CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Differentiation of Human Monocytes into Monocyte-Derived Microglia-like Cells (MDMi)
2.2. Tyrosine Phosphatase Inhibitor Treatment
2.3. Proximity Ligation Assay of MDMi and Human Brain Tissue
2.4. Genotyping
2.5. Statistical Analysis
2.6. Gene–Gene Interactions
3. Results
3.1. CD33 and SHP-1 Interact in Human Microglia-like Cells in a CD33 Genotype-Sensitive Manner
3.2. Genotype-Specific CD33-SHP-1 Interactions in Post-Mortem Human Brain Tissue
3.3. CD33 and PTPN6 Gene-Expression Interaction Impacts the Risk for Clinical and Pathological Features of AD
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Jiang, Z.F. Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: Relationship and links in Alzheimer’s disease. J. Alzheimers Dis. 2009, 16, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Bloom, G.S. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Duara, R.; Barker, W. Heterogeneity in Alzheimer’s Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022, 19, 8–25. [Google Scholar] [CrossRef]
- Hollingworth, P.; Harold, D.; Jones, L.; Owen, M.J.; Williams, J. Alzheimer’s disease genetics: Current knowledge and future challenges. Int. J. Geriatr. Psychiatry 2011, 26, 793–802. [Google Scholar] [CrossRef]
- Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef]
- Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef]
- Lambert, J.C.; Heath, S.; Even, G.; Campion, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Zelenika, D.; Bullido, M.J.; Tavernier, B.; et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 2009, 41, 1094–1099. [Google Scholar] [CrossRef]
- Seshadri, S.; Fitzpatrick, A.L.; Ikram, M.A.; DeStefano, A.L.; Gudnason, V.; Boada, M.; Bis, J.C.; Smith, A.V.; Carassquillo, M.M.; Lambert, J.C.; et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010, 303, 1832–1840. [Google Scholar] [CrossRef]
- Naj, A.C.; Jun, G.; Beecham, G.W.; Wang, L.S.; Vardarajan, B.N.; Buros, J.; Gallins, P.J.; Buxbaum, J.D.; Jarvik, G.P.; Crane, P.K.; et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 2011, 43, 436–441. [Google Scholar] [CrossRef]
- Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.; Younkin, S.; et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013, 368, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Benitez, B.A.; Karch, C.M.; Cooper, B.; Skorupa, T.; Carrell, D.; Norton, J.B.; Hsu, S.; Harari, O.; Cai, Y.; et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum. Mol. Genet. 2014, 23, 5838–5846. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, P.; Harold, D.; Sims, R.; Gerrish, A.; Lambert, J.C.; Carrasquillo, M.M.; Abraham, R.; Hamshere, M.L.; Pahwa, J.S.; Moskvina, V.; et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 2011, 43, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.M.; Chibnik, L.B.; Keenan, B.T.; Ottoboni, L.; Raj, T.; Tang, A.; Rosenkrantz, L.L.; Imboywa, S.; Lee, M.; Von Korff, A.; et al. CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nat. Neurosci. 2013, 16, 848–850. [Google Scholar] [CrossRef]
- Raj, T.; Ryan, K.J.; Replogle, J.M.; Chibnik, L.B.; Rosenkrantz, L.; Tang, A.; Rothamel, K.; Stranger, B.E.; Bennett, D.A.; Evans, D.A.; et al. CD33: Increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum. Mol. Genet. 2014, 23, 2729–2736. [Google Scholar] [CrossRef]
- Taylor, V.C.; Buckley, C.D.; Douglas, M.; Cody, A.J.; Simmons, D.L.; Freeman, S.D. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J. Biol. Chem. 1999, 274, 11505–11512. [Google Scholar] [CrossRef]
- Paul, S.P.; Taylor, L.S.; Stansbury, E.K.; McVicar, D.W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000, 96, 483–490. [Google Scholar] [CrossRef]
- Wissfeld, J.; Nozaki, I.; Mathews, M.; Raschka, T.; Ebeling, C.; Hornung, V.; Brustle, O.; Neumann, H. Deletion of Alzheimer’s disease-associated CD33 results in an inflammatory human microglia phenotype. Glia 2021, 69, 1393–1412. [Google Scholar] [CrossRef]
- Ryan, K.J.; White, C.C.; Patel, K.; Xu, J.; Olah, M.; Replogle, J.M.; Frangieh, M.; Cimpean, M.; Winn, P.; McHenry, A.; et al. A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci. Transl. Med. 2017, 9, eaai7635. [Google Scholar] [CrossRef]
- Sargeant, T.J.; Fourrier, C. Human monocyte-derived microglia-like cell models: A review of the benefits, limitations and recommendations. Brain Behav. Immun. 2023, 107, 98–109. [Google Scholar] [CrossRef]
- Quek, H.; Cuní-López, C.; Stewart, R.; Colletti, T.; Notaro, A.; Nguyen, T.H.; Sun, Y.; Guo, C.C.; Lupton, M.K.; Roberts, T.L.; et al. ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression. J. Neuroinflamm. 2022, 19, 58. [Google Scholar] [CrossRef]
- Cuní-López, C.; Stewart, R.; Oikari, L.E.; Nguyen, T.H.; Roberts, T.L.; Sun, Y.; Guo, C.C.; Lupton, M.K.; White, A.R.; Quek, H. Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer’s disease. J. Neuroinflamm. 2024, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- You, M.J.; Rim, C.; Bang, M.; Sung, S.; Kim, H.J.; Lee, S.H.; Kwon, M.S. A molecular characterization and clinical relevance of microglia-like cells derived from patients with panic disorder. Transl. Psychiatry 2023, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- De Jager, P.L.; Ma, Y.; McCabe, C.; Xu, J.; Vardarajan, B.N.; Felsky, D.; Klein, H.U.; White, C.C.; Peters, M.A.; Lodgson, B.; et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. Data 2018, 5, 180142. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.; White, C.C.; Klein, H.U.; Sieberts, S.K.; McCabe, C.; Patrick, E.; Xu, J.; Yu, L.; Gaiteri, C.; Bennett, D.A.; et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 2017, 20, 1418–1426. [Google Scholar] [CrossRef]
- Bennett, D.A.; Buchman, A.S.; Boyle, P.A.; Barnes, L.L.; Wilson, R.S.; Schneider, J.A. Religious Orders Study and Rush Memory and Aging Project. J. Alzheimers Dis. 2018, 64, S161–S189. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Arvanitakis, Z.; Kelly, J.F.; Aggarwal, N.T.; Shah, R.C.; Wilson, R.S. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006, 66, 1837–1844. [Google Scholar] [CrossRef]
- Bennett, D.A.; Wilson, R.S.; Schneider, J.A.; Evans, D.A.; Beckett, L.A.; Aggarwal, N.T.; Barnes, L.L.; Fox, J.H.; Bach, J. Natural history of mild cognitive impairment in older persons. Neurology 2002, 59, 198–205. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Aggarwal, N.T.; Arvanitakis, Z.; Shah, R.C.; Kelly, J.F.; Fox, J.H.; Cochran, E.J.; Arends, D.; Treinkman, A.D.; et al. Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology 2006, 27, 169–176. [Google Scholar] [CrossRef]
- Oveisgharan, S.; Yang, J.; Yu, L.; Burba, D.; Bang, W.; Tasaki, S.; Grodstein, F.; Wang, Y.; Zhao, J.; De Jager, P.L.; et al. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023, 100, e1474–e1487. [Google Scholar] [CrossRef]
- Boyle, P.A.; Yu, L.; Leurgans, S.E.; Wilson, R.S.; Brookmeyer, R.; Schneider, J.A.; Bennett, D.A. Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. Ann. Neurol. 2019, 85, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.A.; Wang, T.; Yu, L.; Wilson, R.S.; Dawe, R.; Arfanakis, K.; Schneider, J.A.; Bennett, D.A. To what degree is late life cognitive decline driven by age-related neuropathologies? Brain 2021, 144, 2166–2175. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, S.; Gullberg, M.; Jarvius, J.; Olsson, C.; Pietras, K.; Gustafsdottir, S.M.; Ostman, A.; Landegren, U. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 2002, 20, 473–477. [Google Scholar] [CrossRef]
- Fantus, I.G.; Kadota, S.; Deragon, G.; Foster, B.; Posner, B.I. Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 1989, 28, 8864–8871. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.; White, C.C.; Winn, P.A.; Cimpean, M.; Replogle, J.M.; Glick, L.R.; Cuerdon, N.E.; Ryan, K.J.; Johnson, K.A.; Schneider, J.A.; et al. CD33 modulates TREM2: Convergence of Alzheimer loci. Nat. Neurosci. 2015, 18, 1556–1558. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.R.; Pimassoni, L.H.S.; Sena, G.G.S.; Camporez, D.; Belcavello, L.; Trancozo, M.; Morelato, R.L.; Errera, F.I.V.; Bueno, M.R.P.; de Paula, F. Validating GWAS Variants from Microglial Genes Implicated in Alzheimer’s Disease. J. Mol. Neurosci. 2017, 62, 215–221. [Google Scholar] [CrossRef]
- GNS, H.S.; Marise, V.L.P.; Satish, K.S.; Yergolkar, A.V.; Krishnamurthy, M.; Ganesan Rajalekshmi, S.; Radhika, K.; Burri, R.R. Untangling huge literature to disinter genetic underpinnings of Alzheimer’s Disease: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 71, 101421. [Google Scholar] [CrossRef]
- Griciuc, A.; Serrano-Pozo, A.; Parrado, A.R.; Lesinski, A.N.; Asselin, C.N.; Mullin, K.; Hooli, B.; Choi, S.H.; Hyman, B.T.; Tanzi, R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013, 78, 631–643. [Google Scholar] [CrossRef]
- Gu, X.; Dou, M.; Cao, B.; Jiang, Z.; Chen, Y. Peripheral level of CD33 and Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study. Transl. Psychiatry 2022, 12, 427. [Google Scholar] [CrossRef]
- Li, W.W.; Wang, Z.; Fan, D.Y.; Shen, Y.Y.; Chen, D.W.; Li, H.Y.; Li, L.; Yang, H.; Liu, Y.H.; Bu, X.L.; et al. Association of Polygenic Risk Score with Age at Onset and Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease in a Chinese Cohort. Neurosci. Bull. 2020, 36, 696–704. [Google Scholar] [CrossRef]
- Malik, M.; Chiles, J.; Xi, H.S.; Medway, C.; Simpson, J.; Potluri, S.; Howard, D.; Liang, Y.; Paumi, C.M.; Mukherjee, S.; et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum. Mol. Genet. 2015, 24, 3557–3570. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Simpson, J.F.; Parikh, I.; Wilfred, B.R.; Fardo, D.W.; Nelson, P.T.; Estus, S. CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J. Neurosci. 2013, 33, 13320–13325. [Google Scholar] [CrossRef] [PubMed]
- Vonsattel, J.P.; Del Amaya, M.P.; Keller, C.E. Twenty-first century brain banking. Processing brains for research: The Columbia University methods. Acta Neuropathol. 2008, 115, 509–532. [Google Scholar] [CrossRef] [PubMed]
- Chatila, Z.K.; Yadav, A.; Mares, J.; Flowers, X.; Yun, T.D.; Rashid, M.; Talcoff, R.; Pelly, Z.; Zhang, Y.; De Jager, P.L.; et al. RNA- and ATAC-sequencing Reveals a Unique CD83+ Microglial Population Focally Depleted in Parkinson’s Disease. bioRxiv 2023. [Google Scholar] [CrossRef]
Trait | Variable | β | se | t | p |
---|---|---|---|---|---|
Amyloid | Intercept | 1.742 | 0.039 | 44.546 | 1.45 × 10−246 |
CD33 gx | 0.070 | 0.056 | 1.236 | 0.217 | |
PTPN6 gx | 0.022 | 0.073 | 0.297 | 0.766 | |
CD33 gx:PTPN6 gx | −0.210 | 0.063 | −3.349 | 8.39 × 10−4 | |
Tangles | Intercept | 2.347 | 0.047 | 49.816 | 4.20 × 10−282 |
CD33 gx | 0.077 | 0.068 | 1.137 | 0.256 | |
PTPN6 gx | −0.034 | 0.088 | −0.383 | 0.701 | |
CD33 gx:PTPN6 gx | −0.247 | 0.076 | −3.276 | 1.09 × 10−3 | |
Pathologic AD | Intercept | 0.644 | 0.072 | 8.889 | 6.18 × 10−19 |
CD33 gx | 0.099 | 0.104 | 0.958 | 0.338 | |
PTPN6 gx | 0.038 | 0.135 | 0.280 | 0.780 | |
CD33 gx:PTPN6 gx | −0.359 | 0.114 | −3.136 | 1.72 × 10−3 | |
AD dementia | Intercept | 0.163 | 0.084 | 1.945 | 0.052 |
CD33 gx | 0.294 | 0.125 | 2.358 | 0.018 | |
PTPN6 gx | −0.202 | 0.156 | −1.289 | 0.197 | |
CD33 gx:PTPN6 gx | −0.299 | 0.146 | −2.054 | 0.040 | |
Cognitive decline | Intercept | −0.016 | 0.003 | −4.804 | 1.78 × 10−6 |
CD33 gx | −0.007 | 0.005 | −1.499 | 0.134 | |
PTPN6 gx | 0.001 | 0.006 | 0.217 | 0.828 | |
CD33 gx:PTPN6 gx | 0.003 | 0.006 | 0.612 | 0.541 | |
TDP-43 | Intercept | −0.711 | 0.077 | −9.259 | 2.05 × 10−20 |
CD33 gx | 0.190 | 0.113 | 1.679 | 0.093 | |
PTPN6 gx | −0.081 | 0.145 | −0.562 | 0.574 | |
CD33 gx:PTPN6 gx | −0.296 | 0.140 | −2.113 | 0.035 | |
Hippocampal sclerosis | Intercept | −2.260 | 0.120 | −18.778 | 1.1 × 410−78 |
CD33 gx | 0.314 | 0.183 | 1.712 | 0.087 | |
PTPN6 gx | −0.244 | 0.229 | −1.067 | 0.286 | |
CD33 gx:PTPN6 gx | −0.279 | 0.227 | −1.230 | 0.219 | |
Global AD pathology burden | Intercept | 0.760 | 0.021 | 35.835 | 2.32 × 10−186 |
CD33 gx | 0.019 | 0.031 | 0.637 | 0.525 | |
PTPN6 gx | 0.033 | 0.040 | 0.831 | 0.406 | |
CD33 gx:PTPN6 gx | −0.123 | 0.034 | −3.613 | 3.16 × 10−4 |
β | Lower 95% CI | Upper 95% CI | p-Value | |
---|---|---|---|---|
Average Causal Mediation Effect (ACME) | 0.055 | 0.012 | 0.100 | 0.008 |
Average Direct Effect (ADE) | −0.042 | −0.119 | 0.040 | 0.278 |
Total Effect | 0.014 | −0.045 | 0.070 | 0.666 |
Proportion Mediated (PM) | 4.092 | −22.768 | 27.120 | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckers, L.; Rashid, M.; Lee, A.J.; Chatila, Z.K.; Tamucci, K.A.; Talcoff, R.C.; Hall, J.L.; Bennett, D.A.; Vardarajan, B.N.; Bradshaw, E.M. CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease. Genes 2024, 15, 1204. https://doi.org/10.3390/genes15091204
Beckers L, Rashid M, Lee AJ, Chatila ZK, Tamucci KA, Talcoff RC, Hall JL, Bennett DA, Vardarajan BN, Bradshaw EM. CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease. Genes. 2024; 15(9):1204. https://doi.org/10.3390/genes15091204
Chicago/Turabian StyleBeckers, Lien, Mamunur Rashid, Annie J. Lee, Zena K. Chatila, Kirstin A. Tamucci, Ryan C. Talcoff, Jennifer L. Hall, David A. Bennett, Badri N. Vardarajan, and Elizabeth M. Bradshaw. 2024. "CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease" Genes 15, no. 9: 1204. https://doi.org/10.3390/genes15091204
APA StyleBeckers, L., Rashid, M., Lee, A. J., Chatila, Z. K., Tamucci, K. A., Talcoff, R. C., Hall, J. L., Bennett, D. A., Vardarajan, B. N., & Bradshaw, E. M. (2024). CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease. Genes, 15(9), 1204. https://doi.org/10.3390/genes15091204