Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedigree and Phenotypic Data
2.2. Genotyping and Quality Control
2.3. Statistical and Genetic Analysis
3. Results and Discussion
3.1. Phenotypic Values
3.2. Genetic Parameters and Heritabilities Obtained Using REML and ssGREML
3.3. Comparison Between the Reliability Obtained Using REML and ssGREML
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura, P.y.A.M. Datos Censales (PURA RAZA ESPAÑOLA). 2023. Available online: https://servicio.mapa.gob.es/arca/flujos.html?_flowId=datosCensalesRaza-flow&tipoOperacion=CONSULTA&formatoPagina=0&id=50157 (accessed on 31 December 2024).
- ANCCE. Purebred Spanish Horse Breeding Program. Available online: https://www.lgancce.com/Documentacion/Normativa/Nacional/programa_cria_en.pdf (accessed on 31 December 2024).
- Sánchez-Guerrero, M.J.; Molina, A.; Gómez, M.D.; Peña, F.; Valera, M. Relationship between morphology and performance: Signature of mass-selection in Pura Raza Español horse. Livest. Sci. 2016, 185, 148–155. [Google Scholar] [CrossRef]
- ANCCE. New Assessment Record Sheet for Basic Approval as a Breeding Stock and Genetic Assessment for Morphology. Available online: https://www.lgancce.com/web/news/new-assessment-record-sheet-basic-approval-breeding-stock-and-genetic-assessment-morphology?lang=en (accessed on 31 December 2024).
- Blasco, A. Animal breeding methods and sustainability. In Animal Breeding and Genetics; Springer: New York, NY, USA, 2022; pp. 5–24. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [PubMed]
- Legarra, A.; Christensen, O.F.; Aguilar, I.; Misztal, I. Single Step, a general approach for genomic selection. Livest. Sci. 2014, 166, 54–65. [Google Scholar] [CrossRef]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Koivula, M.; Strandén, I.; Aamand, G.P.; Mäntysaari, E.A. Effect of cow reference group on validation reliability of genomic evaluation. Animal 2016, 10, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Koivula, M.; Stranden, I.; Su, G.; Mantysaari, E.A. Different methods to calculate genomic predictions--comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP). J. Dairy Sci. 2012, 95, 4065–4073. [Google Scholar] [CrossRef]
- Mantysaari, E.A.; Koivula, M.; Stranden, I. Symposium review: Single-step genomic evaluations in dairy cattle. J. Dairy Sci. 2020, 103, 5314–5326. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.R.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I.; Tsuruta, S.; Jamrozik, J.; Brito, L.F.; Silva, F.F.; Schenkel, F.S. Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle. J. Dairy Sci. 2019, 102, 2365–2377. [Google Scholar] [CrossRef] [PubMed]
- Massender, E.; Brito, L.F.; Maignel, L.; Oliveira, H.R.; Jafarikia, M.; Baes, C.F.; Sullivan, B.; Schenkel, F.S. Single-and multiple-breed genomic evaluations for conformation traits in Canadian Alpine and Saanen dairy goats. J. Dairy Sci. 2022, 105, 5985–6000. [Google Scholar] [CrossRef] [PubMed]
- Mucha, S.; Mrode, R.; MacLaren-Lee, I.; Coffey, M.; Conington, J. Estimation of genomic breeding values for milk yield in UK dairy goats. J. Dairy Sci. 2015, 98, 8201–8208. [Google Scholar] [CrossRef]
- Teissier, M.; Larroque, H.; Robert-Granie, C. Accuracy of genomic evaluation with weighted single-step genomic best linear unbiased prediction for milk production traits, udder type traits, and somatic cell scores in French dairy goats. J. Dairy Sci. 2019, 102, 3142–3154. [Google Scholar] [CrossRef] [PubMed]
- Baloche, G.; Legarra, A.; Salle, G.; Larroque, H.; Astruc, J.M.; Robert-Granie, C.; Barillet, F. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J. Dairy Sci. 2014, 97, 1107–1116. [Google Scholar] [CrossRef]
- Li, L.; Gurman, P.M.; Swan, A.A.; Brown, D.J. Single-step genomic evaluation of lambing ease in Australian terminal sire breed sheep. Anim. Prod. Sci. 2021, 61, 1990–1999. [Google Scholar] [CrossRef]
- Wei, C.; Luo, H.; Zhao, B.; Tian, K.; Huang, X.; Wang, Y.; Fu, X.; Tian, Y.; Di, J.; Xu, X.; et al. The Effect of Integrating Genomic Information into Genetic Evaluations of Chinese Merino Sheep. Animals 2020, 10, 569. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Ostersen, T.; Christensen, O.F.; Xiang, T. Single-step genomic evaluation with metafounders for feed conversion ratio and average daily gain in Danish Landrace and Yorkshire pigs. Genet. Sel. Evol. 2021, 53, 79. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhang, J.; Zhang, Q.; Ding, X. Using Different Single-Step Strategies to Improve the Efficiency of Genomic Prediction on Body Measurement Traits in Pig. Front. Genet. 2018, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Xiang, T.; Nielsen, B.; Su, G.; Legarra, A.; Christensen, O.F. Application of single-step genomic evaluation for crossbred performance in pig. J. Anim. Sci. 2016, 94, 936–948. [Google Scholar] [CrossRef]
- Haberland, A.M.; Konig von Borstel, U.; Simianer, H.; Konig, S. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection. Animal 2012, 6, 1369–1376. [Google Scholar] [CrossRef]
- Mark, T.; Jönsson, L.; Holm, M.; Christiansen, K. Towards genomic selection in Danish Warmblood horses: Expected impacts and selective genotyping strategy. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada, 17–22 August 2014; pp. 17–22. [Google Scholar]
- Vosgerau, S.; Krattenmacher, N.; Falker-Gieske, C.; Seidel, A.; Tetens, J.; Stock, K.F.; Nolte, W.; Wobbe, M.; Blaj, I.; Reents, R.; et al. Genetic and genomic characterization followed by single-step genomic evaluation of withers height in German Warmblood horses. J. Appl. Genet. 2022, 63, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ricard, A.; Crevier-Denoix, N.; Pourcelot, P.; Crichan, H.; Sabbagh, M.; Dumont-Saint-Priest, B.; Danvy, S. Genetic analysis of geometric morphometric 3D visuals of French jumping horses. Genet. Sel. Evol. 2023, 55, 63. [Google Scholar] [CrossRef]
- Eggen, A. The development and application of genomic selection as a new breeding paradigm. Anim. Front. 2012, 2, 10–15. [Google Scholar] [CrossRef]
- Stock, K.F.; Jönsson, L.; Ricard, A.; Mark, T. Genomic applications in horse breeding. Anim. Front. 2016, 6, 45–52. [Google Scholar] [CrossRef]
- Sánchez, M.J.; Gómez, M.D.; Molina, A.; Valera, M. Genetic analyses for linear conformation traits in Pura Raza Español horses. Livest. Sci. 2013, 157, 57–64. [Google Scholar] [CrossRef]
- Carter, R.A.; Geor, R.J.; Burton Staniar, W.; Cubitt, T.A.; Harris, P.A. Apparent adiposity assessed by standardised scoring systems and morphometric measurements in horses and ponies. Vet. J. 2009, 179, 204–210. [Google Scholar] [CrossRef] [PubMed]
- R-Core-Team. R: A Language and Environment for Statistical Computing V4.4.2 “Pile of Leaves”. 2024. Available online: https://cran.r-project.org/src/base/R-4/ (accessed on 4 November 2024).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Marschner, I. GLM2: Fitting generalized linear models with convergence problems. R. J. 2011, 3, 12–15. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Yin, D.; Fu, Y.; Yuan, X.; Li, X.; Liu, X.; Zhao, S. HIBLUP: An integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data. Nucleic Acids Res. 2023, 51, 3501–3512. [Google Scholar] [CrossRef]
- Poyato-Bonilla, J.; Sanchez-Guerrero, M.J.; Cervantes, I.; Gutierrez, J.P.; Valera, M. Genetic parameters for canalization analysis of morphological traits in the Pura Raza Espanol horse. J. Anim. Breed. Genet. 2021, 138, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.J.; Azor, P.J.; Molina, A.; Parkin, T.; Rivero, J.L.; Valera, M. Prevalence, risk factors and genetic parameters of cresty neck in Pura Raza Español horses. Equine Vet. J. 2017, 49, 196–200. [Google Scholar] [CrossRef]
- Poyato-Bonilla, J.; Perdomo-Gonzalez, D.I.; Sanchez-Guerrero, M.J.; Varona, L.; Molina, A.; Casellas, J.; Valera, M. Genetic inbreeding depression load for morphological traits and defects in the Pura Raza Espanola horse. Genet. Sel. Evol. 2020, 52, 62. [Google Scholar] [CrossRef]
- Clement, V.; Bibe, B.; Verrier, E.; Elsen, J.M.; Manfredi, E.; Bouix, J.; Hanocq, E. Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects. Genet. Sel. Evol. 2001, 33, 369–395. [Google Scholar] [CrossRef]
- Christensen, O.F.; Madsen, P.; Nielsen, B.; Ostersen, T.; Su, G. Single-step methods for genomic evaluation in pigs. Animal 2012, 6, 1565–1571. [Google Scholar] [CrossRef]
- Ziadi, C.; Perdomo-González, D.; Valera, M.; Laseca, N.; Encina, A.; Azor, P.; Rodríguez, A.; Demyda-Peyrás, S.; Molina, A. Genomics improves the reliability of Breeding Value Prediction of morphological and reproductive traits in the Pura Raza Español Horse: Preliminary results. In Proceedings of the 46th ICAR Annual Conference, Toledo, Spain, 21–26 May 2023; pp. 311–316. [Google Scholar]
- VanRaden, P.M.; Tooker, M.E.; Wright, J.R.; Sun, C.; Hutchison, J.L. Comparison of single-trait to multi-trait national evaluations for yield, health, and fertility. J. Dairy Sci. 2014, 97, 7952–7962. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Lourenco, D.; Legarra, A. Current status of genomic evaluation. J. Anim. Sci. 2020, 98, skaa101. [Google Scholar] [CrossRef] [PubMed]
- Guarini, A.R.; Lourenco, D.A.L.; Brito, L.F.; Sargolzaei, M.; Baes, C.F.; Miglior, F.; Misztal, I.; Schenkel, F.S. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. J. Dairy Sci. 2018, 101, 8076–8086. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Christensen, O.F.; Madsen, P.; Nielsen, U.S.; Zhang, Y.; Lund, M.S.; Su, G. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet. Sel. Evol. 2012, 44, 8. [Google Scholar] [CrossRef]
- Valera, M.; Molina, A.; Gutiérrez, J.P.; Gómez, J.; Goyache, F. Pedigree analysis in the Andalusian horse: Population structure, genetic variability and influence of the Carthusian strain. Livest. Prod. Sci. 2005, 95, 57–66. [Google Scholar] [CrossRef]
- Goddard, M. Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, I.; Meuwissen, T.H.E.; MacLeod, I.M.; Goddard, M.E. Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction. J. Dairy Sci. 2019, 102, 3155–3174. [Google Scholar] [CrossRef] [PubMed]
- Lozada-Soto, E.A.; Tiezzi, F.; Jiang, J.; Cole, J.B.; VanRaden, P.M.; Maltecca, C. Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle. J. Dairy Sci. 2022, 105, 8956–8971. [Google Scholar] [CrossRef]
8 | Trait | N | Mean ± SD | Min | Max | CV (%) |
---|---|---|---|---|---|---|
Zoometric traits, cm | HW | 6861 | 161.84 ± 4.92 | 147 | 179 | 3.04 |
SiL | 7149 | 161.97 ± 5.29 | 144 | 183 | 3.27 | |
LS | 7152 | 65.94 ± 3.97 | 43 | 81 | 6.03 | |
DsD | 7149 | 74.01 ± 4.18 | 40 | 92 | 5.65 | |
LB | 7151 | 30.39 ± 4.64 | 18 | 50 | 15.27 | |
WC | 7087 | 53.47 ± 3.31 | 32 | 68 | 6.19 | |
LC | 7149 | 52.82 ± 3.12 | 35 | 68 | 5.91 | |
TP | 7141 | 191.59 ± 9.34 | 157 | 224 | 4.87 | |
PACB | 7152 | 20.46 ± 1.26 | 15 | 33 | 6.18 | |
AS | 6942 | 55.39 ± 6.68 | 2 | 82 | 12.05 | |
AC | 6455 | 20.93 ± 5.67 | 2 | 59 | 27.10 | |
Linear traits, class | LHA | 7151 | 5.14 ± 0.95 | 1 | 9 | 18.39 |
DHRV | 7151 | 4.22 ± 0.91 | 1 | 7 | 21.53 | |
Defect trait, class | CN | 7118 | 1.316 ± 0.84 | 1 | 8 | 63.58 |
REML | ssGREML | |||||
---|---|---|---|---|---|---|
Trait | (SE) | (SE) | ||||
HW | 16.70 | 5.29 | 0.76 (0.038) | 17.15 | 5.39 | 0.76 (0.033) |
SiL | 18.34 | 9.07 | 0.67 (0.039) | 18.35 | 9.64 | 0.66 (0.036) |
LS | 8.81 | 7.14 | 0.55 (0.038) | 8.37 | 7.79 | 0.52 (0.035) |
DsD | 7.84 | 9.72 | 0.45 (0.041) | 7.53 | 10.13 | 0.43 (0.037) |
LB | 13.57 | 8.03 | 0.63 (0.037) | 12.04 | 9.91 | 0.55 (0.036) |
WC | 5.49 | 5.08 | 0.52 (0.043) | 5.32 | 5.35 | 0.50 (0.04) |
LC | 3.86 | 5.58 | 0.41 (0.036) | 3.77 | 5.73 | 0.40 (0.034) |
TP | 47.48 | 35.45 | 0.57 (0.042) | 44.49 | 39.04 | 0.53 (0.038) |
PACB | 0.45 | 0.91 | 0.33 (0.035) | 0.45 | 0.92 | 0.33 (0.034) |
AS | 11.57 | 30.74 | 0.27 (0.033) | 9.85 | 32.52 | 0.23 (0.03) |
AC | 9.09 | 22.83 | 0.28 (0.037) | 8.75 | 23.39 | 0.27 (0.035) |
LHA | 0.22 | 0.66 | 0.25 (0.032) | 0.20 | 0.68 | 0.23 (0.029) |
DHRV | 0.42 | 0.45 | 0.48 (0.04) | 0.35 | 0.52 | 0.40 (0.036) |
CN | 0.06 | 0.63 | 0.08 (0.02) | 0.06 | 0.62 | 0.09 (0.021) |
Trait | REML | ssGREML | % Increase in Reliability |
---|---|---|---|
HW | 0.298 | 0.327 | 9.73 |
SiL | 0.289 | 0.317 | 9.69 |
LS | 0.272 | 0.293 | 7.72 |
DsD | 0.247 | 0.272 | 10.12 |
LB | 0.282 | 0.289 | 2.48 |
WC | 0.265 | 0.288 | 8.68 |
LC | 0.267 | 0.286 | 7.12 |
TP | 0.268 | 0.293 | 9.33 |
PACB | 0.250 | 0.274 | 9.60 |
AS | 0.205 | 0.218 | 6.34 |
AC | 0.203 | 0.230 | 13.30 |
LHA | 0.209 | 0.224 | 7.18 |
DHRV | 0.256 | 0.260 | 1.56 |
CN | 0.176 | 0.185 | 5.11 |
Criteria | ||||||||
---|---|---|---|---|---|---|---|---|
Sex | Number of Stallions’ Foals | Genotyped | Reliability | |||||
Stallions | Mares | ≥40 | <40 | No | Yes | ≥0.6 | <0.6 | |
HW | 9.89 | 9.68 | 4.34 | 12.50 | 8.51 | 16.76 | −0.32 | 32.60 |
SiL | 9.06 | 9.67 | 3.87 | 12.50 | 8.03 | 16.33 | 0.09 | 32.20 |
LS | 7.66 | 7.47 | 2.73 | 11.24 | 6.59 | 14.38 | −0.75 | 29.33 |
DsD | 10.04 | 10.24 | 3.50 | 14.04 | 8.94 | 17.79 | 0.44 | 18.78 |
LB | 2.96 | 2.05 | 0.14 | 6.59 | 1.87 | 8.01 | −5.91 | 24.40 |
WC | 8.63 | 8.39 | 3.21 | 12.76 | 7.97 | 15.93 | 0.74 | 30.69 |
LC | 7.03 | 6.88 | 2.36 | 11.52 | 6.32 | 13.57 | −1.27 | 28.95 |
TP | 8.91 | 9.03 | 3.18 | 12.60 | 8.27 | 16.38 | 1.15 | 31.19 |
PACB | 10.00 | 10.12 | 3.88 | 14.04 | 8.86 | 17.06 | 1.88 | 29.70 |
AS | 5.94 | 6.73 | −0.35 | 11.64 | 5.61 | 12.99 | −2.16 | 14.47 |
AC | 13.00 | 13.59 | 5.08 | 19.25 | 12.37 | 22.70 | −2.92 | 23.59 |
LHA | 7.35 | 7.55 | 0.87 | 13.09 | 6.53 | 13.86 | −1.75 | 15.09 |
DHRV | 2.02 | 1.14 | −1.49 | 5.96 | 0.82 | 6.93 | −0.09 | 35.34 |
CN | 5.20 | 4.47 | −1.66 | 12.03 | 4.14 | 9.32 | −0.21 | 10.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziadi, C.; Demyda-Peyrás, S.; Valera, M.; Perdomo-González, D.; Laseca, N.; Rodríguez-Sainz de los Terreros, A.; Encina, A.; Azor, P.; Molina, A. Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses. Genes 2025, 16, 131. https://doi.org/10.3390/genes16020131
Ziadi C, Demyda-Peyrás S, Valera M, Perdomo-González D, Laseca N, Rodríguez-Sainz de los Terreros A, Encina A, Azor P, Molina A. Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses. Genes. 2025; 16(2):131. https://doi.org/10.3390/genes16020131
Chicago/Turabian StyleZiadi, Chiraz, Sebastián Demyda-Peyrás, Mercedes Valera, Davinia Perdomo-González, Nora Laseca, Arancha Rodríguez-Sainz de los Terreros, Ana Encina, Pedro Azor, and Antonio Molina. 2025. "Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses" Genes 16, no. 2: 131. https://doi.org/10.3390/genes16020131
APA StyleZiadi, C., Demyda-Peyrás, S., Valera, M., Perdomo-González, D., Laseca, N., Rodríguez-Sainz de los Terreros, A., Encina, A., Azor, P., & Molina, A. (2025). Comparative Analysis of Genomic and Pedigree-Based Approaches for Genetic Evaluation of Morphological Traits in Pura Raza Española Horses. Genes, 16(2), 131. https://doi.org/10.3390/genes16020131