, P.A.; et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet. Med. 2014, 16, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Barasoain, M.; Barrenetxea, G.; Huerta, I.; Telez, M.; Carrillo, A.; Perez, C.; Criado, B.; Arrieta, I. Study of FMR1 gene association with ovarian dysfunction in a sample from the Basque Country. Gene 2013, 521, 145–149. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; M’Rabet, N.; De Geyter, J.; Zurcher, S.; Moffat, R.; Bosch, N.; Zhang, H.; Heinimann, K. Similar prevalence of expanded CGG repeat lengths in the fragile X mental retardation I gene among infertile women and among women with proven fertility: A prospective study. Genet. Med. 2014, 16, 374–378. [Google Scholar] [CrossRef]
- Pastore, L.M.; McMurry, T.L.; Williams, C.D.; Baker, V.L.; Young, S.L. AMH in women with diminished ovarian reserve: Potential differences by FMR1 CGG repeat level. J. Assist. Reprod. Genet. 2014, 31, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Man, L.; Lekovich, J.; Rosenwaks, Z.; Gerhardt, J. Fragile X-Associated Diminished Ovarian Reserve and Primary Ovarian Insufficiency from Molecular Mechanisms to Clinical Manifestations. Front. Mol. Neurosci. 2017, 10, 290. [Google Scholar] [CrossRef] [PubMed]
- Kunst, C.B.; Leeflang, E.P.; Iber, J.C.; Arnheim, N.; Warren, S.T. The effect of FMR1 CGG repeat interruptions on mutation frequency as measured by sperm typing. J. Med. Genet. 1997, 34, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Nolin, S.L.; Glicksman, A.; Ersalesi, N.; Dobkin, C.; Brown, W.T.; Cao, R.; Blatt, E.; Sah, S.; Latham, G.J.; Hadd, A.G. Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet. Med. 2015, 17, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E.; Holden, J.J.; Popovich, B.W.; Reiss, A.L.; Snow, K.; Thibodeau, S.N.; Richards, C.S.; Ward, P.A.; Nelson, D.L. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat. Genet. 1994, 8, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Yrigollen, C.M.; Durbin-Johnson, B.; Gane, L.; Nelson, D.L.; Hagerman, R.; Hagerman, P.J.; Tassone, F. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet. Med. 2012, 14, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Nolin, S.L.; Sah, S.; Glicksman, A.; Sherman, S.L.; Allen, E.; Berry-Kravis, E.; Tassone, F.; Yrigollen, C.; Cronister, A.; Jodah, M.; et al. Fragile X AGG analysis provides new risk predictions for 45-69 repeat alleles. Am. J. Med. Genet. A 2013, 161A, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Avraham, S.; Almog, B.; Reches, A.; Zakar, L.; Malcov, M.; Sokolov, A.; Alpern, S.; Azem, F. The ovarian response in fragile X patients and premutation carriers undergoing IVF-PGD: Reappraisal. Hum. Reprod. 2017, 32, 1508–1511. [Google Scholar] [CrossRef] [PubMed]
- La Marca, A.; Mastellari, E. Fertility preservation for genetic diseases leading to premature ovarian insufficiency (POI). J. Assist. Reprod. Genet. 2021, 38, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Bibi, G.; Malcov, M.; Yuval, Y.; Reches, A.; Ben-Yosef, D.; Almog, B.; Amit, A.; Azem, F. The effect of CGG repeat number on ovarian response among fragile X premutation carriers undergoing preimplantation genetic diagnosis. Fertil. Steril. 2010, 94, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Pastore, L.M.; Christianson, M.S.; McGuinness, B.; Vaught, K.C.; Maher, J.Y.; Kearns, W.G. Does theFMR1 gene affect IVF success? Reprod. BioMedicine Online 2019, 38, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zeng, W.; Xu, Y.; Jin, P.; Dong, M. CGG repeats of FMR1 negatively affect ovarian reserve and response in Chinese women. Reprod. BioMedicine Online 2023, 49, 103779. [Google Scholar] [CrossRef]
- Pastore, L.M.; Johnson, J. The FMR1 gene, infertility, and reproductive decision-making: A review. Front. Genet. 2014, 5, 195. [Google Scholar] [CrossRef] [PubMed]
- Haahr, T.; Dosouto, C.; Alviggi, C.; Esteves, S.C.; Humaidan, P. Management Strategies for POSEIDON Groups 3 and 4. Front. Endocri. 2019, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Persico, T.; Tranquillo, M.L.; Seracchioli, R.; Zuccarello, D.; Sorrentino, U. PGT-M for Premature Ovarian Failure Related to CGG Repeat Expansion of the FMR1 Gene. Genes 2023, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- ACOG. Committee Opinion No. 469: Carrier screening for fragile X syndrome. Obstet. Gynecol. 2010, 116, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Welt, C.K.; Smith, P.C.; Taylor, A.E. Evidence of early ovarian aging in fragile X premutation carriers. J. Clin. Endocrinol. Metab. 2004, 89, 4569–4574. [Google Scholar] [CrossRef]
- Rohr, J.; Allen, E.G.; Charen, K.; Giles, J.; He, W.; Dominguez, C.; Sherman, S.L. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: A preliminary study. Hum. Reprod. 2008, 23, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, K.; Bringman, J.J.; Ward, J.; Phillips, O.P. Who should be tested for fragile X carriership? A review of 1 center’s pedigrees. Am. J. Obstet. Gynecol. 2008, 198, e51–e53. [Google Scholar] [CrossRef] [PubMed]
- Castilla, J.A.; Abellán, F.; Alamá, P.; Aura, M.; Bassas, L.; Clúa, E.; Guillén, J.; Manau, D.; Rueda, J.; Ruiz, M.; et al. Genetic screening in gamete donation: Recommendations from SEF, ASESA, AEBM-ML, ASEBIR and AEGH. Med. Reprod. Embriol. Clínica 2020, 7, 1–4. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine and the Practice Committee for the Society for Assisted Reproductive Technology. Guidance regarding gamete and embryo donation. Fertil. Steril. 2021, 115, 1395–1410. [Google Scholar] [CrossRef] [PubMed]
- Dondorp, W.; De Wert, G.; Pennings, G.; Shenfield, F.; Devroey, P.; Tarlatzis, B.; Barri, P.; Diedrich, K.; Eichenlaub-Ritter, U.; Tuttelmann, F.; et al. ESHRE Task Force on Ethics and Law 21: Genetic screening of gamete donors: Ethical issues. Hum. Reprod. 2014, 29, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
PATIENT GROUP | N | AGE | AMH | AFC |
---|---|---|---|---|
YOUNG DOR | 93 | 31.813 ± 2.551 | 0.406 ± 0.291 | 4.988 ± 3.058 |
CONTROL | 132 | 25.705 ± 0.4.704 | 3.073 ± 0.993 | 21.724 ± 9.726 |
AMH (ng/mL) (Mean) | AFC (Mean) | Number of Oocytes (Mean) | |
---|---|---|---|
No premutation DOR (n = 86) | 0.4 | 5.1 | 4.45 |
Premutation DOR (n = 7) | 0.26 | 4.4 | 2.25 |
NON-CARRIER | PREMUTATION | ||||
---|---|---|---|---|---|
Group | COMMON < 45 | INTERMEDIATE 45–54 | LOW 55–79 | MEDIUM 80–99 | HIGH > 100 |
CONTROL | 131 (99.24%) | - | 1 (0.76%) | - | - |
YOUNG DOR | 84 (90.32%) | 2 (2.15%) | 4 (4.30%) | 2 (2.15%) | 1 (1.08%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustí, I.; Méndez, M.; Borrás, A.; Goday, A.; Guimerà, M.; Peralta, S.; Ribera, L.; Rodriguez-Revenga, L.; Manau, D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes 2024, 15, 1008. https://doi.org/10.3390/genes15081008
Agustí I, Méndez M, Borrás A, Goday A, Guimerà M, Peralta S, Ribera L, Rodriguez-Revenga L, Manau D. Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes. 2024; 15(8):1008. https://doi.org/10.3390/genes15081008
Chicago/Turabian StyleAgustí, Inés, Marta Méndez, Aina Borrás, Anna Goday, Marta Guimerà, Sara Peralta, Laura Ribera, Laia Rodriguez-Revenga, and Dolors Manau. 2024. "Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice" Genes 15, no. 8: 1008. https://doi.org/10.3390/genes15081008
APA StyleAgustí, I., Méndez, M., Borrás, A., Goday, A., Guimerà, M., Peralta, S., Ribera, L., Rodriguez-Revenga, L., & Manau, D. (2024). Prevalence of the FMR1 Gene Premutation in Young Women with a Diminished Ovarian Reserve Included in an IVF Program: Implications for Clinical Practice. Genes, 15(8), 1008. https://doi.org/10.3390/genes15081008