AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot
Highlights
- AI Chatbots in Neurogenetics: The study evaluates the use of ChatGPT and Gemini as tools to assist neurologists in evaluating neurogenetic disorders, focusing on their ability to identify key clinical features, suggest differential diagnoses, and recommend genetic testing.
- Performance and Insights: ChatGPT outperformed Gemini in accuracy and completeness, particularly in suggesting potential genetic etiologies, despite notable gaps in diagnostic precision and occasional hallucinations
- Bridging Neurology and Genetics: AI tools can streamline the diagnostic process, reduce timelines, and ensure appropriate patient referrals to geneticists, offering a significant step toward integrating AI into clinical neurogenetics.
- Future Potential: While they are not a substitute for genetic counseling, these chatbots show promise in enhancing diagnostic workflows and supporting personalized medicine through targeted training and rigorous validation.
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- a.
- A patient has—3 most frequent symptoms-. What are the 5 most probable diagnoses?
- b.
- A patient has—3 most frequent signs-. What are the 5 most probable diagnoses?
- c.
- A patient has—3 most rare symptoms-. What are the 5 most probable diagnoses?
- d.
- A patient has—3 most rare signs-. What are the 5 most probable diagnoses?
- e.
- What mode of inheritance is expected for—disease name-?
- f.
- What genetic tests are available to confirm or exclude the diagnosis of—disease name-?
- g.
- What family members can be considered at risk for—disease name-?
- h.
- Predictive testing for—disease name- is possible for at-risk family members?
- i.
- Predictive testing for—disease name- in minors is possible?
- j.
- Is it possible to determine genetic risks for—disease name-?
- k.
- What is the optimal time for determination of genetic risks?
- l.
- There are available prenatal/preimplantation genetic testing?
- m.
- What are the suggested evaluations following initial diagnosis of—disease name-?
- n.
- There are available curative or disease-modifying treatment for—disease name-?
- o.
- What are symptomatic treatments available for—disease name-?
References
- Wojcik, M.H.; Lemire, G.; Berger, E.; Zaki, M.S.; Wissmann, M.; Win, W.; White, S.M.; Weisburd, B.; Wieczorek, D.; Waddell, L.B.; et al. Genome Sequencing for Diagnosing Rare Diseases. N. Engl. J. Med. 2024, 390, 1985–1997. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Strafella, C.; Longo, G.; Ragazzo, M.; Manzo, L.; De Felici, C.; Errichiello, V.; Caputo, V.; Viola, F.; Eandi, C.M.; et al. Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: Significant association of twelve variants. Oncotarget 2017, 9, 7812–7821. [Google Scholar] [CrossRef]
- Cascella, R.; Strafella, C.; Germani, C.; Novelli, G.; Ricci, F.; Zampatti, S.; Giardina, E. The Genetics and the Genomics of Primary Congenital Glaucoma. BioMed Res. Int. 2015, 2015, 321291. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Jing, D.; Gao, R.; Zhang, J.; Cui, C.; Qiao, H.; Liang, Z.; Wang, C.; Rosa-Neto, P.; et al. Diagnostic Approach of Early-Onset Dementia with Negative Family History: Implications from Two Cases of Early-Onset Alzheimer’s’ Disease with De Novo PSEN1 Mutation. J. Alzheimers Dis. 2019, 68, 551–558. [Google Scholar] [CrossRef]
- Ezquerra, M.; Lleó, A.; Castellví, M.; Queralt, R.; Santacruz, P.; Pastor, P.; Molinuevo, J.L.; Blesa, R.; Oliva, R. A novel mutation in the PSEN2 gene (T430M) associated with variable expression in a family with early-onset Alzheimer disease. Arch. Neurol. 2003, 60, 1149–1151. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Pepe, G.; Konitsiotis, S.; Chondrogiorgi, M.; Grigoriadis, N.; Kimiskidis, V.K.; Tsivgoulis, G.; Mitsikostas, D.D.; Chroni, E.; Domouzoglou, E.; et al. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J. Neurol. Sci. 2023, 447, 120609. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.; Finsterer, J.; Baets, J.; Van Broeckhoven, C.; Di Donato, S.; Fontaine, B.; De Jonghe, P.; Lossos, A.; Lynch, T.; Mariotti, C.; et al. EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias. Eur. J. Neurol. 2010, 17, 179–188. [Google Scholar] [CrossRef]
- Kassardjian, C.D.; Amato, A.A.; Boon, A.J.; Childers, M.K.; Klein, C.J.; AANEM Professional Practice Committee. The utility of genetic testing in neuromuscular disease: A consensus statement from the AANEM on the clinical utility of genetic testing in diagnosis of neuromuscular disease. Muscle Nerve 2016, 54, 1007–1009. [Google Scholar] [CrossRef]
- Burgunder, J.M.; Schöls, L.; Baets, J.; Andersen, P.; Gasser, T.; Szolnoki, Z.; Fontaine, B.; Van Broeckhoven, C.; Di Donato, S.; De Jonghe, P.; et al. EFNS guidelines for the molecular diagnosis of neurogenetic disorders: Motoneuron, peripheral nerve and muscle disorders. Eur. J. Neurol. 2011, 18, 207–217. [Google Scholar] [CrossRef]
- van de Warrenburg, B.P.; van Gaalen, J.; Boesch, S.; Burgunder, J.M.; Dürr, A.; Giunti, P.; Klockgether, T.; Mariotti, C.; Pandolfo, M.; Riess, O. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 2014, 21, 552–562. [Google Scholar] [CrossRef]
- Goldman, J.S.; Hahn, S.E.; Catania, J.W.; LaRusse-Eckert, S.; Butson, M.B.; Rumbaugh, M.; Strecker, M.N.; Roberts, J.S.; Burke, W.; Mayeux, R.; et al. Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011, 13, 597–605. [Google Scholar] [CrossRef]
- Hyman, S.L.; Levy, S.E.; Myers, S.M. Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics. Identification, Evaluation, and Management of Children With Autism Spectrum Disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef]
- Clarke, A. Harper’s’ Practical Genetic Counselling, 8th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020; pp. 3–7; 433–467. [Google Scholar]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef] [PubMed]
- Ille, A.M.; Markosian, C.; Burley, S.K.; Mathews, M.B.; Pasqualini, R.; Arap, W. Generative artificial intelligence performs rudimentary structural biology modeling. Sci. Rep. 2024, 14, 19372. [Google Scholar] [CrossRef] [PubMed]
- Giardina, E.; Capon, F.; De Rosa, M.C.; Mango, R.; Zambruno, G.; Orecchia, A.; Chimenti, S.; Giardina, B.; Novelli, G. Characterization of the loricrin (LOR) gene as a positional candidate for the PSORS4 psoriasis susceptibility locus. Ann. Hum. Genet. 2004, 68 Pt 6, 639–645. [Google Scholar] [CrossRef]
- Zampatti, S.; Peconi, C.; Megalizzi, D.; Calvino, G.; Trastulli, G.; Cascella, R.; Strafella, C.; Caltagirone, C.; Giardina, E. Innovations in Medicine: Exploring ChatGPT’s’ Impact on Rare Disorder Management. Genes 2024, 15, 421. [Google Scholar] [CrossRef]
- Xue, V.W.; Lei, P.; Cho, W.C. The potential impact of ChatGPT in clinical and translational medicine. Clin. Transl. Med. 2023, 13, e1216. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, K.; Bhattacharya, A.S.; Bhattacharya, N.; Yagnik, V.D.; Garg, P.; Kumar, S. ChatGPT in Surgical Practice—A New Kid on the Block. Indian. J. Surg. 2023, 85, 1346–1349. [Google Scholar] [CrossRef]
- Cheng, K.; Li, Z.; He, Y.; Guo, Q.; Lu, Y.; Gu, S.; Wu, H. Potential Use of Artificial Intelligence in Infectious Disease: Take ChatGPT as an Example. Ann. Biomed. Eng. 2023, 51, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- NIH PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 30 October 2024).
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The global epidemiology of hereditary ataxia and spastic paraplegia: A systematic review of prevalence studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef]
- Parodi, L.; Rydning, S.L.; Tallaksen, C.; Durr, A. Spastic Paraplegia 4. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2003; pp. 1993–2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1160/ (accessed on 30 October 2024).
- Orphanet Report Series. Prevalence and Incidence of Rare Diseases: Bibliographic Data Number 1|October 2024. Available online: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf (accessed on 30 October 2024).
- Hantash, F.M.; Goos, D.M.; Crossley, B.; Anderson, B.; Zhang, K.; Sun, W.; Strom, C.M. FMR1 premutation carrier frequency in patients undergoing routine population-based carrier screening: Insights into the prevalence of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in the United States. Genet. Med. 2011, 13, 39–45. [Google Scholar] [CrossRef]
- Beloor Suresh, A.; Asuncion, R.M.D. Myasthenia Gravis; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559331/ (accessed on 20 December 2024).
- Qudsiya, Z.; Waseem, M. Dermatomyositis; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558917/ (accessed on 20 December 2024).
- Brotman, R.G.; Moreno-Escobar, M.C.; Joseph, J.; Munakomi, S.; Pawar, G. Amyotrophic Lateral Sclerosis; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556151/ (accessed on 20 December 2024).
- Wijesekera, L.C.; Leigh, P.N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 2009, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Steuerwald, N.M.; Morris, S.; Nguyen, D.G.; Patel, J.N. Understanding the Biology and Testing Techniques for Pharmacogenomics in Oncology: A Practical Guide for the Clinician. JCO Oncol. Pract. 2024, 20, 1441–1451. [Google Scholar] [CrossRef]
- Stocchi, L.; Cascella, R.; Zampatti, S.; Pirazzoli, A.; Novelli, G.; Giardina, E. The Pharmacogenomic HLA Biomarker Associated to Adverse Abacavir Reactions: Comparative Analysis of Different Genotyping Methods. Curr. Genom. 2012, 13, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Apellaniz-Ruiz, M.; Barrachina, J.; Castro-Sanchez, P.; Comes-Raga, A.; García-González, X.; Gil-Rodriguez, A.; Lopez-Lopez, E.; Maroñas, O.; et, a. Status of the implementation of pharmacogenetics in clinical practice in Spain: From regional to national initiatives. Drug Metab. Pers. Ther. 2024, in press. [CrossRef]
- Mendell, J.R.; Muntoni, F.; McDonald, C.M.; Mercuri, E.M.; Ciafaloni, E.; Komaki, H.; Leon-Astudillo, C.; Nascimento, A.; Proud, C.; Schara-Schmidt, U.; et al. AAV gene therapy for Duchenne muscular dystrophy: The EMBARK phase 3 randomized trial. Nat. Med. 2024. [Google Scholar] [CrossRef]
- Hatanaka, F.; Suzuki, K.; Shojima, K.; Yu, J.; Takahashi, Y.; Sakamoto, A.; Prieto, J.; Shokhirev, M.; Delicado, E.N.; Esteban, C.R.; et al. Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing. Nat. Commun. 2024, 15, 6191. [Google Scholar] [CrossRef]
- Mehnen, L.; Gruarin, S.; Vasileva, M.; Knapp, B. Chat GPT as a medical doctor? A diagnostic accuracy study on common and rare diseases. MedRxiv 2023. [Google Scholar]
- Eriksen, A.V.; Möller, S.; Jesper, R. Use of GPT-4 to Diagnose Complex Clinical Cases. NEJM AI 2023, 1, AIp2300031. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, J.; Cai, X.; Wu, D.; Yin, C. A descriptive study based on the comparison of ChatGPT and evidence-based neurosurgeons. iScience 2023, 26, 107590. [Google Scholar] [CrossRef]
- Simmons, A.; Takkavatakarn, K.; McDougal, M.; Dilcher, B.; Pincavitch, J.; Meadows, L.; Kauffman, J.; Klang, E.; Wig, R.; Smith, G.S.; et al. Extracting International Classification of Diseases Codes from Clinical Documentation using Large Language Models. Appl. Clin. Inform. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Bubeck, S.; Petro, J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N. Engl. J. Med. 2023, 388, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of hallucination in natural language generation. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Alavi, A.; Esmaeili, S.; Nafissi, S.; Kahrizi, K.; Najmabadi, H. Genotype and phenotype analysis of 43 Iranian facioscapulohumeral muscular dystrophy patients; Evidence for anticipation. Neuromuscul. Disord. 2018, 28, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Tawil, R.; Forrester, J.; Griggs, R.C.; Mendell, J.; Kissel, J.; McDermott, M.; King, W.; Weiffenbach, B.; Figlewicz, D. Evidence for anticipation and association of deletion size with severity in facioscapulohumeral muscular Dystrophy. FSH-DY Group. Ann. Neurol. 1996, 39, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, K.M.; Coffeen, C.M.; Sexton, L.; Stauffer, D.; Brunner, S.; Leppert, M.F. Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral Dystrophy. Neuromuscul. Disord. 2001, 11, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Barseghyan, H.; Pang, A.W.C.; Clifford, B.; Serrano, M.A.; Chaubey, A.; Hastie, A.R. Comparative Benchmarking of Optical Genome Mapping and Chromosomal Microarray Reveals High Technological Concordance in CNV Identification and Additional Structural Variant Refinement. Genes 2023, 14, 1868. [Google Scholar] [CrossRef]
- Efthymiou, S.; Lemmers, R.J.L.F.; Vishnu, V.Y.; Dominik, N.; Perrone, B.; Facchini, S.; Vegezzi, E.; Ravaglia, S.; Wilson, L.; van der Vliet, P.J.; et al. Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy: Advancement and Challenges. Biomolecules 2023, 13, 1567. [Google Scholar] [CrossRef] [PubMed]
- Guruju, N.M.; Jump, V.; Lemmers, R.; Van Der Maarel, S.; Liu, R.; Nallamilli, B.R.; Shenoy, S.; Chaubey, A.; Koppikar, P.; Rose, R.; et al. Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy in Patients Clinically Suspected of FSHD Using Optical Genome Mapping. Neurol. Genet. 2023, 9, e200107. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.; Seo, J.; Lee, S.T.; Choi, J.R.; Choi, Y.C.; Shin, S.; Park, H.J. Clinical Application of Optical Genome Mapping for Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy. Ann. Lab. Med. 2024, 44, 437–445. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices?utm_medium=email&utm_source=govdelivery (accessed on 20 December 2024).
- Hennocq, Q.; Willems, M.; Amiel, J.; Arpin, S.; Attie-Bitach, T.; Bongibault, T.; Bouygues, T.; Cormier-Daire, V.; Corre, P.; Dieterich, K.; et al. generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome. Sci. Rep. 2024, 14, 2330. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.J.M.; Hinne, M.; Truijen, K.M.G.; Goltstein, L.; van Reeuwijk, J.; de Leeuw, N.; Schuurs-Hoeijmakers, J.; Pfundt, R.; Diets, I.J.; Hoed, J.D.; et al. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat. Genet. 2023, 55, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Smedley, D.; Jacobsen, J.O.; Jäger, M.; Köhler, S.; Holtgrewe, M.; Schubach, M.; Siragusa, E.; Zemojtel, T.; Buske, O.J.; Washington, N.L.; et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat. Protoc. 2015, 10, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Zucca, S.; Nicora, G.; De Paoli, F.; Carta, M.G.; Bellazzi, R.; Magni, P.; Rizzo, E.; Limongelli, I. An AI-based approach driven by genotypes and phenotypes to uplift the diagnostic yield of genetic diseases. Hum. Genet. 2024, 143, 1–13. [Google Scholar] [CrossRef]
- Dai, H.J.; Wang, C.K.; Chen, C.C.; Liou, C.S.; Lu, A.T.; Lai, C.H.; Shain, B.-T.; Ke, C.-R.; Wang, W.Y.C.; Mir, T.H.; et al. Evaluating a Natural Language Processing-Driven, AI-Assisted International Classification of Diseases, 10th Revision, Clinical Modification, Coding System for Diagnosis Related Groups in a Real Hospital Environment: Algorithm Development and Validation Study. J. Med. Internet Res. 2024, 26, e58278. [Google Scholar] [CrossRef] [PubMed]
- Nógrádi, B.; Polgár, T.F.; Meszlényi, V.; Kádár, Z.; Hertelendy, P.; Csáti, A.; Szpisjak, L.; Halmi, D.; Erdélyi-Furka, B.; Tóth, M.; et al. ChatGPT M.D.: Is There Any Room for Generative AI in Neurology and Other Medical Areas? Available online: https://ssrn.com/abstract=4372965 (accessed on 10 January 2024).
- Boßelmann, C.M.; Leu, C.; Lal, D. Are AI language models such as ChatGPT ready to improve the care of individuals with epilepsy? Epilepsia 2023, 64, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Brunklaus, A. No evidence that SCN9A variants are associated with epilepsy. Seizure 2021, 91, 172–173. [Google Scholar] [CrossRef] [PubMed]
- Harpet, P.S. The Evolution of Medical Genetics, 1st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020; pp. 143–166. [Google Scholar]
- Khalifa, M.; Albadawy, M. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Comput. Methods Programs Biomed. Update 2024, 5, 100146. [Google Scholar] [CrossRef]
- Giardina, E.; Mandich, P.; Ghidoni, R.; Ticozzi, N.; Rossi, G.; Fenoglio, C.; Tiziano, F.D.; Esposito, F.; Capellari, S.; Nacmias, B.; et al. Distribution of the C9orf72 hexanucleotide repeat expansion in healthy subjects: A multicenter study promoted by the Italian IRCCS network of neuroscience and neurorehabilitation. Front. Neurol. 2024, 15, 1284459. [Google Scholar] [CrossRef] [PubMed]
GPT4o | GPT4 | GPT3.5 | Gemini | |||||
---|---|---|---|---|---|---|---|---|
Diagnosis | ||||||||
Accuracy | 11/24 | 45.83% | 12/24 | 50.00% | 11/24 | 45.83% | 7/24 | 29.17% |
Correctness | 11/24 | 45.83% | 12/24 | 50.00% | 11/24 | 45.83% | 7/24 | 29.17% |
Completeness | 44/72 | 61.11% | 47/72 | 65.28% | 46/72 | 63.89% | 34/72 | 47.22% |
General Appearance | 72/72 | 100.00% | 72/72 | 100.00% | 72/72 | 100.00% | 72/72 | 100.00% |
Genetic data | ||||||||
Accuracy | 44/44 | 100.00% | 44/44 | 100.00% | 44/44 | 100.00% | 39/44 | 88.64% |
Correctness | 44/44 | 100.00% | 44/44 | 100.00% | 44/44 | 100.00% | 39/44 | 88.64% |
Completeness | 118/132 | 89.39% | 122/132 | 92.42% | 117/132 | 88.64% | 92/132 | 69.70% |
General Appearance | 132/132 | 100.00% | 129/132 | 97.73% | 128/132 | 96.97% | 108/132 | 81.82% |
Patient management | ||||||||
Accuracy | 24/24 | 100.00% | 24/24 | 100.00% | 24/24 | 100.00% | 24/24 | 100.00% |
Correctness | 24/24 | 100.00% | 24/24 | 100.00% | 23/24 | 95.83% | 24/24 | 100.00% |
Completeness | 71/72 | 98.61% | 71/72 | 98.61% | 71/72 | 98.61% | 64/72 | 88.89% |
General Appearance | 72/72 | 100.00% | 72/72 | 100.00% | 72/72 | 100.00% | 65/72 | 90.28% |
GPT4o | GPT4 | GPT3.5 | Gemini | Prevalence [22,23,24,25] | Publications [21] | ||
---|---|---|---|---|---|---|---|
HSP4 | signs and symptoms—3 common | 1/2 | 1/2 | 0/2 | 0/2 | 1–5:100,000 | 369 |
signs and symptoms—3 rare | 0/2 | 0/2 | 0/2 | 0/2 | |||
HSP7 | signs and symptoms—3 common | 1/2 | 1/2 | 2/2 | 1/2 | 1–9:100,000 | 310 |
signs and symptoms—3 rare | 0/2 | 0/2 | 0/2 | 0/2 | |||
HTT | signs and symptoms—3 common | 2/2 | 2/2 | 2/2 | 2/2 | 2.7:100,000 | 15,505 |
signs and symptoms—3 rare | 1/2 | 1/2 | 1/2 | 1/2 | |||
FXTAS | signs and symptoms—3 common | 0/2 | 1/2 | 0/2 | 0/2 | 1:4848 (in males) | 761 |
signs and symptoms—3 rare | 0/2 | 0/2 | 0/2 | 0/2 | |||
BMD | signs and symptoms—3 common | 2/2 | 2/2 | 2/2 | 1/2 | 2:100,000 | 1838 |
signs and symptoms—3 rare | 1/2 | 1/2 | 1/2 | 1/2 | |||
FSHD | signs and symptoms—3 common | 2/2 | 2/2 | 2/2 | 0/2 | 4.5:100,000 | 1257 |
signs and symptoms—3 rare | 1/2 | 1/2 | 1/2 | 0/2 |
GPT4o | GPT4 | GPT3.5 | Gemini | ||||||
---|---|---|---|---|---|---|---|---|---|
HSP4 | Accuracy | 14/17 | 82.35% | 14/17 | 82.35% | 13/17 | 76.47% | 13/17 | 76.47% |
Correctness | 14/17 | 82.35% | 14/17 | 82.35% | 13/17 | 76.47% | 13/17 | 76.47% | |
Completeness | 40/51 | 78.43% | 38/51 | 74.51% | 35/51 | 68.63% | 30/51 | 58.82% | |
General Appearance | 51/51 | 100.00% | 50/51 | 98.04% | 47/51 | 92.16% | 43/51 | 84.31% | |
HSP7 | Accuracy | 12/15 | 80.00% | 12/15 | 80.00% | 13/15 | 86.67% | 13/15 | 86.67% |
Correctness | 12/15 | 80.00% | 12/15 | 80.00% | 13/15 | 86.67% | 13/15 | 86.67% | |
Completeness | 33/45 | 73.33% | 38/45 | 84.44% | 40/45 | 88.89% | 38/45 | 84.44% | |
General Appearance | 45/45 | 100.00% | 45/45 | 100.00% | 45/45 | 100.00% | 38/45 | 84.44% | |
HD | Accuracy | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% |
Correctness | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | |
Completeness | 41/45 | 91.11% | 42/45 | 93.33% | 41/45 | 91.11% | 34/45 | 75.56% | |
General Appearance | 45/45 | 100.00% | 43/45 | 95.56% | 43/45 | 95.56% | 40/45 | 88.89% | |
FXTAS | Accuracy | 11/15 | 73.33% | 12/15 | 80.00% | 11/15 | 73.33% | 11/15 | 73.33% |
Correctness | 11/15 | 73.33% | 12/15 | 80.00% | 10/15 | 66.67% | 11/15 | 73.33% | |
Completeness | 35/45 | 77.78% | 38/45 | 84.44% | 35/45 | 77.78% | 33/45 | 73.33% | |
General Appearance | 45/45 | 100.00% | 45/45 | 100.00% | 45/45 | 100.00% | 42/45 | 93.33% | |
BMD | Accuracy | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 8/15 | 53.33% |
Correctness | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 8/15 | 53.33% | |
Completeness | 42/45 | 93.33% | 41/45 | 91.11% | 42/45 | 93.33% | 27/45 | 60.00% | |
General Appearance | 45/45 | 100.00% | 45/45 | 100.00% | 45/45 | 100.00% | 42/45 | 93.33% | |
FSHD | Accuracy | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 11/15 | 73.33% |
Correctness | 14/15 | 93.33% | 14/15 | 93.33% | 14/15 | 93.33% | 11/15 | 73.33% | |
Completeness | 42/45 | 93.33% | 43/45 | 95.56% | 41/45 | 91.11% | 28/45 | 62.22% | |
General Appearance | 45/45 | 100.00% | 45/45 | 100.00% | 45/45 | 100.00% | 40/45 | 88.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampatti, S.; Farro, J.; Peconi, C.; Cascella, R.; Strafella, C.; Calvino, G.; Megalizzi, D.; Trastulli, G.; Caltagirone, C.; Giardina, E. AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot. Genes 2025, 16, 29. https://doi.org/10.3390/genes16010029
Zampatti S, Farro J, Peconi C, Cascella R, Strafella C, Calvino G, Megalizzi D, Trastulli G, Caltagirone C, Giardina E. AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot. Genes. 2025; 16(1):29. https://doi.org/10.3390/genes16010029
Chicago/Turabian StyleZampatti, Stefania, Juliette Farro, Cristina Peconi, Raffaella Cascella, Claudia Strafella, Giulia Calvino, Domenica Megalizzi, Giulia Trastulli, Carlo Caltagirone, and Emiliano Giardina. 2025. "AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot" Genes 16, no. 1: 29. https://doi.org/10.3390/genes16010029
APA StyleZampatti, S., Farro, J., Peconi, C., Cascella, R., Strafella, C., Calvino, G., Megalizzi, D., Trastulli, G., Caltagirone, C., & Giardina, E. (2025). AI-Powered Neurogenetics: Supporting Patient’s Evaluation with Chatbot. Genes, 16(1), 29. https://doi.org/10.3390/genes16010029