The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shitara, K.; Lordick, F.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Shah, M.A.; Van Cutsem, E.; Xu, R.H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Kang, Y.K.; Lee, K.W.; Qin, S.; Yamaguchi, K.; Kim, I.H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab as first-line treatment for locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma: Final analysis of the randomized phase 2 FIGHT trial. Gastric Cancer 2024, 27, 558–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; De Vita, F.; Landers, G.; Yen, C.J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piazuelo, M.B.; Carneiro, F.; Camargo, M.C. Considerations in comparing intestinal- and diffuse-type gastric adenocarcinomas. Helicobacter 2023, 28, e12975. [Google Scholar] [CrossRef] [PubMed]
- Stachler, M.D.; Jin, R.U. Molecular Pathology of Gastroesophageal Cancer. Clin. Lab. Med. 2024, 44, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Koemans, W.J.; Luijten, J.C.H.B.M.; van der Kaaij, R.T.; Grootscholten, C.; Snaebjornsson, P.; Verhoeven, R.H.A.; van Sandick, J.W. The metastatic pattern of intestinal and diffuse type gastric carcinoma—A Dutch national cohort study. Cancer Epidemiol. 2020, 69, 101846. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lou, E.; Xue, Z. The role of bile acid in intestinal metaplasia. Front. Physiol. 2023, 14, 1115250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Correa, P.; Haenszel, W.; Cuello, C.; Tannenbaum, S.; Archer, M. A model for gastric cancer epidemiology. Lancet 1975, 2, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piazuelo, M.B.; Haque, S.; Delgado, A.; Du, J.X.; Rodriguez, F.; Correa, P. Phenotypic differences between esophageal and gastric intestinal metaplasia. Mod. Pathol. 2004, 17, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Voutsadakis, I.A. Gastric Adenocarcinomas with CDX2 Induction Show Higher Frequency of TP53 and KMT2B Mutations and MYC Amplifications but Similar Survival Compared with Cancers with No CDX2 Induction. J. Clin. Med. 2024, 13, 7635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellrott, K.; Bailey, M.H.; Saksena, G.; Covington, K.R.; Kandoth, C.; Stewart, C.; Hess, J.; Ma, S.; Chiotti, K.E.; McLellan, M.; et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst. 2018, 6, 271–281.e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suehnholz, S.P.; Nissan, M.H.; Zhang, H.; Kundra, R.; Nandakumar, S.; Lu, C.; Carrero, S.; Dhaneshwar, A.; Fernandez, N.; Xu, B.W.; et al. Quantifying the Expanding Landscape of Clinical Actionability for Patients with Cancer. Cancer Discov. 2024, 14, 49–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sugano, K.; Moss, S.F.; Kuipers, E.J. Gastric Intestinal Metaplasia: Real Culprit or Innocent Bystander as a Precancerous Condition for Gastric Cancer? Gastroenterology 2023, 165, 1352–1366.e1. [Google Scholar] [CrossRef] [PubMed]
- Noto, J.M.; Piazuelo, M.B.; Shah, S.C.; Romero-Gallo, J.; Hart, J.L.; Di, C.; Carmichael, J.D.; Delgado, A.G.; Halvorson, A.E.; Greevy, R.A.; et al. Iron deficiency linked to altered bile acid metabolism promotes Helicobacter pylori-induced inflammation-driven gastric carcinogenesis. J. Clin. Investig. 2022, 132, e147822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saha, B.; Vantanasiri, K.; Mohan, B.P.; Goyal, R.; Garg, N.; Gerberi, D.; Kisiel, J.B.; Singh, S.; Iyer, P.G. Prevalence of Barrett’s Esophagus and Esophageal Adenocarcinoma With and Without Gastroesophageal Reflux: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2024, 22, 1381–1394.e7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piazuelo, M.B.; Bravo, L.E.; Mera, R.M.; Camargo, M.C.; Bravo, J.C.; Delgado, A.G.; Washington, M.K.; Rosero, A.; Garcia, L.S.; Realpe, J.L.; et al. The Colombian Chemoprevention Trial: 20-Year Follow-Up of a Cohort of Patients With Gastric Precancerous Lesions. Gastroenterology 2021, 160, 1106–1117.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, Y.; Li, Q.K.; Roy, S.; Mills, J.C.; Jin, R.U. Shared features of metaplasia and the development of adenocarcinoma in the stomach and esophagus. Front. Cell Dev. Biol. 2023, 11, 1151790. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almeida, R.; Silva, E.; Santos-Silva, F.; Silberg, D.G.; Wang, J.; De Bolós, C.; David, L. Expression of intestine-specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J. Pathol. 2003, 199, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Bornschein, J.; Tóth, K.; Selgrad, M.; Kuester, D.; Wex, T.; Molnár, B.; Tulassay, Z.; Malfertheiner, P. Dysregulation of CDX1, CDX2 and SOX2 in patients with gastric cancer also affects the non-malignant mucosa. J. Clin. Pathol. 2013, 66, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Abadi, A.J.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Najafi, M.; Entezari, M.; Hushmandi, K.; Aref, A.R.; Khan, H.; Makvandi, P.; et al. The role of SOX family transcription factors in gastric cancer. Int. J. Biol. Macromol. 2021, 180, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Camilo, V.; Barros, R.; Sousa, S.; Magalhães, A.M.; Lopes, T.; Mário Santos, A.; Pereira, T.; Figueiredo, C.; David, L.; Almeida, R. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis 2012, 33, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.; Pereira, D.; Callé, C.; Camilo, V.; Cunha, A.I.; David, L.; Almeida, R.; Dias-Pereira, A.; Chaves, P. Dynamics of SOX2 and CDX2 Expression in Barrett’s Mucosa. Dis. Markers 2016, 2016, 1532791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, T.; Ni, Z.; Han, C.; Min, Y.; Sun, N.; Liu, C.; Shi, M.; Lu, W.; Wang, N.; Du, F.; et al. SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia. Cancer Cell Int. 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camilo, V.; Barros, R.; Celestino, R.; Castro, P.; Vieira, J.; Teixeira, M.R.; Carneiro, F.; Pinto-de-Sousa, J.; David, L.; Almeida, R. Immunohistochemical molecular phenotypes of gastric cancer based on SOX2 and CDX2 predict patient outcome. BMC Cancer 2014, 14, 753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, N.; Xu, X.; Zhan, Y.; Fei, X.; Ouyang, Y.; Zheng, P.; Zhou, Y.; He, C.; Xie, C.; Hu, Y.; et al. YAP and β-catenin cooperate to drive H. pylori-induced gastric tumorigenesis. Gut Microbes 2023, 15, 2192501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, J.; Yang, K.; Zheng, J.; Zhao, P.; Xia, J.; Sun, X.; Zhao, W. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022, 13, 388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balbinot, C.; Armant, O.; Elarouci, N.; Marisa, L.; Martin, E.; De Clara, E.; Onea, A.; Deschamps, J.; Beck, F.; Freund, J.N.; et al. The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms. J. Exp. Med. 2018, 215, 911–926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chewchuk, S.; Jahan, S.; Lohnes, D. Cdx2 regulates immune cell infiltration in the intestine. Sci. Rep. 2021, 11, 15841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Axelrod, M.L.; Cook, R.S.; Johnson, D.B.; Balko, J.M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin. Cancer Res. 2019, 25, 2392–2402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marino, F.; Semilietof, A.; Michaux, J.; Pak, H.S.; Coukos, G.; Müller, M.; Bassani-Sternberg, M. Biogenesis of HLA Ligand Presentation in Immune Cells Upon Activation Reveals Changes in Peptide Length Preference. Front. Immunol. 2020, 11, 1981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, N.; Maurya, S.; Verma, H.; Verma, V.K. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J. Cell Biochem. 2019, 120, 18572–18587. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Bever, K.; Chao, J.; Ciombor, K.K.; Eng, C.; Fakih, M.; Goyal, L.; Hubbard, J.; Iyer, R.; Kemberling, H.T.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J. Immunother. Cancer 2023, 11, e006658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garofalo, M.; Pancer, K.W.; Wieczorek, M.; Staniszewska, M.; Salmaso, S.; Caliceti, P.; Kuryk, L. From Immunosuppression to Immunomodulation—Turning Cold Tumours into Hot. J. Cancer 2022, 13, 2884–2892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, E.; Kwon, W.S.; Kim, T.S.; Hwang, J.; Kim, S.; Rha, S.Y. Identifying Anti-Cancer Effects and Exploring the Mechanism of an MPS1/TTK Inhibitor in Gastric Cancer. Cancer Res. Treat. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hayward, D.; Alfonso-Pérez, T.; Gruneberg, U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett. 2019, 593, 2889–2907. [Google Scholar] [CrossRef] [PubMed]
All CDX2-Induced Patients (n = 240) (%) | CDX2-Induced and SOX2-Non-Suppressed Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 124) (%) | p | |
---|---|---|---|---|
Age (mean) | 66.5 ± 10.3 | 64.2 ± 10.3 | 67.7 ± 9.8 | 0.01 |
Early onset (≤50 years-old) | ||||
yes | 14 (5.9) | 7 (7.4) | 6 (4.9) | 0.56 |
no | 223 (94.1) | 88 (92.6) | 117 (95.1) | |
NA | 3 | 2 | 1 | |
Sex | ||||
Male | 157 (65.4) | 62 (63.9) | 83 (66.9) | 0.67 |
Female | 83 (34.6) | 35 (36.1) | 41 (33.1) | |
Histology | ||||
Intestinal/NOS adenocarcinoma | 132 (55) | 51 (52.6) | 66 (53.2) | 0.68 |
Diffuse | 27 (11.2) | 12 (12.4) | 11 (8.9) | |
Other | 81 (33.8) | 34 (35) | 47 (37.9) | |
Grade | ||||
1–2 | 110 (46.6) | 45 (47.9) | 60 (48.8) | 1 |
3 | 126 (53.4) | 49 (52.1) | 63 (51.2) | |
NA | 4 | 3 | 1 | |
T stage | ||||
T1 | 13 (5.5) | 2 (2.1) | 11 (8.9) | 0.16 |
T2 | 57 (24.2) | 21 (21.6) | 28 (22.8) | |
T3 | 102 (43.2) | 48 (49.5) | 51 (41.5) | |
T4 | 64 (27.1) | 26 (26.8) | 33 (26.8) | |
NA | 4 | 0 | 1 | |
N stage | ||||
N0 | 74 (31.8) | 20 (21.1) | 49 (40.2) | 0.02 |
N1 | 66 (28.3) | 31 (32.6) | 31 (25.4) | |
N2 | 48 (20.6) | 21 (22.1) | 23 (18.8) | |
N3 | 45 (19.3) | 23 (24.2) | 19 (15.6) | |
NA | 7 | 2 | 2 | |
M stage | ||||
M0 | 217 (94.8) | 90 (95.7) | 111 (95.7) | 1 |
M1 | 12 (5.2) | 4 (4.3) | 5 (4.3) | |
NA | 11 | 3 | 8 | |
Stage | ||||
I | 35 (15.1) | 8 (8.3) | 23 (19) | 0.04 |
II | 77 (33.2) | 30 (31.2) | 45 (37.2) | |
III | 102 (44) | 52 (54.2) | 46 (38) | |
IV | 18 (7.7) | 6 (6.3) | 7 (5.8) | |
NA | 8 | 1 | 3 |
All CDX2-Induced Patients (n = 240) (%) | CDX2-Induced and SOX2-Maintained Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 124) (%) | p | |
---|---|---|---|---|
Genomic category | ||||
CIN | 138 (63.3) | 67 (74.5) | 60 (54.6) | 0.003 |
GS | 25 (11.5) | 10 (11.1) | 13 (11.8) | |
MSI | 47 (21.5) | 9 (10) | 34 (30.9) | |
EBV | 3 (1.4) | 2 (2.2) | 0 | |
POLE | 5 (2.3) | 2 (2.2) | 3 (2.7) | |
NA | 22 | 7 | 14 | |
TMB | ||||
High (>10 mutations/Mb) | 59 (24.8) | 12 (12.4) | 43 (35) | 0.0001 |
Low (≤10 mutations/Mb) | 179 (75.2) | 85 (87.6) | 80 (65) | |
NA | 2 | 1 | ||
AS | ||||
<4 | 82 (35.1) | 12 (12.9) | 43 (35.3) | <0.00001 |
4–24 | 136 (58.1) | 67 (72) | 77 (63.1) | |
>24 | 16 (6.8) | 14 (15.1) | 2 (1.6) | |
NA | 6 | 4 | 2 | |
FGA | ||||
<0.08 | 63 (26.5) | 18 (18.7) | 40 (32.5) | 0.03 |
>0.08 | 175 (73.5) | 78 (81.3) | 83 (67.5) | |
NA | 2 | 1 | 1 |
Gene | CDX2-Induced Patients (n = 238) (%) | CDX2-Induced and SOX2-Maintained Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 123) (%) | p | q |
---|---|---|---|---|---|
ARID2 | 18 (7.6) | 4 (4.1) | 13 (10.6) | 0.12 | 1 |
ARID1A | 59 (24.8) | 16 (16.5) | 37 (30.1) | 0.02 | 0.4 |
ARID1B | 14 (5.9) | 5 (5.2) | 7 (5.7) | 1 | 1 |
ARID5B | 11 (4.6) | 1 (1) | 8 (6.5) | 0.08 | 1 |
KMT2C | 35 (14.7) | 5 (5.2) | 25 (20.3) | 0.001 | 0.02 |
KMT2D | 38 (16) | 7 (7.2) | 28 (22.8) | 0.001 | 0.02 |
KMT2A | 29 (12.2) | 7 (7.2) | 19 (15.4) | 0.09 | 1 |
KMT2B | 30 (12.6) | 5 (5.2) | 21 (17.1) | 0.006 | 0.12 |
DNMT3A | 7 (2.9) | 2 (2.1) | 4 (3.3) | 0.69 | 1 |
DNMT1 | 9 (3.8) | 1 (1) | 8 (6.5) | 0.08 | 1 |
DNMT3B | 6 (2.5) | 2 (2.1) | 4 (3.3) | 0.69 | 1 |
KDM5C | 7 (2.9) | 1 (1) | 5 (4.1) | 0.23 | 1 |
KDM6A | 10 (4.2) | 3 (3.1) | 5 (4.1) | 1 | 1 |
KDM5A | 11 (4.6) | 2 (2.1) | 8 (6.5) | 0.19 | 1 |
EP300 | 13 (5.5) | 4 (4.1) | 8 (6.5) | 0.55 | 1 |
CREBBP | 27 (11.3) | 9 (9.3) | 17 (13.8) | 0.4 | 1 |
SETD2 | 12 (5) | 2 (2.1) | 10 (8.1) | 0.07 | 1 |
SMARCA2 | 14 (5.9) | 2 (2.1) | 10 (8.1) | 0.07 | 1 |
SMARCA4 | 16 (6.7) | 5 (5.2) | 10 (8.1) | 0.43 | 1 |
SMARCB1 | 8 (3.4) | 0 | 7 (5.7) | 0.01 | 0.2 |
Gene | CDX2-Induced Patients (n = 238) (%) | CDX2-Induced and SOX2-Non-Suppressed Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 123) (%) | p |
---|---|---|---|---|
EGFR | 14 (5.9) | 5 (5.2) | 9 (7.3) | 0.58 |
ERBB2 | 16 (6.7) | 6 (6.2) | 8 (6.5) | 1 |
ERBB3 | 26 (10.9) | 8 (8.2) | 16 (13) | 0.28 |
ERBB4 | 31 (13) | 7 (7.2) | 21 (17.1) | 0.04 |
FGFR1 | 8 (3.4) | 0 | 7 (5.7) | 0.01 |
FGFR2 | 8 (3.4) | 2 (2.1) | 4 (3.3) | 0.69 |
FGFR3 | 7 (2.9) | 1 (1) | 5 (4.1) | 0.23 |
FGFR4 | 9 (3.8) | 4 (4.1) | 5 (4.1) | 1 |
PDGFRA | 9 (3.8) | 4 (4.1) | 5 (4.1) | 1 |
PDGFRB | 12 (5) | 2 (2.1) | 8 (6.5) | 0.19 |
NTRK1 | 6 (2.5) | 1 (1) | 4 (3.3) | 0.38 |
NTRK2 | 13 (5.5) | 4 (4.1) | 8 (6.5) | 0.55 |
NTRK3 | 11 (4.6) | 3 (3.1) | 8 (6.5) | 0.35 |
ALK | 12 (5) | 4 (4.1) | 6 (4.9) | 1 |
ROS1 | 16 (6.7) | 4 (4.1) | 11 (8.9) | 0.18 |
VEGFR1 | 0 | 0 | 0 | |
VEGFR2 | 0 | 0 | 0 | |
VEGFR3 | 0 | 0 | 0 | |
VEGFR4 | 0 | 0 | 0 | |
MET | 5 (2.1) | 0 | 5 (4.1) | 0.06 |
RET | 10 (4.2) | 2 (2.1) | 7 (5.7) | 0.3 |
INSR | 9 (3.8) | 2 (2.1) | 6 (4.9) | 0.47 |
IGF1R | 13 (5.5) | 1 (1) | 9 (7.3) | 0.04 |
EPHA1 | 10 (4.2) | 3 (3.1) | 6 (4.9) | 0.73 |
EPHB1 | 16 (6.7) | 4 (4.1) | 10 (8.1) | 0.27 |
Gene | CDX2-Induced Patients (n = 238) (%) | CDX2-Induced and SOX2-Non-Suppressed Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 123) (%) | p |
---|---|---|---|---|
BRCA1 | 8 (3.4) | 0 | 7 (5.7) | 0.01 |
BRCA2 | 18 (7.6) | 4 (4.1) | 12 (9.8) | 0.12 |
PALB2 | 7 (2.9) | 0 | 7 (5.7) | 0.01 |
RAD51 | 1 (0.4) | 0 | 1 (0.8) | 1 |
RAD51B | 0 | 0 | 0 | 1 |
RAD51C | 1 (0.4) | 0 | 1 (0.8) | 1 |
RAD51D | 1 (0.4) | 1 (1) | 0 | 0.44 |
RAD50 | 5 (2.1) | 2 (2.1) | 2 (1.6) | 1 |
XRCC2 | 3 (1.3) | 1 (1) | 1 (0.8) | 1 |
ATM | 24 (10.1) | 6 (6.2) | 17 (13.8) | 0.07 |
ATR | 12 (5) | 3 (3.1) | 8 (6.5) | 0.35 |
BRIP1 | 4 (1.7) | 1 (1) | 3 (2.4) | 0.63 |
NBN | 9 (3.8) | 2 (2.1) | 6 (4.9) | 0.47 |
MRE11 | 5 (2.1) | 1 (1) | 4 (3.3) | 0.38 |
CHEK1 | 5 (2.1) | 1 (1) | 4 (3.3) | 0.38 |
CHEK2 | 6 (2.5) | 1 (1) | 4 (3.3) | 0.38 |
BARD1 | 12 (5) | 3 (3.1) | 6 (4.9) | 0.73 |
BAP1 | 8 (3.4) | 2 (2.1) | 6 (4.9) | 0.47 |
POLQ | 19 (8) | 6 (6.2) | 12 (9.8) | 0.45 |
CDK12 | 10 (4.2) | 3 (3.1) | 7 (5.7) | 0.51 |
Gene | CDX2-Induced Patients (n = 238) (%) | CDX2-Induced and SOX2-Non-Suppressed Patients (n = 97) (%) | CDX2-Induced and SOX2-Suppressed Patients (n = 123) (%) | p |
---|---|---|---|---|
MSH2 | 7 (2.9) | 2 (2.1) | 4 (3.3) | 0.69 |
MSH6 | 8 (3.4) | 3 (3.1) | 4 (3.3) | 1 |
MLH1 | 5 (2.1) | 4 (4.1) | 1 (0.8) | 0.17 |
PMS2 | 6 (2.5) | 1 (1) | 4 (3.3) | 0.38 |
POLE | 19 (8) | 4 (4.1) | 13 (10.6) | 0.12 |
POLD1 | 9 (3.8) | 2 (2.1) | 7 (5.7) | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voutsadakis, I.A. The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes. Genes 2025, 16, 279. https://doi.org/10.3390/genes16030279
Voutsadakis IA. The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes. Genes. 2025; 16(3):279. https://doi.org/10.3390/genes16030279
Chicago/Turabian StyleVoutsadakis, Ioannis A. 2025. "The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes" Genes 16, no. 3: 279. https://doi.org/10.3390/genes16030279
APA StyleVoutsadakis, I. A. (2025). The Status of SOX2 Expression in Gastric Cancers with Induction of CDX2 Defines Groups with Different Genomic Landscapes. Genes, 16(3), 279. https://doi.org/10.3390/genes16030279