Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Quantification of MN Target Antigen Expression in Podocytes
2.3. Differential Gene Expressions in Human Podocytes
3. Results
3.1. Podocyte-Specific Expression of PLA2R1
3.2. Podocyte Expression of MN Target Antigens
3.3. Variation of MN Target Antigens’ Expression in Podocytes
3.4. Association of Chromatin Accessibility with Podocyte Preference Expression of MNTAgs
3.5. Developmental Expression of MN Target Antigens
3.6. PLA2R1 as a Top-Upregulated Gene in Chronic Kidney Disease (CKD), Acute Kidney Injury (AKI), and Diabetic Nephropathy (DN) from Type 2 Diabetes Mellitus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKI | Acute kidney injury |
CKD | Chronic kidney disease |
DN | Diabetic nephropathy |
ESKD | End-stage kidney disease |
GWAS | Genome-wide association studies |
lncRNA | Long no-coding RNA |
MN | Membranous nephropathy |
MNTAgs | Membranous nephropathy target antigens |
PMN | Primary MN |
SMN | Secondary MN |
scRNAseq | Single-cell RNA sequencing |
snRNAseq | Single-nuclear RNA sequencing |
SNPs | Single-nucleotide polymorphisms |
References
- Simon, P.; Ramee, M.P.; Autuly, V.; Laruelle, E.; Charasse, C.; Cam, G.; Ang, K.S. Epidemiology of primary glomerular diseases in a french region. Variations according to period and age. Kidney Int. 1994, 46, 1192–1198. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Agodoa, L.; Gellert, R.; Stewart, J.H.; Buccianti, G.; Lowenfels, A.B.; Wolfe, R.A.; Jones, E.; Disney, A.P.; Briggs, D.; et al. Distribution of primary renal diseases leading to end-stage renal failure in the united states, europe, and australia/new zealand: Results from an international comparative study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2000, 35, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous nephropathy. Nat. Rev. Dis. Primers 2021, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Ganguli, A.; Saha, T.K.; Kohli, H.S.; Sud, K.; Gupta, K.L.; Joshi, K.; Sakhuja, V. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J. Am. Soc. Nephrol. JASN 2007, 18, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Zucchelli, P.; Passerini, P.; Cesana, B.; Locatelli, F.; Pasquali, S.; Sasdelli, M.; Redaelli, B.; Grassi, C.; Pozzi, C.; et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995, 48, 1600–1604. [Google Scholar] [CrossRef]
- Heymann, W.; Hackel, D.B.; Harwood, S.; Wilson, S.G.; Hunter, J.L. Production of nephrotic syndrome in rats by freund’s adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 1959, 100, 660–664. [Google Scholar] [CrossRef]
- Kerjaschki, D.; Farquhar, M.G. The pathogenic antigen of heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl. Acad. Sci. USA 1982, 79, 5557–5561. [Google Scholar] [CrossRef]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; Beck, D.M.; Powell, D.W.; Cummins, T.D.; Klein, J.B.; Salant, D.J. M-type phospholipase a2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009, 361, 11–21. [Google Scholar] [CrossRef]
- Kerjaschki, D.; Farquhar, M.G. Immunocytochemical localization of the heymann nephritis antigen (gp330) in glomerular epithelial cells of normal lewis rats. J. Exp. Med. 1983, 157, 667–686. [Google Scholar] [CrossRef]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; Seitz-Polski, B.; Ma, H.; Zahner, G.; Dolla, G.; Hoxha, E.; Helmchen, U.; Dabert-Gay, A.S.; et al. Thrombospondin type-1 domain-containing 7a in idiopathic membranous nephropathy. N. Engl. J. Med. 2014, 371, 2277–2287. [Google Scholar] [CrossRef]
- Reinhard, L.; Machalitza, M.; Wiech, T.; Grone, H.J.; Lasse, M.; Rinschen, M.M.; Ferru, N.; Brasen, J.H.; Dromann, F.; Rob, P.M.; et al. Netrin g1 is a novel target antigen in primary membranous nephropathy. J. Am. Soc. Nephrol. JASN 2022, 33, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Hassen, S.I.; Kenan, D.J.; Storey, A.; Arthur, J.M.; Herzog, C.; Edmondson, R.D.; Bourne, T.D.; Beck, L.H., Jr.; Larsen, C.P. Transforming growth factor beta receptor 3 (tgfbr3)-associated membranous nephropathy. Kidney360 2021, 2, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Laith Al-Rabadi, T.C.; Avillach, C.; Aylin, R.; Rodan, B.; Williams, J.; Abraham, M.; Revelo Penafie, P.; Nicole, K.; Andeen, I.; Kawalit, F.C.; et al. High Temperature Recombinant Protein a1 (htra1): A Novel Antigen in Membranous Nephropathy. In Proceedings of the 2020 ASN Kidney Week, Online, 22–25 October 2020; pp. 25–26. [Google Scholar]
- Sethi, S.; Madden, B.; Casal Moura, M.; Singh, R.D.; Nasr, S.H.; Hou, J.; Sharma, A.; Nath, K.A.; Specks, U.; Fervenza, F.C.; et al. Membranous nephropathy in syphilis is associated with neuron-derived neurotrophic factor. J. Am. Soc. Nephrol. JASN 2023, 34, 374–384. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; Vivarelli, M.; Charlesworth, M.C.; Ravindran, A.; Gross, L.; Ulinski, T.; Buob, D.; Tran, C.L.; et al. Semaphorin 3b-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020, 98, 1253–1264. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.; Casal Moura, M.; Nasr, S.H.; Klomjit, N.; Gross, L.; Negron, V.; Charlesworth, M.C.; Alexander, M.P.; Leung, N.; et al. Hematopoietic stem cell transplant-membranous nephropathy is associated with protocadherin fat1. J. Am. Soc. Nephrol. JASN 2022, 33, 1033–1044. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.J.; Debiec, H.; Charlesworth, M.C.; Gross, L.; Ravindran, A.; Hummel, A.M.; Specks, U.; Fervenza, F.C.; Ronco, P. Exostosin 1/exostosin 2-associated membranous nephropathy. J. Am. Soc. Nephrol. JASN 2019, 30, 1123–1136. [Google Scholar] [CrossRef]
- Le Quintrec, M.; Teisseyre, M.; Bec, N.; Delmont, E.; Szwarc, I.; Perrochia, H.; Machet, M.C.; Chauvin, A.; Mavroudakis, N.; Taieb, G.; et al. Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney Int. 2021, 100, 1240–1249. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; Charlesworth, M.C.; Morelle, J.; Gross, L.; Ravindran, A.; Buob, D.; Jadoul, M.; Fervenza, F.C.; et al. Neural epidermal growth factor-like 1 protein (nell-1) associated membranous nephropathy. Kidney Int. 2020, 97, 163–174. [Google Scholar] [CrossRef]
- Sanjeev Sethi, B.J.M.; Gross, L.; Negron, V.C.; Charlesworth, C.; Debiec, H.; Ronco, P.M.; Fervenza, F.C. Protocadherin 7-associated membranous nephropathy. In Proceedings of the 2020 ASN Kidney Week, Online, 22–25 October 2020; p. 26. [Google Scholar]
- Sethi, S.; Casal Moura, M.; Madden, B.; Debiec, H.; Nasr, S.H.; Larsen, C.P.; Gross, L.; Negron, V.; Singh, R.D.; Nath, K.A.; et al. Proprotein convertase subtilisin/kexin type 6 (pcsk6) is a likely antigenic target in membranous nephropathy and nonsteroidal anti-inflammatory drug use. Kidney Int. 2023, 104, 343–352. [Google Scholar] [CrossRef]
- Caza, T.N.; Hassen, S.I.; Kuperman, M.; Sharma, S.G.; Dvanajscak, Z.; Arthur, J.; Edmondson, R.; Storey, A.; Herzog, C.; Kenan, D.J.; et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 2020, 100, 171–181. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, H.; Tang, D. Mechanisms of primary membranous nephropathy. Biomolecules 2021, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Avasare, R.; Andeen, N.; Beck, L. Novel antigens and clinical updates in membranous nephropathy. Ann. Rev. Med. 2024, 75, 219–332. [Google Scholar] [CrossRef] [PubMed]
- Fehmi, J.; Davies, A.J.; Antonelou, M.; Keddie, S.; Pikkupeura, S.; Querol, L.; Delmont, E.; Cortese, A.; Franciotta, D.; Persson, S.; et al. Contactin-1 links autoimmune neuropathy and membranous glomerulonephritis. PLoS ONE 2023, 18, e0281156. [Google Scholar] [CrossRef] [PubMed]
- Van de Logt, A.E.; Fresquet, M.; Wetzels, J.F.; Brenchley, P. The anti-pla2r antibody in membranous nephropathy: What we know and what remains a decade after its discovery. Kidney Int. 2019, 96, 1292–1302. [Google Scholar] [CrossRef]
- Radhakrishnan, Y.; Zand, L.; Sethi, S.; Fervenza, F.C. Membranous nephropathy treatment standard. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2024, 39, 403–413. [Google Scholar] [CrossRef]
- Program, C.Z.I.C.S.; Abdulla, S.; Aevermann, B.; Assis, P.; Badajoz, S.; Bell, S.M.; Bezzi, E.; Cakir, B.; Chaffer, J.; Chambers, S.; et al. Cz cellxgene discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data. Nucleic Acids Res. 2025, 53, D886–D900. [Google Scholar] [CrossRef]
- Lake, B.B.; Menon, R.; Winfree, S.; Hu, Q.; Melo Ferreira, R.; Kalhor, K.; Barwinska, D.; Otto, E.A.; Ferkowicz, M.; Diep, D.; et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 2023, 619, 585–594. [Google Scholar] [CrossRef]
- Xu, C.; Prete, M.; Webb, S.; Jardine, L.; Stewart, B.J.; Hoo, R.; He, P.; Meyer, K.B.; Teichmann, S.A. Automatic cell-type harmonization and integration across human cell atlas datasets. Cell 2023, 186, 5876–5891.e5820. [Google Scholar] [CrossRef]
- McEvoy, C.M.; Murphy, J.M.; Zhang, L.; Clotet-Freixas, S.; Mathews, J.A.; An, J.; Karimzadeh, M.; Pouyabahar, D.; Su, S.; Zaslaver, O.; et al. Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. Nat. Commun. 2022, 13, 7634. [Google Scholar] [CrossRef]
- Wilson, P.C.; Muto, Y.; Wu, H.; Karihaloo, A.; Waikar, S.S.; Humphreys, B.D. Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression. Nat. Commun. 2022, 13, 5253. [Google Scholar] [CrossRef]
- Marshall, J.L.; Noel, T.; Wang, Q.S.; Chen, H.; Murray, E.; Subramanian, A.; Vernon, K.A.; Bazua-Valenti, S.; Liguori, K.; Keller, K.; et al. High-resolution slide-seqv2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 2022, 25, 104097. [Google Scholar] [CrossRef] [PubMed]
- Muto, Y.; Wilson, P.C.; Ledru, N.; Wu, H.; Dimke, H.; Waikar, S.S.; Humphreys, B.D. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 2021, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.J.; Ferdinand, J.R.; Young, M.D.; Mitchell, T.J.; Loudon, K.W.; Riding, A.M.; Richoz, N.; Frazer, G.L.; Staniforth, J.U.L.; Vieira Braga, F.A.; et al. Spatiotemporal immune zonation of the human kidney. Science 2019, 365, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Mitchell, T.J.; Vieira Braga, F.A.; Tran, M.G.B.; Stewart, B.J.; Ferdinand, J.R.; Collord, G.; Botting, R.A.; Popescu, D.M.; Loudon, K.W.; et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 2018, 361, 594–599. [Google Scholar] [CrossRef]
- Novella-Rausell, C.; Grudniewska, M.; Peters, D.J.M.; Mahfouz, A. A comprehensive mouse kidney atlas enables rare cell population characterization and robust marker discovery. iScience 2023, 26, 106877. [Google Scholar] [CrossRef]
- Ancian, P.; Lambeau, G.; Mattei, M.G.; Lazdunski, M. The human 180-kda receptor for secretory phospholipases a2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J. Biol. Chem. 1995, 270, 8963–8970. [Google Scholar] [CrossRef]
- Boute, N.; Gribouval, O.; Roselli, S.; Benessy, F.; Lee, H.; Fuchshuber, A.; Dahan, K.; Gubler, M.C.; Niaudet, P.; Antignac, C. Nphs2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 2000, 24, 349–354. [Google Scholar] [CrossRef]
- Kestila, M.; Lenkkeri, U.; Mannikko, M.; Lamerdin, J.; McCready, P.; Putaala, H.; Ruotsalainen, V.; Morita, T.; Nissinen, M.; Herva, R.; et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol. Cell 1998, 1, 575–582. [Google Scholar] [CrossRef]
- Kann, M.; Ettou, S.; Jung, Y.L.; Lenz, M.O.; Taglienti, M.E.; Park, P.J.; Schermer, B.; Benzing, T.; Kreidberg, J.A. Genome-wide analysis of wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J. Am. Soc. Nephrol. JASN 2015, 26, 2097–2104. [Google Scholar] [CrossRef]
- Uchida, T.; Oda, T. The prevalence, characteristics, and putative mechanisms of dual antigen-positive membranous nephropathy: The underestimated condition. Int. J. Mol. Sci. 2024, 25, 5931. [Google Scholar] [CrossRef]
- Bharati, J.; Waguespack, D.R.; Beck, L.H., Jr. Membranous nephropathy: Updates on management. Adv. Kidney Dis. Health 2024, 31, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M.; Hoxha, E.; Reinicke, A.T.; Fester, L.; Helmchen, U.; Gerth, J.; Bachmann, F.; Budde, K.; Koch-Nolte, F.; Zahner, G.; et al. Autoantibodies against thrombospondin type 1 domain-containing 7a induce membranous nephropathy. J. Clin. Investig. 2016, 126, 2519–2532. [Google Scholar] [CrossRef]
- Georgas, K.; Rumballe, B.; Valerius, M.T.; Chiu, H.S.; Thiagarajan, R.D.; Lesieur, E.; Aronow, B.J.; Brunskill, E.W.; Combes, A.N.; Tang, D.; et al. Analysis of early nephron patterning reveals a role for distal rv proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 2009, 332, 273–286. [Google Scholar] [CrossRef]
- Schnabel, E.; Dekan, G.; Miettinen, A.; Farquhar, M.G. Biogenesis of podocalyxin—The major glomerular sialoglycoprotein—In the newborn rat kidney. Eur. J. Cell Biol. 1989, 48, 313–326. [Google Scholar]
- Schnabel, E.; Anderson, J.M.; Farquhar, M.G. The tight junction protein zo-1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 1990, 111, 1255–1263. [Google Scholar] [CrossRef]
- Mundlos, S.; Pelletier, J.; Darveau, A.; Bachmann, M.; Winterpacht, A.; Zabel, B. Nuclear localization of the protein encoded by the wilms’ tumor gene wt1 in embryonic and adult tissues. Development 1993, 119, 1329–1341. [Google Scholar] [CrossRef]
- Greka, A.; Mundel, P. Cell biology and pathology of podocytes. Ann. Rev. Physiol. 2012, 74, 299–323. [Google Scholar] [CrossRef]
- Kreidberg, J.A.; Sariola, H.; Loring, J.M.; Maeda, M.; Pelletier, J.; Housman, D.; Jaenisch, R. Wt-1 is required for early kidney development. Cell 1993, 74, 679–691. [Google Scholar] [CrossRef]
- Somlo, S.; Mundel, P. Getting a foothold in nephrotic syndrome. Nat. Genet. 2000, 24, 333–335. [Google Scholar] [CrossRef]
- Kerjaschki, D. Caught flat-footed: Podocyte damage and the molecular bases of focal glomerulosclerosis. J. Clin. Investig. 2001, 108, 1583–1587. [Google Scholar] [CrossRef]
- Jiang, H.; Shen, Z.; Zhuang, J.; Lu, C.; Qu, Y.; Xu, C.; Yang, S.; Tian, X. Understanding the podocyte immune responses in proteinuric kidney diseases: From pathogenesis to therapy. Front. Immunol. 2023, 14, 1335936. [Google Scholar] [CrossRef] [PubMed]
- Kriz, W.; Gretz, N.; Lemley, K.V. Progression of glomerular diseases: Is the podocyte the culprit? Kidney Int. 1998, 54, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Basile, D.P.; Donohoe, D.; Roethe, K.; Osborn, J.L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Ren. Physiol. 2001, 281, F887–F899. [Google Scholar] [CrossRef]
- Parr, S.K.; Matheny, M.E.; Abdel-Kader, K.; Greevy, R.A., Jr.; Bian, A.; Fly, J.; Chen, G.; Speroff, T.; Hung, A.M.; Ikizler, T.A.; et al. Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int. 2018, 93, 460–469. [Google Scholar] [CrossRef]
- Ashraf, S.; Kudo, H.; Rao, J.; Kikuchi, A.; Widmeier, E.; Lawson, J.A.; Tan, W.; Hermle, T.; Warejko, J.K.; Shril, S.; et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 2018, 9, 1960. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, M.; Lu, Y.; Ding, T.; Liu, Z.; Liu, Y.; Zhou, Z.; Wang, L. Overexpressed lncrna ftx promotes the cell viability, proliferation, migration and invasion of renal cell carcinoma via ftx/mir-4429/ube2c axis. Oncol. Rep. 2022, 48, 163. [Google Scholar] [CrossRef]
- Koehler, S.; Tellkamp, F.; Niessen, C.M.; Bloch, W.; Kerjaschki, D.; Schermer, B.; Benzing, T.; Brinkkoetter, P.T. Par3a is dispensable for the function of the glomerular filtration barrier of the kidney. Am. J. Physiol. Ren. Physiol. 2016, 311, F112–F119. [Google Scholar] [CrossRef]
- Sethi, S.; Beck, L.H., Jr.; Glassock, R.J.; Haas, M.; De Vriese, A.S.; Caza, T.N.; Hoxha, E.; Lambeau, G.; Tomas, N.M.; Madden, B.; et al. Mayo clinic consensus report on membranous nephropathy: Proposal for a novel classification. Kidney Int. 2023, 104, 1092–1102. [Google Scholar] [CrossRef]
- Stanescu, H.C.; Arcos-Burgos, M.; Medlar, A.; Bockenhauer, D.; Kottgen, A.; Dragomirescu, L.; Voinescu, C.; Patel, N.; Pearce, K.; Hubank, M.; et al. Risk hla-dqa1 and pla(2)r1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 2011, 364, 616–626. [Google Scholar] [CrossRef]
- Hanasaki, K.; Yokota, Y.; Ishizaki, J.; Itoh, T.; Arita, H. Resistance to endotoxic shock in phospholipase a2 receptor-deficient mice. J. Biol. Chem. 1997, 272, 32792–32797. [Google Scholar] [CrossRef]
- Xu, X.; Wang, G.; Chen, N.; Lu, T.; Nie, S.; Xu, G.; Zhang, P.; Luo, Y.; Wang, Y.; Wang, X.; et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J. Am. Soc. Nephrol. JASN 2016, 27, 3739–3746. [Google Scholar] [CrossRef]
Disease | Gene | Log2fold | Effect Size | Adjusted p-Value |
---|---|---|---|---|
CKD | MAGI2 | 2.517 | 1.057 | 0 |
PLA2R1 | 1.691 | 1.044 | 0 | |
PTPRQ | 1.576 | 0.846 | 0 | |
NPAS3 | 1.445 | 0.913 | 0 | |
FTX | 1.444 | 1.051 | 0 | |
AKI | MAGI2 | 2.731 | 1.102 | 0 |
PLA2R1 | 1.803 | 1.075 | 0 | |
PARD3B | 1.603 | 1.022 | 0 | |
FTX | 1.546 | 1.109 | 0 | |
DLG2 | 1.539 | 1.055 | 1.10 × 10−272 | |
DN | MAGI2 | 3.713 | 1.447 | 0 |
PTPRQ | 2.885 | 1.493 | 7.53 × 10−297 | |
PLA2R1 | 2.586 | 1.498 | 0 | |
NPAS3 | 2.49 | 1.535 | 0 | |
PARD3B | 2.417 | 1.515 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Xu, H.; Tang, D. Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys. Genes 2025, 16, 241. https://doi.org/10.3390/genes16030241
Dong Y, Xu H, Tang D. Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys. Genes. 2025; 16(3):241. https://doi.org/10.3390/genes16030241
Chicago/Turabian StyleDong, Ying, Hui Xu, and Damu Tang. 2025. "Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys" Genes 16, no. 3: 241. https://doi.org/10.3390/genes16030241
APA StyleDong, Y., Xu, H., & Tang, D. (2025). Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys. Genes, 16(3), 241. https://doi.org/10.3390/genes16030241