Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview
Abstract
:1. Introduction
2. Non-Syndromic Causes of PFE
2.1. PTH1R
2.2. TMEM119
2.3. POSTN
2.4. KMT2C
3. Syndromic Causes of PFE
3.1. X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED)
3.2. GAPO Syndrome
3.3. Cleidocranial Dysplasia (CCD)
3.4. Treacher Collins Syndrome (TCS)
3.5. Osteogenesis Imperfecta (OI)
3.6. Down Syndrome (DS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Proffit, W.R.; Vig, K.W. Primary failure of eruption: A possible cause of posterior open-bite. Am. J. Orthod. 1981, 80, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, D.; Li, K.; Ma, T.; Wang, Y.; Xia, B. TMEM119 (c.G143A, p.S48L) Mutation Is Involved in Primary Failure of Eruption by Attenuating Glycolysis-Mediated Osteogenesis. Int. J. Mol. Sci. 2024, 25, 2821. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hosomichi, K.; Shirota, T.; Miyamoto, Y.; Ono, W.; Ono, N. Primary failure of tooth eruption: Etiology and management. Jpn. Dent. Sci. Rev. 2022, 58, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Modafferi, C.; Tabolacci, E.; Lo Vecchio, F.; Cassano, I.; Bertozzi, R.; Fargnoli, A.; Cafiero, C.; Lo Cascio, E.; Arcovito, A.; Grippaudo, C.; et al. New Insight into the genotype-phenotype correlation of PTH1R variants and primary failure of tooth eruption on an Italian Cohort. Eur. J. Hum. Genet. 2024, 32, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.; Stellzig-Eisenhauer, A.; Fiebig, B.S.; Rau, C.; Kress, W.; Saar, K.; Rüschendorf, F.; Hubner, N.; Grimm, T.; Weber, B.H. PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption. Am. J. Hum. Genet. 2008, 83, 781–786. [Google Scholar] [CrossRef]
- Davidson, M.; Mayer, M.; Habib, A.; Rashidi, N.; Filippone, R.T.; Fraser, S.; Prakash, M.D.; Sinnayah, P.; Tangalakis, K.; Mathai, M.L.; et al. Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut-Immune-Brain Axis. Int. J. Mol. Sci. 2022, 23, 11224. [Google Scholar] [CrossRef]
- Kanamoto, T.; Mizuhashi, K.; Terada, K.; Minami, T.; Yoshikawa, H.; Furukawa, T. Isolation and characterization of a novel plasma membrane protein, osteoblast induction factor (obif), associated with osteoblast differentiation. BMC Dev. Biol. 2009, 9, 70. [Google Scholar] [CrossRef]
- Hisa, I.; Inoue, Y.; Hendy, G.N.; Canaff, L.; Kitazawa, R.; Kitazawa, S.; Komori, T.; Sugimoto, T.; Seino, S.; Kaji, H. Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway. J. Bio.l Chem. 2011, 286, 9787–9796. [Google Scholar] [CrossRef]
- Assiry, A.A.; Albalawi, A.M.; Zafar, M.S.; Khan, S.D.; Ullah, A.; Almatrafi, A.; Ramzan, K.; Basit, S. KMT2C, a histone methyltransferase, is mutated in a family segregating non-syndromic primary failure of tooth eruption. Sci Rep. 2019, 9, 16469. [Google Scholar] [CrossRef]
- Hanisch, M.; Hanisch, L.; Kleinheinz, J.; Jung, S. Primary failure of eruption (PFE): A systematic review. Head Face Med. 2018, 14, 5. [Google Scholar] [CrossRef]
- Rhoads, S.G.; Hendricks, H.M.; Frazier-Bowers, S.A. Establishing the diagnostic criteria for eruption disorders based on genetic and clinical data. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Schalk van der Weide, Y.; Prahl-Andersen, B.; Bosman, F. Tooth formation in patients with oligodontia. Angle Orthod. 1993, 63, 31–37. [Google Scholar] [PubMed]
- Wise, G.E.; King, G.J. Mechanisms of tooth eruption and orthodontic tooth movement. J. Dent. Res. 2008, 87, 414–434. [Google Scholar] [CrossRef]
- Quack, I.; Vonderstrass, B.; Stock, M.; Aylsworth, A.S.; Becker, A.; Brueton, L.; Lee, P.J.; Majewski, F.; Mulliken, J.B.; Suri, M.; et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am. J. Hum. Genet. 1999, 65, 1268–1278. [Google Scholar] [CrossRef]
- Frazier-Bowers, S.A.; Simmons, D.; Wright, J.T.; Proffit, W.R.; Ackerman, J.L. Primary failure of eruption and PTH1R: The importance of a genetic diagnosis for orthodontic treatment planning. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 160. [Google Scholar] [CrossRef]
- Bettoun, J.D.; Minagawa, M.; Kwan, M.Y.; Lee, H.S.; Yasuda, T.; Hendy, G.N.; Goltzman, D.; White, J.H. Cloning and characterization of the promoter regions of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene: Analysis of deox yribonucleic acid from normal subjects and patients with pseudohypoparathyroidism type 1b. J. Clin. Endocrinol. Metab. 1997, 82, 1031–1040. [Google Scholar]
- Bettoun, J.D.; Minagawa, M.; Hendy, G.N.; Alpert, L.C.; Goodyer, C.G.; Goltzman, D.; White, J.H. Developmental upregulation of human parathyroid hormone (PTH)/PTH-related peptide receptor gene expression from conserved and human-specific promoters. J. Clin. Invest. 1998, 102, 958–967. [Google Scholar] [CrossRef]
- McKinstry, W.J.; Polekhina, G.; Diefenbach-Jagger, H.; Ho, P.W.; Sato, K.; Onuma, E.; Gillespie, M.T.; Martin, T.J.; Parker, M.W. Structural basis for antibody discrimination between two hormones that recognize the parathyroid hormone receptor. J. Biol. Chem. 2009, 284, 15557–15563. [Google Scholar] [CrossRef]
- Mannstadt, M.; Jüppner, H.; Gardella T., J. Receptors for PTH and PTHrP: Their biological importance and functional properties. Am. J. Physiol. 1999, 277, F665–F675. [Google Scholar] [CrossRef]
- Schipani, E.; Kruse, K.; Jüppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995, 268, 98–100. [Google Scholar] [CrossRef]
- Loshkajian, A.; Roume, J.; Stanescu, V.; Delezoide, A.L.; Stampf, F.; Maroteaux, P. Familial Blomstrand chondrodysplasia with advanced skeletal maturation: Further delineation. Am. J. Med. Genet. 1997, 71, 283–288. [Google Scholar] [CrossRef]
- Jacob, P.; Soni, J.P.; Mortier, G.; Girisha, K.M. The third family with Eiken syndrome. Clin. Genet. 2019, 96, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Ferrara, I.; Viapiano, F.; Ciocia, A.M.; Palumbo, I.; Guglielmo, M.; Inchingolo, A.D.; Palermo, A.; Bordea, I.R.; Inchingolo, A.M.; et al. Primary Failure Eruption: Genetic Investigation, Diagnosis and Treatment: A Systematic Review. Children 2023, 10, 1781. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.G.; Dalbah, L.; Srirengalakshmi, M.; Venugopal, A.; Vaid, N.R. Review and case report of the treatment in a young girl with primary failure of eruption. Clin. Case Rep. 2022, 10, e05632. [Google Scholar] [CrossRef] [PubMed]
- Frazier-Bowers, S.A.; Simmons, D.; Koehler, K.; Zhou, J. Genetic analysis of familial non-syndromic primary failure of eruption. Orthod. Craniofac. Res. 2009, 12, 74–81. [Google Scholar] [CrossRef]
- Grippaudo, C.; D’Apolito, I.; Cafiero, C.; Re, A.; Chiurazzi, P.; Frazier-Bowers, S.A. Validating clinical characteristic of primary failure of eruption (PFE) associated with PTH1R variants. Prog. Orthod. 2021, 22, 43. [Google Scholar] [CrossRef]
- Grippaudo, C.; Cafiero, C.; D’Apolito, I.; Re, A.; Genuardi, M.; Chiurazzi, P.; Frazier-Bowers, S.A. A novel nonsense PTH1R variant shows incomplete penetrance of primary failure of eruption: A case report. BMC Oral. Health 2019, 19, 249. [Google Scholar] [CrossRef]
- Bordeleau, M.; Lacabanne, C.; Fernández de Cossío, L.; Vernoux, N.; Savage, J.C.; González-Ibáñez, F.; Tremblay, M.È. Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J. Neuroinflammation 2020, 17, 264. [Google Scholar] [CrossRef]
- Mizuhashi, K.; Chaya, T.; Kanamoto, T.; Omori, Y.; Furukawa, T. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice. PLoS ONE 2015, 10, e0133704. [Google Scholar] [CrossRef]
- Tanaka, K.; Kaji, H.; Yamaguchi, T.; Kanazawa, I.; Canaff, L.; Hendy, G.N.; Sugimoto, T. Involvement of the osteoinductive factors, Tmem119 and BMP-2, and the ER stress response PERK-eIF2alpha-ATF4 pathway in the commitment of myoblastic into osteoblastic cells. Calcif. Tissue Int. 2014, 94, 454–464. [Google Scholar] [CrossRef]
- Sun, T.; Bi, F.; Liu, Z.; Yang, Q. TMEM119 facilitates ovarian cancer cell proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling pathway. J. Transl. Med. 2021, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- González-González, L.; Alonso, J. Periostin: A Matricellular Protein with Multiple Functions in Cancer Development and Progression. Front. Oncol. 2018, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.T.; McLeod, K.; Kim, S.; Conway, S.J.; Hamilton, D.W. Periostin as a multifunctional modulator of the wound healing response. Cell Tissue Res. 2016, 365, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Morra, L.; Moch, H. Periostin expression and epithelial-mesenchymal transition in cancer: A review and an update. Virchows Arch. 2011, 459, 465–475. [Google Scholar] [CrossRef]
- Dorafshan, S.; Razmi, M.; Safaei, S.; Gentilin, E.; Madjd, Z.; Ghods, R. Periostin: Biology and function in cancer. Cancer Cell Int. 2022, 22, 315. [Google Scholar] [CrossRef]
- Gillan, L.; Matei, D.; Fishman, D.A.; Gerbin, C.S.; Karlan, B.Y.; Chang, D.D. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002, 62, 5358–5364. [Google Scholar]
- Shao, R.; Bao, S.; Bai, X.; Blanchette, C.; Anderson, R.M.; Dang, T.; Gishizky, M.L.; Marks, J.R.; Wang, X.F. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol. Cell Biol. 2004, 24, 3992–4003. [Google Scholar] [CrossRef]
- Wang, H.C.; Chen, R.; Yang, W.; Patel, R.M.; Casey, E.B.; Magee, J.A. KMT2C/MLL3 Attenuates Committed Myeloid Progenitor Self-Renewal Capacity and Balances Granulocyte and Monocyte/Dendritic Cell Output. Blood 2022, 140 (Suppl. S1), 4485–4486. [Google Scholar] [CrossRef]
- Goo, Y.H.; Sohn, Y.C.; Kim, D.H.; Kim, S.W.; Kang, M.J.; Jung, D.J.; Kwak, E.; Barlev, N.A.; Berger, S.L.; Chow, V.T.; et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell Biol. 2003, 23, 140–149. [Google Scholar] [CrossRef]
- Koemans, T.S.; Kleefstra, T.; Chubak, M.C.; Stone, M.H.; Reijnders, M.R.F.; de Munnik, S.; Willemsen, M.H.; Fenckova, M.; Stumpel, C.T.R.M.; Bok, L.A.; et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet. 2017, 13, e1006864. [Google Scholar] [CrossRef]
- Kleefstra, T.; Kramer, J.M.; Neveling, K.; Willemsen, M.H.; Koemans, T.S.; Vissers, L.E.; Wissink-Lindhout, W.; Fenckova, M.; van den Akker, W.M.; Kasri, N.N.; et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 2012, 91, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Whitford, W.; Taylor, J.; Hayes, I.; Smith, W.; Snell, R.G.; Lehnert, K.; Jacobsen, J.C. A novel 11 base pair deletion in KMT2C resulting in Kleefstra syndrome 2. Mol. Genet. Genom. Med. 2024, 12, e2350. [Google Scholar] [CrossRef] [PubMed]
- Paradowska-Stolarz, A.M.; Ziomek, M.; Sluzalec-Wieckiewicz, K.; Duś-Ilnicka, I. Most common congenital syndromes with facial asymmetry: A narrative review. Dent. Med. Probl. 2024, 61, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Itin, P.H.; Fistarol, S.K. Ectodermal dysplasias. Am. J. Med. Genet. C Semin. Med. Genet. 2004, 131, 45–51. [Google Scholar] [CrossRef]
- Kere, J.; Srivastava, A.K.; Montonen, O.; Zonana, J.; Thomas, N.; Ferguson, B.; Munoz, F.; Morgan, D.; Clarke, A.; Baybayan, P.; et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 1996, 13, 409–416. [Google Scholar] [CrossRef]
- Song, S.; Han, D.; Qu, H.; Gong, Y.; Wu, H.; Zhang, X.; Zhong, N.; Feng, H. EDA gene mutations underlie non-syndromic oligodontia. J. Dent. Res. 2009, 88, 126–131. [Google Scholar] [CrossRef]
- Zeng, B.; Lu, H.; Xiao, X.; Zhou, L.; Lu, J.; Zhu, L.; Yu, D.; Zhao, W. Novel EDA mutation in X-linked hypohidrotic ectodermal dysplasia and genotype-phenotype correlation. Oral. Dis. 2015, 21, 994–1000. [Google Scholar] [CrossRef]
- Pinheiro, M.; Ideriha, M.T.; Chautard-Freire-Maia, E.A.; Freire-Maia, N.; Primo-Parmo, S.L. Christ-Siemens-Touraine syndrome. Investigations on two large Brazilian kindreds with a new estimate of the manifestation rate among carriers. Hum. Genet. 1981, 57, 428–431. [Google Scholar] [CrossRef]
- Wohlfart, S.; Meiller, R.; Hammersen, J.; Park, J.; Menzel-Severing, J.; Melichar, V.O.; Huttner, K.; Johnson, R.; Porte, F.; Schneider, H. Natural history of X-linked hypohidrotic ectodermal dysplasia: A 5-year follow-up study. Orphanet. J. Rare Dis. 2020, 15, 7. [Google Scholar] [CrossRef]
- Tipton, R.E.; Gorlin, R.J. Growth retardation, alopecia, pseudo-anodontia, and optic atrophy--the GAPO syndrome: Report of a patient and review of the literature. Am. J. Med. Genet. 1984, 19, 209–216. [Google Scholar] [CrossRef]
- Cullen, M.; Seaman, S.; Chaudhary, A.; Yang, M.Y.; Hilton, M.B.; Logsdon, D.; Haines, D.C.; Tessarollo, L.; St Croix, B. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009, 69, 6021–6026. [Google Scholar] [CrossRef] [PubMed]
- Dinckan, N.; Du, R.; Akdemir, Z.C.; Bayram, Y.; Jhangiani, S.N.; Doddapaneni, H.; Hu, J.; Muzny, D.M.; Guven, Y.; Aktoren, O.; et al. A biallelic ANTXR1 variant expands the anthrax toxin receptor associated phenotype to tooth agenesis. Am. J. Med. Genet. A 2018, 176, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Olsen, B.R.; Besschetnova, T.Y. Cell autonomous ANTXR1-mediated regulation of extracellular matrix components in primary fibroblasts. Matrix Biol. 2017, 62, 105–114. [Google Scholar] [CrossRef]
- El-Moataz Bellah Ahmed, N.; Mostafa, M.I.; Abdel-Hamid, M.S.; Mehrez, M. Abnormal dental phenotypes in GAPO syndrome: A descriptive study with a new ANTXR1 variant & insights on teeth eruption. Saudi Dent J. 2024, 36, 1209–1214. [Google Scholar] [PubMed]
- Ahmed, B.; Gritli, S. Telogen hair loss and androgenetic-like alopecia in GAPO syndrome. Australas. J. Dermatol. 2019, 60, e142–e144. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.W.; Chiu, C.Y.; Liu, C.L.; Jap, T.S.; Lin, L.Y. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int. J. Clin. Exp. Pathol. 2015, 8, 1057–1062. [Google Scholar]
- Ma, D.; Wang, X.; Guo, J.; Zhang, J.; Cai, T. Identification of a novel mutation of RUNX2 in a family with supernumerary teeth and craniofacial dysplasia by whole-exome sequencing: A case report and literature review. Medicine 2018, 97, e11328. [Google Scholar] [CrossRef]
- Motaei, J.; Salmaninejad, A.; Jamali, E.; Khorsand, I.; Ahmadvand, M.; Shabani, S.; Karimi, F.; Nazari, M.S.; Ketabchi, G.; Naqipour, F. Molecular Genetics of Cleidocranial Dysplasia. Fetal Pediatr. Pathol. 2021, 40, 442–454. [Google Scholar] [CrossRef]
- Singhal, P.; Singhal, A.; Jayam, C.; Bandlapalli, A. Cleidocranial dysplasia syndrome (CCD) with an unusual finding in a young patient. BMJ Case Rep. 2015, 2015, bcr2015210514. [Google Scholar] [CrossRef]
- Park, T.K.; Vargervik, K.; Oberoi, S. Orthodontic and surgical management of cleidocranial dysplasia. Korean J. Orthod. 2013, 43, 248–260. [Google Scholar] [CrossRef]
- Dixon, M.J. Treacher Collins syndrome. Hum. Mol. Genet. 1996, 5, 1391–1393. [Google Scholar]
- Nassar, J.Y.; Kefi, F.; Alhartani, M.M.; Sultan, A.A.; Al-Khatib, T.; Safdar, O.Y. Treacher Collins syndrome: A comprehensive review on clinical features, diagnosis, and management. J. Family Med. Prim. Care 2024, 13, 4165–4172. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Geneviève, D.; Ostertag, A.; Marlin, S.; Lacombe, D.; Martin-Coignard, D.; Coubes, C.; David, A.; Lyonnet, S.; Vilain, C.; et al. Treacher Collins syndrome: A clinical and molecular study based on a large series of patients. Genet Med. 2016, 18, 49–56. [Google Scholar] [CrossRef]
- Ghesh, L.; Vincent, M.; Delemazure, A.S.; Boyer, J.; Corre, P.; Perez, F.; Geneviève, D.; Laplanche, J.L.; Collet, C.; Isidor, B. Autosomal recessive Treacher Collins syndrome due to POLR1C mutations: Report of a new family and review of the literature. Am. J. Med. Genet. A 2019, 179, 1390–1394. [Google Scholar] [CrossRef]
- Marszałek-Kruk, B.A.; Wójcicki, P. Identification of three novel TCOF1 mutations in patients with Treacher Collins Syndrome. Hum. Genome Var. 2021, 8, 36. [Google Scholar] [CrossRef]
- Barbosa, M.; Jabs, E.W.; Huston, S. Treacher Collins Syndrome. In GeneReviews [Internet]; 2004 Jul 20 [updated 2024 Jun 20]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2024; pp. 1993–2024. [Google Scholar]
- da Silva Dalben, G.; Costa, B.; Gomide, M.R. Prevalence of dental anomalies, ectopic eruption and associated oral malformations in subjects with Treacher Collins syndrome. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2006, 101, 588–592. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Nurputra, D.K.; Soraya, G.V.; Kurniawati, S.; Istifiani, L.A.; Pamungkas, S.A.; Tse, W.K.F. A systematic review on Treacher Collins syndrome: Correlation between molecular genetic findings and clinical severity. Clin. Genet. 2023, 103, 146–155. [Google Scholar] [CrossRef]
- Steiner, R.D.; Basel, D. COL1A1/2 Osteogenesis Imperfecta. In GeneReviews® [Internet]; 2005 Jan 28 [updated 2024 Mar 14]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2005; pp. 1993–2025. [Google Scholar]
- Pollitt, R.; McMahon, R.; Nunn, J.; Bamford, R.; Afifi, A.; Bishop, N.; Dalton, A. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I–IV. Hum. Mutat. 2006, 27, 716. [Google Scholar] [CrossRef]
- Zhytnik, L.; Maasalu, K.; Pashenko, A.; Khmyzov, S.; Reimann, E.; Prans, E.; Kõks, S.; Märtson, A. COL1A1/2 Pathogenic Variants and Phenotype Characteristics in Ukrainian Osteogenesis Imperfecta Patients. Front. Genet. 2019, 10, 722. [Google Scholar] [CrossRef]
- Hald, J.D.; Folkestad, L.; Swan, C.Z.; Wanscher, J.; Schmidt, M.; Gjørup, H.; Haubek, D.; Leonhard, C.H.; Larsen, D.A.; Hjortdal, J.Ø.; et al. Osteogenesis imperfecta and the teeth, eyes, and ears-a study of non-skeletal phenotypes in adults. Osteoporos. Int. 2018, 29, 2781–2789. [Google Scholar] [CrossRef]
- Rauch, F.; Glorieux, F.H. Osteogenesis imperfecta. Lancet 2004, 363, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Biria, M.; Abbas, F.M.; Mozaffar, S.; Ahmadi, R. Dentinogenesis imperfecta associated with osteogenesis imperfecta. Dent. Res. J. 2012, 9, 489–494. [Google Scholar]
- Futagawa, N.; Hasegawa, K.; Miyahara, H.; Tanaka, H.; Tsukahara, H. Trabecular bone scores in children with osteogenesis imperfecta respond differently to bisphosphonate treatment depending on disease severity. Front. Pediatr. 2024, 12, 1500023. [Google Scholar] [CrossRef]
- De Santis, D.; Sinigaglia, S.; Faccioni, P.; Pancera, P.; Luciano, U.; Bertossi, D.; Lucchese, A.; Albanese, M.; Nocini, P.F. Syndromes associated with dental agenesis. Minerva Stomatol. 2019, 68, 42–56. [Google Scholar] [CrossRef]
- Gallo, C.; Pastore, I.; Beghetto, M.; Mucignat-Caretta, C. Symmetry of dental agenesis in Down Syndrome children. J. Dent. Sci. 2019, 14, 61–65. [Google Scholar] [CrossRef]
- Palaska, P.K.; Antonarakis, G.S. Prevalence and patterns of permanent tooth agenesis in individuals with Down syndrome: A meta-analysis. Eur. J. Oral. Sci. 2016, 124, 317–328. [Google Scholar] [CrossRef]
- Kalf-Scholte, S.M.; Wijk, A.V.; Mayoral Trias, A.; Valkenburg, C. Patterns of tooth agenesis in individuals with Down syndrome: A secondary analysis using the Tooth Agenesis Code. Spec. Care Dent. 2024, 44, 1718–1730. [Google Scholar] [CrossRef]
- Micheelis, W.; Schiffner, U. Vierte Deutsche Mundgesundheitsstudie (DMS IV); Deutscher Ärzte-Verlag: Köln, Germany, 2006. [Google Scholar]
- Wriedt, S.; Service, F.; Schmidtmann, I.; Erbe, C. Orthodontic findings in adults with Trisomy 21. Clin. Oral. Investig. 2024, 28, 456. [Google Scholar] [CrossRef]
- de Moraes, M.E.; de Moraes, L.C.; Dotto, G.N.; Dotto, P.P.; dos Santos, L.R. Dental anomalies in patients with Down syndrome. Braz. Dent. J. 2007, 18, 346–350. [Google Scholar] [CrossRef]
- Henklein, S.D.; Küchler, E.C.; Proof, P.; Lepri, C.P.; Baratto-Filho, F.; Mattos, N.H.R.; Hueb de Menezes, F.C.; Kirschneck, C.; Madalena, I.R.; Hueb de Menezes-Oliveira, M.A. Prevalence and local causes for retention of primary teeth and the associated delayed permanent tooth eruption. J. Orofac. Orthop. 2024, 85 (Suppl. S1), 73–78. [Google Scholar] [CrossRef]
Gene (OMIM) | Name | Position | Function | Associated Syndromes |
---|---|---|---|---|
PTH1R (#168468) | Parathyroid hormone receptor 1 | 3p21.31 | Transmembrane receptor for both parathyroid hormone and parathyroid hormone-related protein | Eiken syndrome (AR); chondrodysplasia, Blomstrand type (AR); metaphyseal chondrodysplasia, Murk Jansen type (AD) |
TMEM119 (#618989) | Transmembrane protein 119 | 12q23.3 | Osteoblast differentiation and specific marker for microglia in the central nervous system | Not reported |
POSTN (#608777) | Periostin | 13q13.3 | Cell adhesion, tissue remodeling, and angiogenesis, with roles in bone, heart development, and cancer (metastasis) | Not reported |
KMT2C (#606833) | Lysine (K)-specificmethyltransferase 2C | 7q36.1 | Histone methyltransferase, which regulates gene transcription by modifying chromatin structure | Kleefstra syndrome type 2 (AD) |
Syndrome | Gene | Transmission | Tooth Anomalies | Other Anomalies |
---|---|---|---|---|
X-linked hypohidrotic ectodermal dysplasia | EDA | XLR | Hypodontia, with some teeth missing, peg-shaped incisors, and conical-shaped teeth | Sparse hair, inability to sweat (anhidrosis or hypohidrosis), and dryness of the skin, eyes, airways, and mucous membranes; hypohidrotic ectodermal dysplasia; and dysmorphic features |
GAPO syndrome | ANTXR1 | AR | Pseudoanodontia (failure of tooth eruption) | Ectodermal dysplasia, sparse hair (hypotrichosis), and dryness of the skin, eyes, airways, and mucous membranes |
Cleidocranial dysplasia | RUNX2 | AD | Delayed teeth eruption; supernumerary teeth | Clavicular dysplasia (hypoplasia or aplasia), delayed suture closure, brachycephaly, depressed nasal bridge, hypoplastic maxilla, and short stature |
Treacher Collins syndrome | TCOF1 | AD | Tooth agenesis, enamel opacities, and ectopic eruption of maxillary first molars | Malar hypoplasia, downward-slanting palpebral fissures, lower-eyelid anomalies, and micrognathia or retrognathia |
Osteogenesis imperfecta | COL1A1; COL1A2 | AD | Delayed tooth eruption, tooth discoloration (gray, brown, or bluish: dentinogenesis imperfecta), enamel fractures, and malocclusion | Hearing loss, blue sclerae, mild osteopenia, and varying degrees of multiple fractures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modafferi, C.; Tabolacci, E.; Grippaudo, C.; Chiurazzi, P. Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview. Genes 2025, 16, 147. https://doi.org/10.3390/genes16020147
Modafferi C, Tabolacci E, Grippaudo C, Chiurazzi P. Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview. Genes. 2025; 16(2):147. https://doi.org/10.3390/genes16020147
Chicago/Turabian StyleModafferi, Clarissa, Elisabetta Tabolacci, Cristina Grippaudo, and Pietro Chiurazzi. 2025. "Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview" Genes 16, no. 2: 147. https://doi.org/10.3390/genes16020147
APA StyleModafferi, C., Tabolacci, E., Grippaudo, C., & Chiurazzi, P. (2025). Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview. Genes, 16(2), 147. https://doi.org/10.3390/genes16020147