Functional Genomics of Legumes in Bulgaria—Advances and Future Perspectives
Abstract
:1. Introduction
1.1. Model Legumes and Genomic Advances
1.2. Functional Genomics—Tools and Applications
1.3. Role of Transcriptomics and Proteomics for Functional Genomics
1.4. Forward and Reverse Genetics and Mutant Plant Collections—Powerful Tools of Functional Genomics
1.5. Functional Genomics in Bulgaria
2. HAC1 as a Key Epigenetic Regulator of Plant Development and Stress Response
2.1. Histone Acetyltransferases—Classification and Function in Gene Regulation
2.2. HAC1-Mediated Regulation of Plant Growth and Development
2.3. HAC1 Involvement in Responses to Abiotic Stress
3. F-Box Proteins—Multifunctional Regulators of Plant Development and Metabolism
3.1. Molecular Mechanisms and Diverse Functions of F-Box Proteins
3.2. Conservation and Developmental Roles of F-Box Proteins Across Plant Species
3.3. F-Box Proteins in Root Development—From Model Plants to Crop Applications
4. Auxin Influx Carrier Protein LAX3
4.1. Auxin Transport Mechanisms and LAX3 Function
4.2. MtLAX3 Expression and Development Regulation
4.3. MtLAX3 Role in Phosphate Stress Response
4.4. LAX3 Involvement in Abiotic Stress Responses
5. The Versatile Role of Auxin Response Factor ARF-B3
5.1. ARF-B3 as a Key Regulator in Auxin-Mediated Gene Expression
5.2. Role of MtARF-B3 in Development and Fertility
5.3. Comparative Studies in L. japonicus and A. thaliana
5.4. Implications for Growth and Development in A. thaliana
6. Exploring GRAS7—A Multifunctional Transcription Factor
6.1. GRAS7 in Genetic Engineering and Expression Studies
6.2. Role of MtGRAS7 in Root Development and Nodulation
6.3. Role of MtGRAS7 in Abiotic Stress Responses
7. Zn Finger CCHC Type Proteins
7.1. The Role of MtZn-CCHC in Flower Morphology and Seed Size
7.2. MtZn-CCHC—A Gene with Multiple Functions
8. Conclusions and Perspectives
8.1. Advances in Functional Genomics for Crop Improvement
8.2. Future Directions and Perspectives for Crop Improvement
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Xue, J.S.; Yu, Y.H.; Liu, S.Q.; Zhang, J.X.; Yao, X.Z.; Liu, Z.X.; Xu, X.F.; Yang, Z.N. Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biol. 2017, 17, 243. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Lu, Q.; Wang, J.; Wang, L.; Xiang, F.; Liu, Z. MiR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, BRZ, or PAC-dependent manner in Arabidopsis: miR160 promotes hypocotyl elongation. Plant Sci. 2021, 303, 110686. [Google Scholar] [CrossRef] [PubMed]
- Iantcheva, A.; Revalska, M.; Zehirov, G.; Vassileva, V. Agrobacterium-mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. Vitr. Cell. Dev. Biol.-Plant 2014, 50, 149–157. [Google Scholar] [CrossRef]
- Song, L.; Tao, L.; Cui, H.; Ling, L.; Guo, C. Genome-wide identification and expression analysis of the GRAS family proteins in Medicago truncatula. Acta Physiol. Plant. 2017, 39, 93. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Shang, C.; Li, J.; Wang, J.; Wu, Z.; Ma, L.; Qi, T.; Fu, C.; Bai, Z.; et al. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification. PLoS ONE 2017, 12, e0185439. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.S.; Liang, D.; Shuai, P.; Xia, X.L.; Yin, W.L. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J. Exp. Bot. 2010, 61, 4011–4019. [Google Scholar] [CrossRef]
- Xu, K.; Chen, S.J.; Li, T.F.; Ma, X.; Liang, X.; Ding, X.; Liu, H.; Luo, L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol. 2015, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, G.; Gan, H.; Liu, C.; Li, M.; Shu, Y. Genome-wide analysis of the GRAS gene family in white clover (Trifolium repens L.) provides insight into its critical role in response to cold stress. Bull. Bus. Econ. 2024, 38, 2354713. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, S.; Liu, D.; Guo, F.; Yang, Y.; Dong, T.; Zhang, Y.; Ma, C.; Tang, Z.; Li, F.; et al. Genome-wide survey and expression analysis of GRAS transcription factor family in sweet potato provides insights into their potential roles in stress response. BMC Plant Biol. 2022, 22, 232. [Google Scholar]
- Neves, C.; Ribeiro, B.; Amaro, R.; Expósito, J.; Grimplet, J.; Fortes, A.M. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. Hortic. Res. 2023, 10, uhad220. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, P.; Chaudhary, R. Role of GRAS Transcription Factor in Plant Growth, Development and Various Stresses: A Review. Indian J. Agricult. Res. 2024, 58, 962–968. [Google Scholar] [CrossRef]
- Waseem, M.; Nkurikiyimfura, O.; Niyitanga, S.; Jakada, B.H.; Shaheen, I.; Aslam, M.M. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol. Biol. Rep. 2022, 49, 9673–9685. [Google Scholar] [CrossRef]
- Jaiswal, V.; Kakkar, M.; Kumari, P.; Zinta, G.; Gahlaut, V.; Kumar, S. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 2022, 25, 105026. [Google Scholar] [CrossRef]
- Morales-Merida, B.E.; Grimaldi-Olivas, J.C.; Cruz-Mendívil, A.; Villicaña, C.; Valdez-Torres, J.B.; Heredia, J.B.; León-Chan, R.; Lightbourn-Rojas, L.A.; León-Félix, J. RVE1, DBB1b, and COL2 Transcription Factors Are Responsive to Combined Stress by UV-B Radiation and Cold in Bell Pepper (Capsicum annuum). Horticulturae 2023, 9, 699. [Google Scholar] [CrossRef]
- Khassanova, G.; Oshergina, I.; Ten, E.; Jatayev, S.; Zhanbyrshina, N.; Gabdola, A.; Gupta, N.K.; Schramm, C.; Pupulin, A.; Philp-Dutton, L.; et al. Zinc finger knuckle genes are associated with tolerance to drought and dehydration in chickpea (Cicer arietinum L.). Front. Plant Sci. 2024, 15, 1354413. [Google Scholar] [CrossRef]
- Armas, P.; Calcaterra, N.B. Retroviral zinc knuckles in eukaryotic cellular proteins. In Zinc fingers: Structure, Properties, and Applications; Ciofani, R., Makrlik, L., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 51–80. [Google Scholar]
- Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001, 11, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahab, M.M.H.; Aljabri, M.; Sarhan, M.S.; Osman, G.; Wang, S.; Mabrouk, M.; El-Shabrawi, H.M.; Gabr, A.M.; Abd El-Haliem, A.M.; O’Sullivan, D.M.; et al. High-density SNP-based association mapping of seed traits in fenugreek reveals homology with clover. Genes 2020, 11, 893. [Google Scholar] [CrossRef]
- Mondo, J.M.; Agre, P.A.; Asiedu, R.; Akoroda, M.O.; Asfaw, A. Genome-wide association studies for sex determination and cross-compatibility in water yam (Dioscorea alata L.). Plants 2021, 10, 1412. [Google Scholar] [CrossRef] [PubMed]
- Olomitutu, O.E.; Paliwal, R.; Abe, A.; Oluwole, O.O.; Oyatomi, O.A.; Abberton, M.T. Genome-Wide Association Study Revealed SNP Alleles Associated with Seed Size Traits in African Yam Bean (Sphenostylis stenocarpa (Hochst ex. A. Rich.) Harms). Genes 2022, 13, 2350. [Google Scholar] [CrossRef]
- Uba, C.U.; Oselebe, H.O.; Tesfaye, A.A.; Abtew, W.G. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genom. 2023, 24, 593. [Google Scholar] [CrossRef]
- Chaikam, V.; Karlson, D. Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 2008, 31, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Clay, N.K.; Nelson, T. The recessive epigenetic swell map mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. Plant Cell 2005, 17, 1994–2008. [Google Scholar] [CrossRef]
- Sasaki, K.; Kim, M.; Imai, R. Arabidopsis cold shock domain protein 2 is an RNA chaperone that is regulated by cold and developmental signals. Biochem. Biophys. Res. Commun. 2007, 364, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Nakaminami, K.; Hill, K.; Perry, S.E.; Sentoku, N.; Long, J.A.; Karlson, D.T. Arabidopsis cold shock domain proteins: Relationships to floral and silique development. J. Exp. Bot. 2009, 60, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Li, Y.; Zou, X.; Chen, F.; Ji, R.; You, C.; Yu, K.; Li, Y.; Xiao, W.; Guo, X. Comprehensive genome-wide identification, characterization, and expression analysis of CCHC zinc finger gene family in wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 13, 892105. [Google Scholar] [CrossRef] [PubMed]
- Sońta, M.; Rekiel, A. Legumes—Use for nutritional and feeding purposes. J. Elem. 2020, 25, 835–849. [Google Scholar] [CrossRef]
- Kumar, S.; Bamboriya, S.D.; Rani, K.; Meena, R.S.; Sheoran, S.; Loyal, A.; Kumawat, A.; Jhariya, M.K. Grain legumes: A diversified diet for sustainable livelihood, food, and nutritional security. In Advances in Legumes for Sustainable Intensification; Academic Press: London, UK, 2022; pp. 157–178. [Google Scholar]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Ane, J.M.; Zhu, H.; Frugoli, J. Recent advances in Medicago truncatula genomics. Int. J. Plant Genom. 2008, 2018, 256597. [Google Scholar]
- Goyal, R.K.; Mattoo, A.K.; Schmidt, M.A. Rhizobial-host interactions and symbiotic nitrogen fixation in legume crops toward agriculture sustainability. Front. Microbiol. 2021, 12, 669404. [Google Scholar] [CrossRef]
- Szczyglowski, K.; Stougaard, J. Lotus genome: Pod of gold for legume research. Trends Plant Sci. 2008, 13, 515–517. [Google Scholar] [CrossRef]
- Cook, D.R. Medicago truncatula—A model in the making! Curr. Opin. Plant Biol. 1999, 2, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Abrahan, C.; Colquhoun, T.A.; Liu, C.-J. A proteolytic regulator controlling Chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 2017, 29, 1157–1174. [Google Scholar] [CrossRef]
- Gonzalez-Carranza, Z.H.; Rompa, U.; Peters, J.L.; Bhatt, A.M.; Wagstaff, C.; Stead, A.D.; Roberts, J.A. Hawaiian skirt: An F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol. 2007, 144, 1370–1382. [Google Scholar] [CrossRef]
- Gusti, A.; Baumberger, N.; Nowack, M.; Pusch, S.; Eisler, H.; Potuschak, T.; De Veylder, L.; Schnittger, A.; Genschik, P. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLoS ONE 2009, 4, e4780. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Sun, S.; Jin, C.; Su, J.; Wei, J.; Luo, X.; Wen, J.; Wei, T.; Sahu, S.K.; et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat. Commun. 2022, 13, 5913. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Tian, L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta 2007, 1769, 295–307. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Zhao, M.; Luo, M.; Yu, C.W.; Chen, C.; Tai, R.; Wu, K. Transcriptional repression by histone deacetylases in plants. Mol. Plant 2014, 7, 764–772. [Google Scholar] [CrossRef]
- Volkening, J.D.; Bailey, D.J.; Rose, C.M.; Grimsrud, P.A.; Howes-Podoll, M.; Venkateshwaran, M.; Westphall, M.S.; Ane, J.M.; Coon, J.J.; Sussman, M.R. Proteogenomic Survey of the Medicago truncatula Genome. Mol. Cell. Proteom. 2012, 11, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Revalska, M.; Iantcheva, A. Pi-starvation is mitigated in Medicago truncatula plants with upregulated auxin transport through auxin–strigolactone interaction. Plant Cell Tiss. Organ Cult. 2018, 103, 405–415. [Google Scholar] [CrossRef]
- Revalska, M.; Iantcheva, A. Effect of exogenous application of 2,4-D on Medicago truncatula plants with modified auxin transport in extreme phosphate conditions. Agric. Food 2018, 6, 204–218. [Google Scholar]
- Elias, M.; Chere, D.; Lule, D.; Serba, D.; Tirfessa, A.; Gelmesa, D.; Tesso, T.; Bantte, K.; Menamo, T.M. Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm. Plant Genome 2024, 17, e20436. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.J.; Zhao, Y.Y.; Pan, Y.T.; Sun, K.; Xie, X.G.; Dai, C.C. The endophytic fungus Phomopsis liquidambaris promotes phosphorus uptake by Arachis hypogaea L. by regulating host auxin, gibberellins, and cytokinins signaling pathways. J. Soil Sci. Plant Nutr. 2022, 22, 4913–4927. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Xu, Y.; Abbas, F.; Xu, D.; Tao, S.; Xie, X.; Song, F.; Huang, Q.; Sharma, A.; et al. Genome-wide identification and expression analysis of AUX/LAX family genes in Chinese hickory (Carya cathayensis Sarg.) under various abiotic stresses and grafting. Front. Plant Sci. 2023, 13, 1060965. [Google Scholar] [CrossRef] [PubMed]
- Moronczyk, J.; Braszewska, A.; Wójcikowska, B.; Chwiałkowska, K.; Nowak, K.; Wójcik, A.M.; Kwasniewski, M.; Gaj, M.D. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022, 11, 863. [Google Scholar] [CrossRef]
- Kakoulidou, I.; Avramidou, E.V.; Baránek, M.; Brunel-Muguet, S.; Farrona, S.; Johannes, F.; Kaiserli, E.; Lieberman-Lazarovich, M.; Martinelli, F.; Mladenov, V.; et al. Epigenetics for Crop Improvement in Times of Global Change. Biology 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Ma, H.; Neic, M.; Kong, H. Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. USA 2009, 106, 835–840. [Google Scholar] [CrossRef]
- Wang, X.; Zong, C.; Qi, Y.; Sun, G.; Liu, C.; Wang, Y. Translational genomics in legumes: Enhancing crop resilience and yield. Legume Genom. Genet. 2024, 15, 244–256. [Google Scholar] [CrossRef]
- Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef]
- Goff, S.A.; Ricke, D.; Lan, T.H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296, 92–100. [Google Scholar] [CrossRef]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Krishnakumar, V.; Bidwell, S.; Rosen, B.; Chan, A.; Zhou, S.; Gentzbittel, L.; Childs, K.L.; Yandell, M.; Gundlach, H.; et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genom. 2014, 15, 312. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Alghamdi, S.; Migdadi, H.; Khan, M.N.; Mirza, S.; Mirza, S.; El-Harty, E. Legume genomics and transcriptomics: From classic breeding to modern technologies. Saudi J. Biol. Sci. 2019, 27, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Young, N.D.; Debelle, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.X.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Long, S.R. Transcriptional analysis of Sinorhizobium meliloti and Medicago truncatula symbiosis using nitrogen fixing-deficient nodules. Mol. Plant Microbe Interact. 2015, 28, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Benedito, V.A.; Torres-Jerez, I.; Murray, J.D.; Andriankaja, A.; Allen, S.; Kakar, K.; Wandrey, M.; Verdier, J.; Zuber, H.; Ott, T.; et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008, 55, 504–513. [Google Scholar] [CrossRef]
- Benedito, V.A.; Li, H.; Dai, X.; Wandrey, M.; He, J.; Kaundal, R.; Torres-Jerez, I.; Gomez, S.K.; Harrison, M.J.; Tang, Y.; et al. Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol. 2010, 152, 1716–1730. [Google Scholar] [CrossRef]
- Kumar, A.; Bennetzen, J.L. Plant retrotransposons. Annu. Rev. Genet. 1999, 33, 479–532. [Google Scholar] [CrossRef] [PubMed]
- d’Erfurth, I.; Cosson, V.; Eschstruth, A.; Lucas, H.; Kondorosi, A.; Ratet, P. Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J. 2003, 34, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Iantcheva, A.; Chabaud, M.; Cosson, V.; Barascud, M.; Schutz, B.; Primard-Brisset, C.; Durand, P.; Barker, D.G.; Vlahova, M.; Ratet, P. Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv. Jemalong during in vitro regeneration. Plant Cell Rep. 2009, 28, 1563–1572. [Google Scholar] [CrossRef]
- Fukai, E.; Soyano, T.; Umehara, Y.; Nakayama, S.; Hirakawa, H.; Tabata, S.; Sato, S.; Hayashi, M. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J. 2012, 69, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Iantcheva, A.; Revalska, M.; Zehirov, G.; Boycheva, I.; Magne, K.; Radkova, M.; Ratet, P.; Vassileva, V. Tnt1 retrotransposon as a tool for developing an insertional mutant collection of Lotus japonicus. Vitr. Cell. Dev. Biol.-Plant 2016, 52, 338–347. [Google Scholar] [CrossRef]
- Tadege, M.; Ratet, P.; Mysore, K.S. Insertional mutagenesis: A Swiss Army knife for functional genomics of M. truncatula. Trends Plant Sci. 2005, 10, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Tadege, M.; Wen, J.; He, J.; Tu, H.; Kwak, Y.; Eschstruth, A.; Cayrel, A.; Endre, G.; Zhao, P.X.; Chabaud, M.; et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008, 54, 335–347. [Google Scholar] [CrossRef]
- Benlloch, R.; d’Erfurth, I.; Ferrandiz, C.; Cosson, V.; Beltrán, J.P.; Cañas, L.A.; Kondorosi, A.; Madueño, F.; Ratet, P. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol. 2006, 142, 972–983. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, M.; Lee, H.-K.; Tadege, M.; Ratet, P.; Udvardi, M.; Mysore, K.S.; Wen, J. An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytol. 2014, 201, 1065–1076. [Google Scholar] [CrossRef]
- Iantcheva, A.; Vassileva, V.; Ugrinova, M.; Vlahova, M. Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol. Biotechnol. Equip. 2009, 23, 1440–1443. [Google Scholar] [CrossRef]
- Revalska, M.; Vassileva, V.; Goormachtig, S.; Van Hautegem, T.; Ratet, P.; Iantcheva, A. Recent progress in development of a Tnt1 functional genomics platform for the model legumes Medicago truncatula and Lotus japonicus in Bulgaria. Curr. Genet. 2011, 12, 147–152. [Google Scholar]
- Van Bel, M.; Proost, S.; Wischnitzki, E.; Movahedi, S.; Scheerlinck, C.; Van de Peer, Y.; Vandepoele, K. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 2012, 158, 590–600. [Google Scholar] [CrossRef]
- Boycheva, I.; Vassileva, V.; Iantcheva, A. Histone acetyltransferases in plant development and plasticity. Curr. Genom. 2014, 15, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Boycheva, I.; Vassileva, V.; Revalska, M.; Zehirov, G.; Iantcheva, A. Different functions of the histone acetyltransferase HAC1 gene traced in the model species Medicago truncatula, Lotus japonicus and Arabidopsis thaliana. Protoplasma 2017, 254, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Revalska, M.; Vassileva, V.; Zehirov, G.; Goormachtig, S.; Iantcheva, A. Assessment of the function and expression pattern of auxin response factor B3 in the model legume plant Medicago truncatula. Turk. J. Biol. 2017, 41, 8. [Google Scholar] [CrossRef]
- Revalska, M.; Vassileva, V.; Zehirov, G.; Iantcheva, A. Evaluation of the function and expression pattern of Medicago truncatula auxin response factor B3 after heterologous expression in Arabidopsis thaliana. BJAS Bulg. J. Agric. Sci. 2016, 22, 783–793. [Google Scholar]
- Revalska, M.; Vassileva, V.; Zehirov, G.; Iantcheva, A. Analysing the function and the expression pattern of auxin response factor B3 from Medicago truncatula in the model plant Lotus japonicus. BJAS Bulg. J. Agric. Sci. 2016, 22, 253–261. [Google Scholar]
- Revalska, M.; Radkova, M.; Zagorchev, L.; Iantcheva, A. Functional GUS assay of GRAS transcription factor from Medicago truncatula. Bull. Bus. Econ. 2019, 33, 1187–1194. [Google Scholar]
- Iantcheva, A.; Zhiponova, M.; Revalska, M.; Heyman, J.; Dincheva, I.; Badjakov, I.; De Geyter, N.; Boycheva, I.; Goormachtig, S.; De Veylder, L. A common F-box gene regulates the leucine homeostasis of Medicago truncatula and Arabidopsis thaliana. Protoplasma 2021, 259, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Revalska, M.; Zehirov, G.; Vassileva, V.; Iantcheva, A. Is the auxin influx carrier LAX3 essential for plant growth and development in the model plants Medicago truncatula, Lotus japonicus and Arabidopsis thaliana? Biotechnol. Biotechnol. Equip. 2015, 29, 786–797. [Google Scholar] [CrossRef]
- Ivanova, T.; Dincheva, I.; Badjakov, I.; Iantcheva, A. Transcriptional and Metabolic Profiling of Arabidopsis thaliana Transgenic Plants Expressing Histone Acetyltransferase HAC1 upon the Application of Abiotic Stress—Salt and Low Temperature. Metabolites 2023, 13, 994. [Google Scholar] [CrossRef]
- Iantcheva, A.; Boycheva, I.; Revalska, M. Development of root tips synchronized system for the model legume Medicago truncatula upon replication stress. BJAS Bulg. J. Agric. Sci. 2015, 21, 1177–1184. [Google Scholar]
- Boycheva, I.; Vassileva, V.; Revalska, M.; Zehirov, G.; Iantcheva, A. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana. Res. Rep. Biol. 2015, 6, 117–130. [Google Scholar] [CrossRef]
- Revalska, M.; Radkova, M.; Iantcheva, A. Functional characterization of Medicago truncatula GRAS7, a member of the GRAS family transcription factors, in response to abiotic stress. Bull. Bus. Econ. 2022, 36, 317–326. [Google Scholar] [CrossRef]
- Radkova, M.; Revalska, M.; Kertikova, D.; Iantcheva, A. Zinc finger CCHC-type protein related with seed size in model legume species Medicago truncatula. Biotech. Biotech. Equip. 2019, 33, 278–285. [Google Scholar] [CrossRef]
- Radkova, M.; Revalska, M.; Zhiponova, M.; Iantcheva, A. Evaluation of the role of Medicago truncatula Zn finger CCHC type protein after heterologous expression in Arabidopsis thaliana. Biotech. Biotech. Equip. 2021, 35, 1686–1695. [Google Scholar] [CrossRef]
- Zhiponova, M.; Heyman, J.; De Veylder, L.; Iantcheva, A. AtF-box gene expression fine-tunes Arabidopsis thaliana root development. Plant Root 2021, 15, 69–78. [Google Scholar] [CrossRef]
- Jiang, D.; Ryabova, J.; Diedhiou, P.; Hucl, H.; Randhawa, E.F.; Marillia, N.A.; Foroud, F.; Eudes, P.; Kathiria, R. Trichostatin A increases embryo and green plant regeneration in wheat. Plant Cell Rep. 2017, 36, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Perez-Perez, Y.; Berenguer, E.; Carneros, E.; Testillano, P.S. Increased histone acetylation by suberoylanilide hydroxamic acid enhanced microspore reprogramming and expression of somatic embryogenesis transcription factors in Brassica napus. Plant Sci. 2025, 351, 112318. [Google Scholar] [CrossRef]
- Brownell, J.E.; Allis, C.D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 1996, 6, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.Y.; Denu, J.M.; Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem. 2001, 70, 81–120. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Liu, C.; Pei, Y.; Deng, X.; Niu, L.; Cao, X. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol. 2007, 143, 1660–1668. [Google Scholar] [CrossRef]
- Longo, C.; Lepri, A.; Paciolla, A.; Messore, A.; De Vita, D.; Bonaccorsi di Patti, M.C.; Amadei, M.; Madia, V.N.; Ialongo, D.; Di Santo, R.; et al. New Inhibitors of the Human p300/CBP Acetyltransferase Are Selectively Active against the Arabidopsis HAC Proteins. Int. J. Mol. Sci. 2022, 23, 10446. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Zhang, J.; Lu, K.; Li, H.; Wu, L.; Wan, H.; Zheng, B.; Cui, C.; Jiang, J.; Jiang, L. Identification of genomic regions associated with multi-silique trait in Brassica napus. BMC Genom. 2019, 20, 304. [Google Scholar] [CrossRef]
- Lopez, L.; Perrella, G.; Calderini, O.; Porceddu, A.; Panara, F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. Plants 2022, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Daude, M.M.; Freitas, N.C.; Ságio, S.A.; Paiva, L.V.; Barreto, H.G. Molecular analysis of ERF subfamily genes during coffee somatic embryogenesis. Vitr. Cell. Dev. Biol. Plant 2021, 57, 128–142. [Google Scholar] [CrossRef]
- Eom, S.H.; Hyun, T.K. Histone Acetyltransferases (HATs) in Chinese Cabbage: Insights from Histone H3 Acetylation and Expression Profiling of HATs in Response to Abiotic Stresses. J. Am. Soc. Hort. Sci. 2018, 143, 296–303. [Google Scholar] [CrossRef]
- Imran, M.; Shafiq, S.; Farooq, M.A.; Naeem, M.K.; Widemann, E.; Bakhsh, A.; Jensen, K.B.; Wang, R.R.-C. Comparative Genomewide Analysis and Expression Profiling of Histone Acetyltransferase (HAT) Gene Family in Response to Hormonal Applications, Metal and Abiotic Stresses in Cotton. Int. J. Mol. Sci. 2019, 20, 5311. [Google Scholar] [CrossRef] [PubMed]
- Yolcu, S.; Skorupa, M.; Uras, M.E.; Mazur, J.; Ozyiğit, I.I. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. Planta 2024, 259, 85. [Google Scholar] [CrossRef]
- Wu, D.; Cai, S.; Chen, M.; Ye, L.; Chen, Z.; Zhang, H.; Dai, F.; Wu, F.; Zhang, G. Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley. PLoS ONE 2013, 8, e55431. [Google Scholar] [CrossRef]
- Cao, D.; Lutz, A.; Hill, C.B.; Callahan, D.L.; Roessner, U. A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress. Front. Plant Sci. 2017, 7, 2070. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, E.; Baldoni, E.; Abbruscato, P.; Piffanelli, P.; Genga, A.; Lamanna, R.; Consonni, R. NMR techniques coupled with multivariate statistical analysis: Tools to analyse Oryza sativa metabolic content under stress conditions. J. Agron. Crop Sci. 2009, 195, 77–88. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Vierstra, R.D. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 2009, 10, 385–397. [Google Scholar] [CrossRef]
- Lechner, S.C.; Carver, C.S.; Antoni, M.H.; Weaver, K.E.; Phillips, K.M. Curvilinear associations between benefit finding and psychosocial adjustment to breast cancer. J. Consult. Clin. Psychol. 2006, 74, 828–840. [Google Scholar] [CrossRef]
- Kim, H.S.; Delaney, T.P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 2002, 14, 1469–1482. [Google Scholar] [CrossRef]
- Bu, Q.; Lv, T.; Shen, H.; Phi, L.; Wang, J.; Wang, Z.; Huang, Z.; Xiao, L.; Engineer, C.; Kim, T.H.; et al. Regulation of drought tolerance by the F-box protein MAX2 in arabidopsis. Plant Physiol. 2014, 164, 424–439. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, G.; Zhou, S.; Ren, Y.; Wang, W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci. 2017, 259, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Li, D.; Liu, Z.; Wang, J.; Li, X.; Yang, Y. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signaling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ. 2016, 39, 571–582. [Google Scholar] [CrossRef]
- Williams, C.; Fernández-Calvo, P.; Colinas, M.; Pauwels, L.; Goossens, A. Jasmonate and auxin perception: How plants keep F-boxes in check. J. Exp. Bot. 2019, 70, 3401–3414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gou, M.; Liu, C.-J. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 2013, 25, 4994–5010. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Smith, R.W.; To, B.J.; Millar, A.J.; Imaizumi, T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 2012, 336, 1045–1049. [Google Scholar] [CrossRef]
- Baute, J.; Polyn, S.; De Block, J.; Blomme, J.; Van Lijsebettens, M.; Inze, D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol. 2017, 58, 962–975. [Google Scholar] [CrossRef]
- Majee, M.; Kumar, S.; Kathare, P.K.; Wu, S.; Gingerich, D.; Nayak, N.R.; Salaita, L.; Dinkins, R.; Martin, K.; Goodin, M.; et al. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. Proc. Natl. Acad. Sci. USA 2018, 115, E4120–E4129. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Nijhawan, A.; Arora, R.; Agarwal, P.; Ray, S.; Sharma, P.; Kapoor Syagi, A.K.; Khurana, J.P. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 2007, 143, 1467–1483. [Google Scholar] [CrossRef]
- Jia, F.J.; Wu, B.J.; Li, H.; Huang, J.G.; Zheng, C.C. Genome-wide identification and characterisation of F-box family in maize. Mol. Genet. Genom. 2013, 288, 559–577. [Google Scholar] [CrossRef]
- van den Burg, H.A.; Tsitsigiannis, D.I.; Rowland, O.; Lo, J.; Rallapalli, G.; Maclean, D.; Takken, F.L.; Jones, J.D. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 2008, 20, 697–719. [Google Scholar] [CrossRef]
- Song, J.B.; Wang, Y.X.; Li, H.B.; Li, B.W.; Zhou, Z.S.; Gao, S.; Yang, Z.M. The F-box family genes as key elements in response to salt, heavy metal, and drought stresses in Medicago truncatula. Funct. Integr. Genom. 2015, 15, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Xiao, Z.-X.; Wong, F.-L.; Sun, S.; Liang, K.-J.; Lam, H.-M. Genome-wide analyses of the soybean F-box gene family in response to salt stress. Int. J. Mol. Sci. 2017, 18, 818. [Google Scholar] [CrossRef]
- Liu, D.; Tan, W.; Wang, H.; Li, W.; Fu, J.; Li, J.; Zhou, Y.; Lin, M.; Xing, W. Genetic diversity and genome-wide association study of 13 agronomic traits in 977 Beta vulgaris L. germplasms. BMC Genom. 2023, 24, 413. [Google Scholar] [CrossRef] [PubMed]
- Swarup, K.; Benkova, E.; Swarup, R.; Casimiro, I.; Péret, B.; Yang, Y.; Parry, G.; Nielsen, E.; De Smet, I.; Vanneste, S.; et al. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 2008, 10, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Swarup, R.; Kargul, J.; Marchant, A.; Zadik, D.; Rahman, A.; Mills, R.; Yemm, A.; May, S.; Williams, L.; Millner, P.; et al. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 2004, 16, 3069–3083. [Google Scholar] [CrossRef] [PubMed]
- Petrasek, J.; Mravec, J.; Bouchard, R.; Blakeslee, J.J.; Abas, M.; Seifertova, D.; Wisniewska, J.; Tadele, Z.; Kubes, M.; Covanová, M.; et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 2006, 312, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Hammes, U.Z.; Murphy, A.S.; Schwechheimer, C. Auxin transporters–a biochemical view. Cold Spring Harb. Perspect. Biol. 2022, 14, a039875. [Google Scholar] [CrossRef] [PubMed]
- De Billy, F.; Grosjean, C.; May, S.; Bennett, M.; Cullimore, J.V. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol. Plant-Microbe Interact. 2001, 14, 267–277. [Google Scholar] [CrossRef]
- Kurczynska, E.; Godel-Jędrychowska, K. Apoplastic and Symplasmic Markers of Somatic Embryogenesis. Plants 2023, 12, 1951. [Google Scholar] [CrossRef] [PubMed]
- Estrella-Maldonado, H.; Posada-Pérez, L.; Talavera, M.C.; Barredo, P.F.; Gómez-Kosky, R.; Santamaría, J.M. The Expression of CpAUX1/LAXs and Most of the Long-distance CpPINs Genes Increases as the Somatic Embryogenesis Process Develops in C. papaya cv. “Red Maradol”. J. Plant Growth Regul. 2018, 37, 502–516. [Google Scholar] [CrossRef]
- Montesinos, Á.; Rubio-Cabetas, M.J.; Grimplet, J. Identification of genes involved in almond scion tree architecture influenced by rootstock genotype using transcriptome analysis. Sci. Hortic. 2024, 324, 112628. [Google Scholar] [CrossRef]
- Schnabel, E.; Bashyal, S.; Corbett, C.; Kassaw, T.; Nowak, S.; Rosales-García, R.A.; Noorai, R.E.; Müller, L.M.; Frugoli, J. The Defective in Autoregulation (DAR) gene of Medicago truncatula encodes a protein involved in regulating nodulation and arbuscular mycorrhiza. BMC Plant Biol. 2024, 24, 766. [Google Scholar] [CrossRef]
- Roy, S.; Robson, F.; Lilley, J.; Liu, C.W.; Cheng, X.; Wen, J.; Walker, S.; Sun, J.; Cousins, D.; Bone, C.; et al. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol. 2017, 174, 326–338. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.I.; Scalschi, L.; García-Agustín, P.; Camañes, G. Exogenous carbon compounds modulate tomato root development. Plants 2020, 9, 837. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Hao, X.; Qiu, S.; Guan, S.; Zhan, H.; Yu, J.; Wang, S.; Lu, X. Strigolactone regulates plant architecture by inhibiting lateral branch growth in Quercus mongolica seedlings. Scand. J. For. Res. 2021, 36, 333–343. [Google Scholar] [CrossRef]
- Rahman, A. Auxin: A regulator of cold stress response. Physiol. Plant. 2013, 147, 28–35. [Google Scholar] [CrossRef]
- Yue, R.; Tie, S.; Sun, T.; Zhang, L.; Yang, Y.; Qi, J.; Yan, S.; Han, X.; Wang, H.; Shen, C. Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS ONE 2015, 10, e0118751. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Wang, Y.; Valliyodan, B.; Nguyen, H.T. Comprehensive analysis of the soybean (Glycine max) GmLAX auxin transporter gene family. Front. Plant Sci. 2016, 9, 282. [Google Scholar] [CrossRef]
- Yang, C.; Wang, D.; Zhang, C.; Ye, M.; Kong, N.; Ma, H.; Chen, Q. Comprehensive analysis and expression profiling of PIN, AUX/LAX, and ABCB auxin transporter gene families in Solanum tuberosum under phytohormone stimuli and abiotic stresses. Biology 2021, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Muhovski, Y.; Zizkova, E.; Dobre, P.; Gharbi, E.; Lutts, S. The Solanum lycopersicum WRKY transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front. Plant Sci. 2017, 8, 1343. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yu, W.; Wang, L.; Zhao, H.; Hu, J.; Wuyun, T.; Liu, H. Genome-Wide Identification and Expression Profiling of B3 Transcription Factor Genes in Prunus armeniaca. Forests 2023, 14, 1523. [Google Scholar] [CrossRef]
- Barreto, H.G.; Ságio, S.A.; Chalfun-Júnior, A.; Fevereiro, P.; Benedito, V.A. Transcriptional profiling of the AFL subfamily of B3-type transcription factors during the in vitro induction of somatic embryogenesis in the model legume Medicago truncatula. Plant Cell Tissue Organ Cult. 2019, 139, 327–337. [Google Scholar] [CrossRef]
- Li, J.; Dai, X.; Zhao, Y. A Role for Auxin Response Factor 19 in Auxin and Ethylene Signaling in Arabidopsis. Plant Physiol. 2006, 140, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Libao, C.; Shiting, L.; Chen, Z.; Shuyan, L. NnARF17 and NnARF18 from lotus promote root formation and modulate stress tolerance in transgenic Arabidopsis thaliana. BMC Plant Biol. 2024, 24, 163. [Google Scholar] [CrossRef]
Item | Sub-Item | Genes | References | |
---|---|---|---|---|
Gene expression | Transcriptional regulation | HAC1 | [32,33] | |
ARF-B3 | [34,35,36] | |||
GRAS7 | [37] | |||
Zn-CCHC | ||||
Protein degradation | F-Box | [38] | ||
Growth and development | Auxin | LAX3, ARF-B3 | [34,35,36,39] | |
Amino acid metabolism | HAC1, F-box | [38,40] | ||
Cell division | HAC1, F-box | [33,41] | ||
SE | HAC1, F-box, LAX3, ARF-b3 | [33,34,35,36,39,42] | ||
SN | HAC1, F-box, LAX3, ARF-B3, GRAS7 | [33,34,36,37,39,42,43] | ||
Organ development | Seed | F-box, LAX3, ARF-B3, GRAS7, Zn-CCHC | [34,35,36,39,42,43,44,45] | |
Flower | HAC1, ARF-B3, GRAS7, Zn-CCHC | [32,33,37,44,45] | ||
Leaf | F-box, LAX3, ARF-B3, GRAS7, Zn-CCHC | [34,35,36,38,39,42,43,44] | ||
Root | F-box, LAX3, AFR-B3, GRAS7 | [34,35,36,39,43,46] | ||
Environmental responses | P nutrition | LAX3 | [47,48] | |
Salinity | HAC1, GRAS7 | [40,43] | ||
Drought | GRAS7 | [43] | ||
Low temperature | HAC1, GRAS7, Zn-CCHC | [40,43,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revalska, M.; Radkova, M.; Zhiponova, M.; Vassileva, V.; Iantcheva, A. Functional Genomics of Legumes in Bulgaria—Advances and Future Perspectives. Genes 2025, 16, 296. https://doi.org/10.3390/genes16030296
Revalska M, Radkova M, Zhiponova M, Vassileva V, Iantcheva A. Functional Genomics of Legumes in Bulgaria—Advances and Future Perspectives. Genes. 2025; 16(3):296. https://doi.org/10.3390/genes16030296
Chicago/Turabian StyleRevalska, Miglena, Mariana Radkova, Miroslava Zhiponova, Valya Vassileva, and Anelia Iantcheva. 2025. "Functional Genomics of Legumes in Bulgaria—Advances and Future Perspectives" Genes 16, no. 3: 296. https://doi.org/10.3390/genes16030296
APA StyleRevalska, M., Radkova, M., Zhiponova, M., Vassileva, V., & Iantcheva, A. (2025). Functional Genomics of Legumes in Bulgaria—Advances and Future Perspectives. Genes, 16(3), 296. https://doi.org/10.3390/genes16030296