Genetic Variants of SLC22A1 rs628031 and rs622342 and Glycemic Control in T2DM Patients from Northern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. SCLC22A1 Genotyping
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of T2DM Patients
3.2. Genotype and Allele Frequencies of SLC22A1 Gene Variants
3.3. Glycated Hemoglobin, Glycemic Control, and SLC22A1 Gene Variants by Inheritance Model
3.4. Multivariate Analysis of rs628031 and rs622342 with HbA1c Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 Diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- American Diabetes Association. ADA Standards of Care in Diabetes-2023 Abridged for Primary Care Providers. Am. Diabetes Assoc. 2023, 41, 4–31. Available online: https://diabetesjournals.org/clinical/article/41/1/4/148029/Standards-of-Care-in-Diabetes-2023-Abridged-for (accessed on 28 July 2022).
- Rakhis, S.A.B.; AlDuwayhis, N.M.; Aleid, N.; AlBarrak, A.N.; Aloraini, A.A. Glycemic Control for Type 2 Diabetes Mellitus Patients: A Systematic Review. Cureus 2022, 14, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Lamoia, T.E.; Shulman, G.I. Cellular and Molecular Mechanisms of Metformin Action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 3. Prevention or Delay of Type 2 Diabetes and Associated Comorbidities: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S41–S48. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Carrillo, E.A.; Ramos-Lopez, O.; Martínez-López, E.; Barrón-Cabrera, E.; Bernal-Pérez, J.A.; Velasco-González, L.E.; Rangel-Rios, E.; Martínez, J.F.B.; Torres-Valadez, R. Effect of Metformin on Glycemi c Control Regarding Carriers of the SLC22A1/OCT1 (Rs628031) Polymorphism and Its Interactions with Dietary Micronutrients in Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ayala, A.; Rodríguez-Rivera, N.S.; de Andrés, F.; Llerena, A.; Pérez-Silva, E.; Espinosa-Sánchez, A.G.; Molina-Guarneros, J.A. Pharmacogenetics of Metformin Transporters Suggests No Association with Therapeutic Inefficacy among Diabetes Type 2 Mexican Patients. Pharmaceuticals 2022, 15, 774. [Google Scholar] [CrossRef]
- Reséndiz-Abarca, C.A.; Flores-Alfaro, E.; Suárez-Sánchez, F.; Cruz, M.; Valladares-Salgado, A.; del Carmen Alarcón-Romero, L.; Vázquez-Moreno, M.A.; Wacher-Rodarte, N.A.; Gómez-Zamudio, J.H. Altered Glycemic Control Associated with Polymorphisms in the SLC22A1 (OCT1) Gene in a Mexican Population with Type 2 Diabetes Mellitus Treated with Metformin: A Cohort Study. J. Clin. Pharmacol. 2019, 59, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Usman, K.; Banerjee, M. Pharmacogenetic Studies Update in Type 2 Diabetes Mellitus. World J. Diabetes 2016, 7, 302. [Google Scholar] [CrossRef]
- Hakooz, N.; Jarrar, Y.B.; Zihlif, M.; Imraish, A.; Hamed, S.; Arafat, T. Effects of the Genetic Variants of Organic Cation Transporters 1 and 3 on the Pharmacokinetics of Metformin in Jordanians. Drug Metab. Pers. Ther. 2017, 32, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H.; Lips, K.; Volk, C. Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications. Pharm. Res. 2007, 24, 1227–1251. [Google Scholar] [CrossRef]
- Wang, D.-S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin. J. Pharmacol. Exp. Ther. 2002, 302, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Seitz, T.; Stalmann, R.; Dalila, N.; Chen, J.; Pojar, S.; Dos Santos Pereira, J.N.; Krätzner, R.; Brockmöller, J.; Tzvetkov, M.V. Global Genetic Analyses Reveal Strong Inter-Ethnic Variability in the Loss of Activity of the Organic Cation Transporter OCT1. Genome Med. 2015, 7, 56. [Google Scholar] [CrossRef]
- Dujic, T.; Zhou, K.; Yee, S.; Van Leeuwen, N.; De Keyser, C.; Javorský, M.; Goswami, S.; Zaharenko, L.; Hougaard Christensen, M.; Out, M.; et al. Variants in Pharmacokinetic Transporters and Glycemic Response to Metformin: A Metgen Meta-Analysis. Clin. Pharmacol. Ther. 2017, 101, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Mato, E.P.M.; Guewo-Fokeng, M.; Essop, M.F.; Owira, P.M.O. Genetic Polymorphisms of Organic Cation Transporter 1 (OCT1) and Responses to Metformin Therapy in Individuals with Type 2 Diabetes. Medicine 2018, 97, e11349. [Google Scholar] [CrossRef]
- Peng, A.; Gong, C.; Xu, Y.; Liang, X.; Chen, X.; Hong, W.; Yan, J. Association between Organic Cation Transporter Genetic Polymorphisms and Metformin Response and Intolerance in T2DM Individuals: A Systematic Review and Meta-Analysis. Front. Public Health 2023, 11, 1183879. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y. Organic Anion, Organic Cation and Zwitterion Transporters of the SLC22 and SLC47 Superfamily (OATs, OCTs, OCTNs and MATEs). In Transporters in Drug Discovery and Development; Elsevier: Amsterdam, The Netherlands, 2013; pp. 455–631. ISBN 978-1-907568-21-3. [Google Scholar]
- Altall, R.M.; Qusti, S.Y.; Filimban, N.; Alhozali, A.M.; Alotaibi, N.A.; Dallol, A.; Chaudhary, A.G.; Bakhashab, S. SLC22A1 and ATM Genes Polymorphisms Are Associated with The Risk of Type 2 Diabetes Mellitus in Western Saudi Arabia: A Case-Control Study. Appl. Clin. Genet. 2019, 12, 213–219. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, W.; Wang, Y.; Jiang, Z.; Meng, X.; Xiao, Q.; Zhao, Q.; Yan, J. Genetic Variants of OCT1 Influence Glycemic Response to Metformin in Han Chinese Patients with Type-2 Diabetes Mellitus in Shanghai. Int. J. Clin. Exp. Pathol. 2015, 8, 9533–9542. [Google Scholar]
- Shokri, F.; Ghaedi, H.; Fard, S.G.; Movafagh, A.; Abediankenari, S.; Mahrooz, A.; Kashi, Z.; Omrani, M.D. Impact of ATM and SLC22A1 Polymorphisms on Therapeutic Response to Metformin in Iranian Diabetic Patients. Int. J. Mol. Cell. Med. 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Sanchez-Ibarra, H.E.; Reyes-Cortes, L.M.; Jiang, X.; Luna-Aguirre, C.M.; Aguirre-Trevino, D.; Morales-Alvarado, I.A.; Leon-Cachon, R.B.; Lavalle-Gonzalez, F.; Morcos, F.; Barrera-Saldaña, H.A. Genotypic and Phenotypic Factors Influencing Drug Response in Mexican Patients with Type 2 Diabetes Mellitus. Front. Pharmacol. 2018, 9, 320. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Genetic Variation in the Organic Cation Transporter 1 Is Associated with Metformin Response in Patients with Diabetes Mellitus. Pharmacogenom. J. 2009, 9, 242–247. [Google Scholar] [CrossRef]
- Umamaheswaran, G.; Praveen, R.G.; Damodaran, S.E.; Das, A.K.; Adithan, C. Influence of SLC22A1 rs622342 Genetic Polymorphism on Metformin Response in South Indian Type 2 Diabetes Mellitus Patients. Clin. Exp. Med. 2015, 15, 511–517. [Google Scholar] [CrossRef]
- AL-Eitan, L.; Almomani, B.; Nassar, A.; Elsaqa, B.; Saadeh, N. Metformin Pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 Polymorphisms on Glycemic Control and HbA1c Levels. J. Pers. Med. 2019, 9, 17. [Google Scholar] [CrossRef]
- Marta, M.; Sánchez-Pozos, K.; Jaimes-Santoyo, J.; Monroy-Escutia, J.; Rivera- Santiago, C.; de los Ángeles Granados-Silvestre, M.; Ortiz-López, M.G. Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes. Curr. Drug Metab. 2020, 21, 291–300. [Google Scholar] [CrossRef]
- Zhou, K.; Donnelly, L.A.; Kimber, C.H.; Donnan, P.T.; Doney, A.S.F.; Leese, G.; Hattersley, A.T.; McCarthy, M.I.; Morris, A.D.; Palmer, C.N.A.; et al. Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study. Diabetes 2009, 58, 1434–1439. [Google Scholar] [CrossRef]
- Yang, P.; Galvan, C.A.; Vélez, P.; Da Ronco, L.; Tomás Díaz, G.; Dante, M.B.; Walter Soria, N. Efectividad de la Dosis de Metformina en Pacientes Con Diabetes Mellitus Tipo II en Relación a Polimorfismos en El Gen SLC22A1. Acta Bioquímica Clínica Latinoam. 2014, 48, 229–235. Available online: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572014000200008 (accessed on 2 January 2018).
- Dujic, T.; Causevic, A.; Bego, T.; Malenica, M.; Velija-Asimi, Z.; Pearson, E.R.; Semiz, S. Organic Cation Transporter 1 Variants and Gastrointestinal Side Effects of Metformin in Patients with Type 2 Diabetes. Diabet. Med. 2016, 33, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Dujic, T.; Zhou, K.; Donnelly, L.A.; Tavendale, R.; Palmer, C.N.A.; Pearson, E.R. Association of Organic Cation Transporter 1 with Intolerance to Metformin in Type 2 Diabetes: A GoDARTS Study. Diabetes 2015, 64, 1786–1793. [Google Scholar] [CrossRef]
- Tarasova, L.; Kalnina, I.; Geldnere, K.; Bumbure, A.; Ritenberga, R.; Nikitina-Zake, L.; Fridmanis, D.; Vaivade, I.; Pirags, V.; Klovins, J. Association of Genetic Variation in the Organic Cation Transporters OCT1, OCT2 and Multidrug and Toxin Extrusion 1 Transporter Protein Genes with the Gastrointestinal Side Effects and Lower BMI in Metformin-Treated Type 2 Diabetes Patients. Pharmacogenet. Genom. 2012, 22, 659–666. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Phani, N.M.; Vohra, M.; Kakar, A.; Adhikari, P.; Nagri, S.K.; D’Souza, S.C.; Umakanth, S.; Satyamoorthy, K.; Rai, P.S. Implication of Critical Pharmacokinetic Gene Variants on Therapeutic Response to Metformin in Type 2 Diabetes. Pharmacogenomics 2018, 19, 905–911. [Google Scholar] [CrossRef]
- Ningrum, V.D.; Istikharah, R.; Firmansyah, R. Allele Frequency of SLC22A1 Met420del Metformin Main Transporter Encoding Gene among Javanese-Indonesian Population. Open Access Maced. J. Med. Sci. 2019, 7, 378–383. [Google Scholar] [CrossRef]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Leal, S.M. Detection of Genotyping Errors and pseudo-SNPs via Deviations from Hardy-Weinberg Equilibrium. Genet. Epidemiol. 2005, 29, 204–214. [Google Scholar] [CrossRef]
- Barcelos, E.C.S.; Naslavsky, M.S.; Fernandes, I.S.; Scliar, M.O.; Yamamoto, G.L.; Wang, J.Y.T.; Bride, L.; De Sousa, V.P.; Pimassoni, L.H.S.; Sportoletti, P.; et al. Genetic Variation in NOTCH1 Is Associated with Overweight and Obesity in Brazilian Elderly. Sci. Rep. 2024, 14, 17096. [Google Scholar] [CrossRef]
- Ebid, A.-H.I.M.; Ehab, M.; Ismail, A.; Soror, S.; Mahmoud, M.A. The Influence of SLC22A1 rs622342 and ABCC8 rs757110 Genetic Variants on the Efficacy of Metformin and Glimepiride Combination Therapy in Egyptian Patients with Type 2 Diabetes. J. Drug Assess. 2019, 8, 115–121. [Google Scholar] [CrossRef]
- Shu, Y.; Leabman, M.K.; Feng, B.; Mangravite, L.M.; Huang, C.C.; Stryke, D.; Kawamoto, M.; Johns, S.J.; DeYoung, J.; Carlson, E.; et al. Evolutionary Conservation Predicts Function of Variants of the Human Organic Cation Transporter, OCT1. Proc. Natl. Acad. Sci. 2003, 100, 5902–5907. [Google Scholar] [CrossRef]
- Kerb, R.; Brinkmann, U.; Chatskaia, N.; Gorbunov, D.; Gorboulev, V.; Mornhinweg, E.; Keil, A.; Eichelbaum, M.; Koepsell, H. Identification of Genetic Variations of the Human Organic Cation Transporter hOCT1 and Their Functional Consequences. Pharmacogenetics 2002, 12, 591–595. [Google Scholar] [CrossRef]
- Shikata, E.; Yamamoto, R.; Takane, H.; Shigemasa, C.; Ikeda, T.; Otsubo, K.; Ieiri, I. Human Organic Cation Transporter (OCT1 and OCT2) Gene Polymorphisms and Therapeutic Effects of Metformin. J. Hum. Genet. 2007, 52, 117–122. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, A.; Kong, F.; Chen, J.; Lan, B.; He, G.; Gao, K.; Cheng, L.; Sun, X.; Yan, C.; et al. Structural Insights into Human Organic Cation Transporter 1 Transport and Inhibition. Cell Discov. 2024, 10, 30. [Google Scholar] [CrossRef]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Interaction between Polymorphisms in the OCT1 and MATE1 Transporter and Metformin Response. Pharmacogenet. Genom. 2010, 20, 38–44. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, K.; Luo, X. Use of Diplotypes—Matched Haplotype Pairs from Homologous Chromosomes—In Gene-Disease Association Studies. Shanghai Arch. Psychiatry 2014, 26, 165–170. [Google Scholar]
- Monnerat, G.; Maior, A.S.; Tannure, M.; Back, L.K.F.C.; Santos, C.G.M. Single-Nucleotide-Polymorphism-Panel Population-Genetics Approach Based on the 1000 Genomes Database and Elite Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 711–717. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- Clinical Pharmacogenomics Implementation Consortium (CPIC). Guidelines. Available online: https://cpicpgx.org/guidelines/ (accessed on 12 October 2024).
- Food and Drug Administration (FDA). Guidances. Available online: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs (accessed on 10 November 2024).
Variable | Total Population Mean ± SD/Md (IQR) n = 110 | Adequate Glycemic Control HbA1c < 7.0% Mean ± SD/Md (IQR) n = 77 (70%) | Inadequate Glycemic Control HbA1c ≥ 7.0% Mean ± SD/Md (IQR) n = 33 (30%) | p |
---|---|---|---|---|
Male/Female | 36/74 | 23/54 | 13/20 | 0.329 |
Age (years) | 53.5 ± 9.52 | 54.7 ± 9.7 | 50.7 ± 8.7 | 0.045 |
Age at the time of diagnosis (years) | 49.0 ± 8.9 | 50.2 ± 9.2 | 46.1 ± 7.5 | 0.032 |
Disease evolution (years) | 3.0 (1.0–6.0) | 3.0 (1.0–5.0) | 3.0 (1.0–7.5) | 0.905 |
Metformin dose (mg/day) | 1500 (850–1700) | 1700 (850–1700) | 1500 (850–1700) | 0.819 |
BMI (kg/m2) | 31.4 (28.1–34.8) | 30.8 (27.7–34.6) | 32.0 (28.6–36.1) | 0.321 |
SBP (mmHg) | 127.6 ± 12.0 | 127.7 ± 11.9 | 127.2 ± 12.4 | 0.854 |
DBP (mmHg) | 78.80 ± 7.98 | 79.1 ± 8.3 | 78.1 ± 7.14 | 0.568 |
Glucose (mg/dL) | 121 (100.0–149.0) | 107.0 (97.0–124.0) | 157.5 (144.0–213.5) | <0.001 |
HbA1c (%) | 6.4 (5.9–7.4) | 6.1 (5.8–6.4) | 8.2 (7.4–9.5) | <0.001 |
Total cholesterol (mg/dL) | 183.94 ± 39.95 | 184.4 ± 41.9 | 182.9 ± 35.9 | 0.872 |
Triglycerides (mg/dL) | 166.0 (133.0–224.0) | 167.5 (140.0–222.0) | 161.0 (132.0–249.0) | 0.916 |
HDL-c (mg/dL) | 43.5 (35.5–52.0) | 47.0 (40.0–53.0) | 35.0 (29.0–41.0) | <0.001 |
LDL-c (mg/dL) | 99.84 ± 38.70 | 99.4 ± 40.1 | 101.3 ± 35.3 | 0.862 |
VLDL-c (mg/dL) | 33.2 (26.6–44.8) | 33.5 (28.0–44.4) | 32.2 (26.4–49.8) | 0.916 |
Creatinine (mg/dL) | 0.85 (0.7–1.0) | 0.9 (0.7–1.1) | 0.8 (0.7–0.9) | 0.141 |
SNP | Allele Frequency n (%) | Genotype Frequency n (%) | HWE p | |||
---|---|---|---|---|---|---|
rs622342 | A | C | AA | AC | CC | 0.01 |
149 (68.0) | 69 (32.0) | 44 (40.0) | 61 (56.0) | 4 (4.0) | ||
rs628031 | G | A | GG | GA | AA | 0.85 |
165 (75.0) | 55 (25.0) | 63 (57.0) | 39 (36.0) | 8 (7.0) | ||
rs72552763 | GAT | Del | GAT/GAT | GAT/del | del/del | 0.16 |
171 (78.0) | 49 (22.0) | 63 (57.0) | 45 (41.0) | 1 (2.0) | ||
rs12208357 | C | T | CC | CT | TT | 0.90 |
211 (96.0) | 9 (4.0) | 101 (92.0) | 9 (8.0) | 0 (0.0) | ||
rs2282143 | C | T | CC | CT | TT | 0.92 |
212 (96.0) | 8 (4.0) | 102 (93.0) | 8 (7.0) | 0 (0.0) | ||
rs34059508 | G | A | GG | GA | AA | 1.0 |
219 (99.0) | 1 (1.0) | 109 (99.0) | 1 (1.0) | 0 (0.0) | ||
rs34130495 | G | A | GG | GA | AA | 1.0 |
219 (99.0) | 1 (1.0) | 109 (99.0) | 1 (1.0) | 0 (0.0) |
Inheritance Model | Total HbA1c (%) Median (IQR) | p | Adequate Glycemic Control HbA1c < 7.0% n (%) | Inadequate Glycemic Control HbA1c ≥ 7.0% n (%) | p ** |
---|---|---|---|---|---|
rs622342 Codominant | |||||
AA | 6.8 (6.1, 7.9) a | 0.017 + | 27 (35.0) | 17 (51.5) | |
AC | 6.3 (5.8, 7.0) b | 45 (60.0) | 16 (48.5) | 0.160 | |
CC | 5.9 (5.6, 6.0) c | 4 (5.0) | 0 (0.0) | ||
Dominant | |||||
AA | 6.8 (6.1–7.9) | 0.025 * | 27 (35.5) | 17 (51.5) | 0.118 |
AC + CC | 6.3 (5.8–6.8) | 49 (64.5) | 16 (48.5) | ||
Recessive | |||||
AA + AC | 6.4 (5.9–7.4) | 0.035 * | 72 (94.7) | 33 (100.0) | 0.179 |
CC | 5.9 (5.5–6.0) | 4 (5.3) | 0 (0.0) | ||
Over-dominant | 0.156 * | 0.300 | |||
AA + CC | 6.6 (6.0–7.6) | 31 (41.0) | 17 (51.5) | ||
AC | 6.3 (5.8–7.0) | 45 (59.0) | 16 (48.5) | ||
rs628031 Codominant | |||||
GG | 6.6 (5.9–7.8) a | 0.031 + | 41 (53.20) | 22 (66.70) | 0.084 |
GA | 6.1 (5.8–6.4) b | 32 (41.60) | 7 (21.20) | ||
AA | 7.4 (6.0–8.6) a | 4 (5.20) | 4 (12.10) | ||
Dominant | |||||
GG | 6.6 (5.9–7.8) | 0.050 * | 41 (53.20) | 22 (66.70) | 0.192 |
GA + AA | 6.1 (5.8–6.9) | 36 (46.80) | 11 (33.30) | ||
Recessive | |||||
GG + GA | 6.4 (5.9–7.3) | 0.305 * | 73 (94.80) | 29 (87.90) | 0.200 |
AA | 7.4 (6.0–8.6) | 4 (5.20) | 4 (12.10) | ||
Over-dominant | |||||
GG + AA | 6.6 (5.9–7.9) | 0.009 * | 45 (58.40) | 26 (78.80) | 0.041 |
GA | 6.1 (5.8–6.4) | 32 (41.60) | 7 (21.20) | ||
rs72552763 Codominant | |||||
GAT/GAT | 6.4 (5.9, 7.4) | 0.129 + | 41 (53.0) | 22 (67.0) | 0.325 |
GAT/del | 6.4 (5.8, 6.8) | 34 (44.0) | 11 (33.0) | ||
del/del | 5.6 (5.3, 5.8) | 2 (3.0) | 0 (0.0) | ||
Dominant | |||||
GAT/GAT | 6.4 (5.9–7.4) | 0.289 * | 41 (53.0) | 22 (67.0) | 0.192 |
GAT/del + del/del | 6.3 (5.8–6.8) | 36 (47.0) | 11 (33.0) | ||
Recessive | |||||
GAT/GAT + GAT/del | 6.4 (5.9–7.4) | 0.061 * | 75 (97.0) | 33 (100.0) | 0.350 |
Del/del | 5.6 (5.3–5.8) | 2 (3.0) | 0 (0.0) | ||
Over-dominant | |||||
GAT/GAT + del/del | 6.4 (5.9–7.4) | 0.577 * | 43 (56.0) | 22 (67.0) | 0.290 |
GAT/del | 6.4 (5.8–6.8) | 34 (44.0) | 11 (33.0) |
Gene Variants | Model | OR (95%CI) | p | adjOR (95%CI) | p |
---|---|---|---|---|---|
rs622342 * | Dominant | ||||
CC + AC versus AA | 0.52 (0.23–1.20) | 0.120 | 0.54 (0.23–1.26) | 0.157 | |
Over-dominant | |||||
AC versus AA + CC | 0.65 (0.28–1.47) | 0.301 | 0.63 (0.27–1.46) | 0.284 | |
rs628031 | Codominant | ||||
GG | 1.0 | 1.0 | |||
GA | 0.41 (0.15–1.07) | 0.069 | 0.41 (0.15–1.10) | 0.076 | |
AA | 1.86 (0.42–8.18) | 0.410 | 2.80 (0.58–13.44) | 0.203 | |
Dominant | |||||
GA + AA versus GG | 0.57 (0.24–1.33) | 0.195 | 0.60 (0.25–1.43) | 0.252 | |
Recessive | |||||
GG + GA versus AA | 2.51 (0.59–10.7) | 0.212 | 3.77 (0.80–17.75) | 0.093 | |
Over-dominant | |||||
GA versus GG + AA | 0.38 (0.15–0.98) | 0.045 | 0.37 (0.14–0.96) | 0.042 |
Variables | β (95%CI) | p |
---|---|---|
Model 1 | ||
rs628031-GG + rs622342-AA | Ref | |
rs628031-GG + rs622342 AC+CC | 0.91 (−1.91, 3.74) | 0.524 |
rs628031GA+AA + rs622342-AA | 3.87 (−0.17, 7.9) | 0.060 |
rs628031-GA+AA + rs622342 AC+CC | 3.24 (0.24, 6.24) | 0.034 |
BMI (kg/m2) | 0.12 (0.065, 0.173) | 0.000 |
rs628021-GG + rs622342-AC+CC × BMI | −0.05 (−0.13, 0.037) | 0.267 |
rs628031-GA+AA + rs622342-AA × BMI | −0.14 (−0.27, −0.009) | 0.036 |
rs628031-GA+AA + rs622342-AC+CC × BMI | −0.13 (−0.218, −0.04) | 0.004 |
Model 2 | ||
rs628031-GG + rs622342-AA | Ref | |
rs628031-GG + rs622342-AC+CC | 1.32 (−0.21, 2.85) | 0.090 |
rs628031-GA+AA + rs622342-AA | 1.68 (−0.58, 3.94) | 0.143 |
rs628031-GA+AA + rs622342-AC+CC | −0.15 (−1.68, 1.38) | 0.846 |
Metformin dose (mg/day) | 0.0009 (0.0002, 0.002) | 0.016 |
rs628021-GG + rs622342-AC+CC × Met dose | −0.001 (−0.002, −0.0002) | 0.015 |
rs628031-GA+AA + rs622342-AA × Met dose | −0.001 (−0.003, −9.22 × 10−6) | 0.048 |
rs628031-GA+AA + rs622342-AC+CC × Met dose | −0.0003 (−0.001, 0.0007) | 0.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-González, J.G.; Reza-López, S.A.; González-Rodríguez, E.; Siqueiros-Cendón, T.S.; Escareño Contreras, A.; Rascón-Cruz, Q.; Leal-Berumen, I. Genetic Variants of SLC22A1 rs628031 and rs622342 and Glycemic Control in T2DM Patients from Northern Mexico. Genes 2025, 16, 139. https://doi.org/10.3390/genes16020139
Moreno-González JG, Reza-López SA, González-Rodríguez E, Siqueiros-Cendón TS, Escareño Contreras A, Rascón-Cruz Q, Leal-Berumen I. Genetic Variants of SLC22A1 rs628031 and rs622342 and Glycemic Control in T2DM Patients from Northern Mexico. Genes. 2025; 16(2):139. https://doi.org/10.3390/genes16020139
Chicago/Turabian StyleMoreno-González, Janette G., Sandra A. Reza-López, Everardo González-Rodríguez, Tania Samanta Siqueiros-Cendón, Alfonso Escareño Contreras, Quintín Rascón-Cruz, and Irene Leal-Berumen. 2025. "Genetic Variants of SLC22A1 rs628031 and rs622342 and Glycemic Control in T2DM Patients from Northern Mexico" Genes 16, no. 2: 139. https://doi.org/10.3390/genes16020139
APA StyleMoreno-González, J. G., Reza-López, S. A., González-Rodríguez, E., Siqueiros-Cendón, T. S., Escareño Contreras, A., Rascón-Cruz, Q., & Leal-Berumen, I. (2025). Genetic Variants of SLC22A1 rs628031 and rs622342 and Glycemic Control in T2DM Patients from Northern Mexico. Genes, 16(2), 139. https://doi.org/10.3390/genes16020139