Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case–Control Study
Abstract
:1. Introduction
2. Methods
2.1. Patients’ Data Collection
2.2. Statistical Analysis
3. Results
3.1. Demographic and Clinical Features of ALS Patients with and Without C9ORF72 Expansion
3.2. Phenotype of ALS Patients with and Without C9ORF72 Expansion
3.3. Cognitive Involvement of ALS Patients with and Without C9ORF72 Expansion
3.4. Comorbidities of ALS Patients with and Without C9ORF72 Expansion
3.5. Progression Rate and Survival of ALS Patients with and Without C9ORF72 Expansion
3.6. Sex-Related Differences in C9ALS Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balendra, R.; Isaacs, A.M. C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nat. Rev. Neurol. 2018, 14, 544–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murphy, N.A.; Arthur, K.C.; Tienari, P.J.; Houlden, H.; Chiò, A.; Traynor, B.J. Age-related penetrance of the C9orf72 repeat expansion. Sci. Rep. 2017, 7, 2116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zampatti, S.; Peconi, C.; Campopiano, R.; Gambardella, S.; Caltagirone, C.; Giardina, E. C9orf72-Related Neurodegenerative Diseases: From Clinical Diagnosis to Therapeutic Strategies. Front. Aging Neurosci. 2022, 14, 907122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benussi, A.; Premi, E.; Gazzina, S.; Brattini, C.; Bonomi, E.; Alberici, A.; Jiskoot, L.; van Swieten, J.C.; Sanchez-Valle, R.; Moreno, F.; et al. Genetic FTD Initiative (GENFI). Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients with Genetic Frontotemporal Dementia. JAMA Netw. Open 2021, 4, e2030194, Erratum in: JAMA Netw. Open 2021, 4, e217664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van der Ende, E.L.; Jackson, J.L.; White, A.; Seelaar, H.; van Blitterswijk, M.; Van Swieten, J.C. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J. Neurol. Neurosurg. Psychiatry 2021, 92, 502–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smeyers, J.; Banchi, E.G.; Latouche, M. C9ORF72: What It Is, What It Does, and Why It Matters. Front. Cell Neurosci. 2021, 15, 661447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jackson, J.L.; Finch, N.A.; Baker, M.C.; Kachergus, J.M.; DeJesus-Hernandez, M.; Pereira, K.; Christopher, E.; Prudencio, M.; Heckman, M.G.; Thompson, E.A.; et al. Elevated methylation levels, reduced expression levels, and frequent contractions in a clinical cohort of C9orf72 expansion carriers. Mol. Neurodegener. 2020, 15, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trojsi, F.; Siciliano, M.; Femiano, C.; Santangelo, G.; Lunetta, C.; Calvo, A.; Moglia, C.; Marinou, K.; Ticozzi, N.; Ferro, C.; et al. Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Front. Neurosci. 2019, 13, 485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiò, A.; Moglia, C.; Canosa, A.; Manera, U.; D’Ovidio, F.; Vasta, R.; Grassano, M.; Brunetti, M.; Barberis, M.; Corrado, L.; et al. ALS phenotype is influenced by age, sex, and genetics: A population-based study. Neurology 2020, 94, e802–e810. [Google Scholar] [CrossRef] [PubMed]
- Gianferrari, G.; Martinelli, I.; Zucchi, E.; Simonini, C.; Fini, N.; Vinceti, M.; Ferro, S.; Gessani, A.; Canali, E.; Valzania, F.; et al. Epidemiological, Clinical and Genetic Features of ALS in the Last Decade: A Prospective Population-Based Study in the Emilia Romagna Region of Italy. Biomedicines 2022, 10, 819. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L.; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Dalla Bella, E.; Bersano, E.; Bruzzone, M.G.; Gellera, C.; Pensato, V.; Lauria, G.; Consonni, M. Behavioral and Cognitive Phenotypes of Patients with Amyotrophic Lateral Sclerosis Carrying SOD1 Variants. Neurology 2022, 99, e2052–e2062. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pensato, V.; Magri, S.; Bella, E.D.; Tannorella, P.; Bersano, E.; Sorarù, G.; Gatti, M.; Ticozzi, N.; Taroni, F.; Lauria, G.; et al. Sorting Rare ALS Genetic Variants by Targeted Re-Sequencing Panel in Italian Patients: OPTN, VCP, and SQSTM1 Variants Account for 3% of Rare Genetic Forms. J. Clin. Med. 2020, 9, 412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faghri, F.; Brunn, F.; Dadu, A.; PARALS consortium; ERRALS consortium; Zucchi, E.; Martinelli, I.; Mazzini, L.; Vasta, R.; Canosa, A.; et al. Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: A population-based machine-learning study. Lancet Digit. Health 2022, 4, e359–e369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strong, M.J.; Abrahams, S.; Goldstein, L.H.; Woolley, S.; Mclaughlin, P.; Snowden, J.; Mioshi, E.; Roberts-South, A.; Benatar, M.; HortobáGyi, T.; et al. Amyotrophic lateral sclerosis—Frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 153–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mandrioli, J.; Malerba, S.A.; Beghi, E.; Fini, N.; Fasano, A.; Zucchi, E.; De Pasqua, S.; Guidi, C.; Terlizzi, E.; Sette, E.; et al. Riluzole and other prognostic factors in ALS: A population-based registry study in Italy. J. Neurol. 2018, 265, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Tortelli, R.; Copetti, M.; Panza, F.; Cortese, R.; Capozzo, R.; D’Errico, E.; Fontana, A.; Simone, I.L.; Logroscino, G. Time to generalisation as a predictor of prognosis in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 678–679. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, J.; Biguzzi, S.; Guidi, C.; Sette, E.; Terlizzi, E.; Ravasio, A.; Casmiro, M.; Salvi, F.; Liguori, R.; Rizzi, R.; et al. Heterogeneity in ALSFRS-R decline and survival: A population-based study in Italy. Neurol. Sci. 2015, 36, 2243–2252. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Fini, N.; Ferraro, D.; Ferri, L.; Vinceti, M.; Errals; Mandrioli, J. Percutaneous endoscopic gastrostomy, body weight loss and survival in amyotrophic lateral sclerosis: A population-based registry study. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Wang, S.; Melhem, E.R.; Gee, J.C.; Cucchiara, A.; McCluskey, L.; Elman, L. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis. PLoS ONE 2014, 9, e105753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devine, M.S.; Kiernan, M.C.; Heggie, S.; McCombe, P.A.; Henderson, R.D. Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Glasmacher, S.A.; Wong, C.; Pearson, I.E.; Pal, S. Survival and Prognostic Factors in C9orf72 Repeat Expansion Carriers: A Systematic Review and Meta-analysis. JAMA Neurol. 2020, 77, 367–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palmieri, A.; Mento, G.; Calvo, V.; Querin, G.; D’Ascenzo, C.; Volpato, C.; Kleinbub, J.R.; Bisiacchi, P.S.; Sorarù, G. Female gender doubles executive dysfunction risk in ALS: A case-control study in 165 patients. J. Neurol. Neurosurg. Psychiatry 2015, 86, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Wiesenfarth, M.; Günther, K.; Müller, K.; Witzel, S.; Weiland, U.; Mayer, K.; Herrmann, C.; Brenner, D.; Schuster, J.; Freischmidt, A.; et al. Clinical and genetic features of amyotrophic lateral sclerosis patients with C9orf72 mutations. Brain Commun. 2023, 5, fcad087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marriott, H.; Kabiljo, R.; Hunt, G.P.; Khleifat, A.A.; Jones, A.; Troakes, C.; Project MinE ALS Sequencing Consortium; TargetALS Sequencing Consortium; Pfaff, A.L.; Quinn, J.P.; et al. Unsupervised machine learning identifies distinct ALS molecular subtypes in post-mortem motor cortex and blood expression data. Acta Neuropathol. Commun. 2023, 11, 208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lall, D.; Lorenzini, I.; Mota, T.A.; Bell, S.; Mahan, T.E.; Ulrich, J.D.; Davtyan, H.; Rexach, J.E.; Muhammad, A.K.M.G.; Shelest, O.; et al. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 2021, 109, 2275–2291.e8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Ruijter, N.S.; Schoonbrood, A.M.G.; van Twillert, B.; Hoff, E.I. Anosognosia in dementia: A review of current assessment instruments. Alzheimers Dement. 2020, 12, e12079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silverman, H.E.; Goldman, J.S.; Huey, E.D. Links Between the C9orf72 Repeat Expansion and Psychiatric Symptoms. Curr. Neurol. Neurosci. Rep. 2019, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Devenney, E.M.; Tu, S.; Caga, J.; Ahmed, R.M.; Ramsey, E.; Zoing, M.; Kwok, J.; Halliday, G.M.; Piguet, O.; Hodges, J.R.; et al. Neural mechanisms of psychosis vulnerability and perceptual abnormalities in the ALS-FTD spectrum. Ann. Clin. Transl. Neurol. 2021, 8, 1576–1591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mandrioli, J.; Zucchi, E.; Martinelli, I.; Van der Most, L.; Gianferrari, G.; Moglia, C.; Manera, U.; Solero, L.; Vasta, R.; Canosa, A.; et al. Factors predicting disease progression in C9ORF72 ALS patients. J. Neurol. 2023, 270, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Atanasio, A.; Decman, V.; White, D.; Ramos, M.; Ikiz, B.; Lee, H.C.; Siao, C.J.; Brydges, S.; LaRosa, E.; Bai, Y.; et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci. Rep. 2016, 6, 23204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burberry, A.; Suzuki, N.; Wang, J.Y.; Moccia, R.; Mordes, D.A.; Stewart, M.H.; Suzuki-Uematsu, S.; Ghosh, S.; Singh, A.; Merkle, F.T.; et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl. Med. 2016, 8, 347ra93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, Z.A.; Sturm, V.E.; Camsari, G.B.; Karydas, A.; Yokoyama, J.S.; Grinberg, L.T.; Boxer, A.L.; Rosen, H.J.; Rankin, K.P.; Gorno-Tempini, M.L.; et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: Completing the picture. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Billi, A.C.; Kahlenberg, J.M.; Gudjonsson, J.E. Sex bias in autoimmunity. Curr. Opin. Rheumatol. 2019, 31, 53–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marques, C.; Held, A.; Dorfman, K.; Sung, J.; Song, C.; Kavuturu, A.S.; Aguilar, C.; Russo, T.; Oakley, D.H.; Albers, M.W.; et al. Neuronal STING activation in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. 2024, 147, 56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCauley, M.E.; O’Rourke, J.G.; Yáñez, A.; Markman, J.L.; Ho, R.; Wang, X.; Chen, S.; Lall, D.; Jin, M.; Muhammad, A.K.M.G.; et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 2020, 585, 96–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hashimoto, K.; Jahan, N.; Miller, Z.A.; Huang, E.J. Neuroimmune dysfunction in frontotemporal dementia: Insights from progranulin and C9orf72 deficiency. Curr. Opin. Neurobiol. 2022, 76, 102599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Hagan, R.; Berg, A.R.; Hong, C.G.; Parel, P.M.; Mehta, N.N.; Teague, H.L. Systemic consequences of abnormal cholesterol handling: Interdependent pathways of inflammation and dyslipidemia. Front. Immunol. 2022, 13, 972140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pang, W.; Hu, F. C9ORF72 suppresses JAK-STAT mediated inflammation. iScience 2023, 26, 106579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chong, Z.Z.; Menkes, D.L.; Souayah, N. Pathogenesis underlying hexanucleotide repeat expansions in C9orf72 gene in amyotrophic lateral sclerosis. Rev. Neurosci. 2023, 35, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, A.; Pfaff, A.L.; Bubb, V.J.; Quinn, J.P.; Koks, S. Transcriptomic profiling of cerebrospinal fluid identifies ALS pathway enrichment and RNA biomarkers in MND individuals. Exp. Biol. Med. 2023, 248, 2325–2331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kõks, S.; Rallmann, K.; Muldmaa, M.; Price, J.; Pfaff, A.L.; Taba, P. Whole blood transcriptome profile identifies motor neurone disease RNA biomarker signatures. Exp. Biol. Med. 2025, 249, 10401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cammack, A.J.; Atassi, N.; Hyman, T.; van den Berg, L.H.; Harms, M.; Baloh, R.H.; Brown, R.H.; van Es, M.A.; Veldink, J.H.; de Vries, B.S.; et al. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology 2019, 93, e1605–e1617. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, L.; Chen, L.; Liu, X.; He, J.; Ma, Y.; Zhang, N.; Fan, D. The repeat length of C9orf72 is associated with the survival of amyotrophic lateral sclerosis patients without C9orf72 pathological expansions. Front. Neurol. 2022, 13, 939775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thiry, L.; Sirois, J.; Durcan, T.M.; Stifani, S. Generation of human iPSC-derived phrenic-like motor neurons to model respiratory motor neuron degeneration in ALS. Commun. Biol. 2024, 7, 238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Jong, S.; Huisman, M.; Sutedja, N.; van der Kooi, A.; de Visser, M.; Schelhaas, J.; van der Schouw, Y.; Veldink, J.; van den Berg, L. Endogenous female reproductive hormones and the risk of amyotrophic lateral sclerosis. J. Neurol. 2013, 260, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Rooney, J.; Fogh, I.; Westeneng, H.J.; Vajda, A.; McLaughlin, R.; Heverin, M.; Jones, A.; van Eijk, R.; Calvo, A.; Mazzini, L.; et al. C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 281. [Google Scholar] [CrossRef] [PubMed]
C9ALS, n (%), Mean [SD] | NmALS, n (%), Mean [SD] | p-Value | |
---|---|---|---|
Age at onset, years | 57.63 [9.41] | 57.88 [9.01] | 0.845 |
Diagnostic delay, months | 9.89 [7.11] | 9.76 [6.34] | 0.889 |
Family history for ALS 1 | 29 (43.93) | 7 (3.57) | <0.001 |
Family history for dementia 2 | 25 (37.88) | 42 (21.21) | 0.009 |
Family history for other neurodegenerative diseases 2 | 44 (66.67%) | 41 (20.92%) | <0.001 |
Family history for psychiatric disease 3 | 8 (4.98%) | 5 (2.55%) | 0.002 |
Family 4 history among 1st-degree relatives | 46 (76.79%) | 21 (27.27%) | <0.001 |
Family 4 history among 2nd-degree relatives | 19 (33.33%) | 11 (14.60%) | 0.013 |
BMI at diagnosis, kg/m2 | 24.06 [4.14] | 24.39 [4.14] | 0.592 |
Weight loss at diagnosis (kg) | 3.51 [6.38] | 3.01 [5.74] | 0.584 |
Weight loss at diagnosis (%) 5 | 4.68 [9.25] | 3.86 [7.37] | 0.493 |
ALSFRS-r at diagnosis, points 6 | 40.08 [4.37] | 41.10 [6.00] | 0.202 |
Disease progression rate at diagnosis (points/month) 7 | 1.53 [1.50] | 1.06 [1.34] | 0.029 |
ALSFRS-r at last observation, points 8 | 19.60 [11.38] | 21.14 [12.73] | 0.389 |
Disease progression rate at last observation (points/month) 9 | 1.60 [1.34] | 1.01 [1.58] | 0.016 |
FVC at diagnosis (%) 10 | 89.18 [19.34] | 95.65 [21.86] | 0.057 |
NIV | 30 (4478) | 98 (48.76) | 0.572 |
Time to NIV, months | 22.72 [11.91] | 28.09 [21.75] | 0.207 |
PEG | 32 (47.76) | 85 (42.29) | 0.434 |
Time to PEG, months | 24.57 [12.60] | 33.73 [24.58] | 0.050 |
IV | 18 (26.87) | 48 (23.88) | 0.623 |
Time to IV, months | 26.87 [21.17] | 38.69 [20.22] | 0.041 |
Time to death, months | 33.48 [18.85] | 39.42 [28.12] | 0.199 |
Total | 67 (100) | 201 (100) |
C9ALS n (%), Mean [SD] | nmALS n (%), Mean [SD] | p-Value | |
---|---|---|---|
Site of onset | |||
Bulbar | 23 (34.33) | 52 (28.42) | 0.436 |
Spinal | 44 (65.67) | 130 (71.04) | 0.440 |
Respiratory | 0 (0.00) | 1 (0.55) | 1.000 |
Phenotype 1 | |||
Flail | 6 (8.96) | 32 (16.58) | 0.162 |
UMN predominant | 2 (2.99) | 5 (2.59) | 1.000 |
Bulbar | 23 (34.33) | 46 (23.83) | 0.109 |
Respiratory | 0 (0.00) | 1 (0.52) | 1.000 |
Classic | 36 (55.77) | 109 (56.48) | 0.776 |
UMN and LMN involvement 2 | |||
Penn Upper Neuron Motor Score (0–32) | 3.82 [2.44] | 3.45 [3.12] | 0.421 |
Devine Lower Motor Neuron Score (0–12) | 7.52 [5.80] | 7.78 [5.93] | 0.788 |
Spasticity in most affected limb (Ashworth 0–2) | 58 (95.09) | 124 (91.85) | 0.600 |
Spasticity in most affected limb (Ashworth 3–4) | 3 (4.91) | 11 (8.15) | |
Palmomental reflex | 11 (19.64) | 33 (24.81) | 0.443 |
Glabellar reflex | 7 (10.50) | 14 (10.69) | 0.719 |
Snout reflex | 9 (16.07) | 26 (19.40) | 0.589 |
Masseter reflex | 18 (32.14) | 27 (20.45) | 0.086 |
Hoffman reflex | 8 (13.56) | 20 (14.81) | 0.071 |
Babinski reflex | 6 (10.00) | 15 (11.11) | 0.879 |
Clonus | 5 (8.47) | 15 (11.19) | 0.594 |
Cramps | 11 (18.33) | 48 (49.48) | <0.001 |
C9ALS, n (%) | nmALS, n (%) | p-Value | |
---|---|---|---|
ALSbi 1 | 19 (33.33) | 13 (9.56) | <0.001 |
ALSci 1 | 17 (29.82) | 9 (6.62) | <0.001 |
ALS-FTD 2 | 18 (27.27) | 9 (6.57) | <0.001 |
Pseudobulbar syndrome 1 | 18 (31.03) | 28 (20.59) | 0.117 |
C9ALS, n (%) | nmALS, n (%) | p-Value | |
---|---|---|---|
Dyslipidemia 1 | 18 (38,30) | 33 (16.40) | 0.001 |
Autoimmune diseases 1 | 9 (13.43) | 7 (3.48) | 0.003 |
Chronic Obstructive Pulmonary Disease (COPD) | 2 (2.99) | 7 (3.48) | 0.845 |
Respiratory diseases (excluding COPD) | 2 (2.99) | 6 (2.99) | 0.470 |
Diabetes 2 | 2 (3.03) | 6 (2.99) | 0.985 |
Hypertension | 21 (31.34) | 58 (28.86) | 0.699 |
Cardiopathies | 7 (10.45) | 17 (8.46) | 0.621 |
Parkinsonism 2 | 2 (3.08) | 3 (1.49) | 0.207 |
Cancer history 3 | 8(11.94) | 8 (10.26) | 0.747 |
Psychosis 4 | 3 (4.62) | 3 (1.49) | 0.140 |
Depression 5 | 14 (21.21) | 31 (39.74) | 0.017 |
Univariate | Multivariate | |||
---|---|---|---|---|
Variable | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
Sex, male | 1.49 (0.85–2.61) | 0.165 | ||
Family history, presence | 0.94 (0.53–1.66) | 0.821 | ||
Age at onset, years | 1.01 (0.98–1.04) | 0.466 | ||
Diagnostic delay, months | 0.92 (0.87–0.97) | 0.004 | 0.92 (0.86–0.98) | 0.014 |
Time to generalization, months | 0.96 (0.92–0.99) | 0.008 | ||
BMI at diagnosis, kg/m2 | 1.04 (0.99–1.10) | 0.131 | ||
FVC at diagnosis, % | 0.99 (0.97–1.00) | 0.156 | ||
ALSFRS-r at diagnosis, points | 0.98 (0.92–1.04) | 0.472 | ||
Disease progression rate at diagnosis, points/month | 1.40 (1.16–1.70) | 0.001 | 1.65 (1.10–2.47) | 0.016 |
Weight loss, % of healthy weight | 1.07 (1.02–1.11) | 0.003 | ||
Onset, bulbar | 0.99 (0.55–1.77) | 0.965 | ||
ALSci, presence | 2.85 (1.48–5.46) | 0.002 | 7.70 (3.12–19.02) | <0.001 |
ALSbi, presence | 2.33 (1.23–4.42) | 0.009 | ||
ALS-FTD, presence | 2.38 (1.31–4.33) | 0.004 | ||
Depression, presence | 0.65 (0.31–1.35) | 0.248 | ||
Psychosis, presence | 3.16 (0.96–10.39) | 0.058 | ||
Chronic Obstructive Pulmonary Disease (COPD), presence | 3.89 (0.90, 16.91) | 0.070 | ||
Other respiratory diseases, presence | 14.00 (2.78, 70.44) | 0.001 | ||
Diabetes, presence | 1.02 (0.25–4.24) | 0.978 | ||
Cardiopathies, presence | 1.59 (0.67–3.76) | 0.294 | ||
Hypertension, presence | 1.39 (0.77–2.51) | 0.276 | ||
Dyslipidemia, presence | 1.00 (0.51–1.94) | 0.993 | ||
Autoimmune diseases, presence | 0.94 (0.37–2.40) | 0.903 | ||
Cancer history, presence | 1.10 (0.47–2.60) | 0.823 | ||
Previous trauma, presence | 1.24 (0.62–2.48) | 0.540 | ||
Former tobacco smoking | 1.14 (0.58–2.25) | 0.701 | ||
Current tobacco smoking | 0.74 (0.26–2.11) | 0.569 |
nmALS | C9ALS | |||||
---|---|---|---|---|---|---|
Women, n (%), Mean [SD] | Men, n (%), Mean [SD] | p-Value | Women, n (%), Mean [SD] | Men, n (%), Mean [SD] | p-Value | |
Age at onset, years | 58.57 [8.29] | 57.12 [9.73] | 0.256 | 57,88 [9.08] | 57.34 [1.78] | 0.817 |
Diagnostic delay, months | 10.89 [7.19] | 8.53 [5.01] | 0.008 | 10.89 [8.24] | 8.74 [5.41] | 0.219 |
BMI at diagnosis, kg/m2 | 23.95 [4.68] | 24.89 [3.41] | 0.134 | 23.83 [5.47] | 24.33 [3.37] | 0.674 |
Weight loss at diagnosis (Kg) | 2.43 [5.61] | 3.67 [5.86] | 0.161 | 2.32 [6.58] | 5.02 [5.90] | 0.943 |
Weight loss at diagnosis (%) | 3.29 [7.90] | 4.50 [6.71] | 0.285 | 3.54 [10.73] | 6.13 [6.86] | 0.299 |
ALSFRS-r at diagnosis, points | 40.74 [6.26] | 41.52 [5.70] | 0.368 | 39.2 [4.56] | 41.06 [3.98] | 0.083 |
Disease progression rate at diagnosis (points/month) | 0.91 [1.16] | 1.21 [1.51] | 0.137 | 1.29 [1.12] | 1.82 [1.85] | 0.200 |
FVC at diagnosis, % | 95.54 [24.10] | 95.78 [19.24] | 0.952 | 89.37 [19.32] | 88.94 [19.78] | 0.933 |
Time to NIV, months | 28.34 [20.08] | 27.86 [23.48] | 0.915 | 20.73 [9.93] | 24.87 [13.77] | 0.358 |
Time to PEG, months | 33.54 [25.07] | 33.94 [24.36] | 0.940 | 24.59 [11.73] | 24.56 [14.04] | 0.995 |
Time to tracheostomy, months | 37.67 [22.17] | 39.32 [19.30] | 0.789 | 37.33 [26.02] | 20.21 [15.18] | 0.095 |
Time to death, months | 36.15 [26.07] | 41.46 [29.49] | 0.482 | 32.09 [25.35] | 35.09 [20.70] | 0.572 |
Time to death/last observation, months | 42.31 [32.62] | 41.72 [26.58] | 0.932 | 36.47 [23.53] | 30.00 [18.07] | 0.222 |
ALSFRS-r at last observation, points | 20.69 [12.86] | 21.64 [12.64] | 0.598 | 18.41 [9.97] | 21.00 [13.04] | 0.398 |
Time from diagnosis to last observation, months | 36.20 [37.18] | 38.10 [32.92] | 0.703 | 18.86 [12.21] | 18.50 [14.43] | 0.917 |
Disease progression rate at last observation, (points/month) | 1.11 [1.91] | 0.90 [1.13] | 0.368 | 1.39 [1.04] | 1.89 [1.67] | 0.196 |
Site of onset, bulbar | 34 (32.38) | 19 (19.79) | 0.043 | 15 (41.67) | 8 (25.81) | 0.173 |
DLMNS (0–12) | 4.00 [2.67] | 3.65 [2.20] | 0.419 | 3.28 [3.26] | 3.66 [3.02] | 0.681 |
PUMNS (0–32) | 8.10 [5.55] | 7.45 [6.32] | 0.519 | 9.92 [5.76] | 5.53 [5.12] | 0.004 |
ALSFRS-r bulbar score at diagnosis | 10.33 [2.26] | 10.82 [2.21] | 0.153 | 8.87 [2.56] | 10.16 [2.08] | 0.047 |
ALSFRS-r upper limb score at diagnosis | 13.13 [3.36] | 12.65 [3.66] | 0.368 | 13.10 [3.06] | 13.76 [2.30] | 0.377 |
ALSFRS-r upper + lower limb score at diagnosis | 18.87 [4.91] | 18.41 [4.98] | 0.543 | 18.97 [4.63] | 19.44 [3.74] | 0.683 |
ALSFRS-r lower limb score at diagnosis | 5.74 [2.23] | 5.76 [2.22] | 0.946 | 5.87 [2.29] | 5.68 [2.14] | 0.757 |
ALSFRS-r respiratory score at diagnosis | 11.63 [1.09] | 11.58 [1.25] | 0.806 | 11.67 [0.71] | 11.84 [0.47] | 0.303 |
ALSbi | 3 (4.55) | 10 (14.29) | 0.054 | 12 (37.50) | 7 (28.00) | 0.450 |
ALSci | 4 (6.06) | 5 (7.14) | 0.800 | 9 (28.12) | 8 (32.00) | 0.751 |
ALS-FTD | 3 (4.48) | 6 (8.57) | 0.334 | 11 (30.56) | 7 (23.33) | 0.512 |
Dyslipidemia | 18 (17.14) | 15 (15.62) | 0.772 | 7 (29.17) | 11 (47.83) | 0.188 |
Autoimmune diseases | 3 (2.86) | 4 (4.17) | 0.613 | 7 (20.59) | 2 (6.06) | 0.081 |
Cancer history | 5 (14.71) | 3 (6.82) | 0.255 | 5 (14.71) | 3 (9.09) | 0.479 |
Depression | 15 (44.12) | 16 (36.36) | 0.488 | 10 (29.41) | 4 (12.50) | 0.093 |
Psychosis | 2 (1.90) | 1 (1.04) | 0.614 | 3 (8.82) | 0 (0.00) | 0.090 |
Parkinsonism | 1 (0.95) | 2 (2.08) | 0.509 | 0 (0.00) | 2 (6.25) | 0.145 |
Chronic Obstructive Pulmonary Disease | 5 (4.76) | 2 (2.08) | 0.301 | 1 (2.94) | 1 (3.03) | 0.983 |
Diabetes | 3 (2.86) | 3 (3.12) | 0.911 | 2 (5.88) | 0 (0.00) | 0.164 |
Hypertension | 26 (24.76) | 32 (33.33) | 0.180 | 11 (32.35) | 10 (30.30) | 0.856 |
Cardiopathies | 7 (6.67) | 10 (10.42) | 0.340 | 3 (8.82) | 4 (12.12) | 0.659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezzi, A.; Gianferrari, G.; Baldassarri, E.; Zucchi, E.; Martinelli, I.; Vacchiano, V.; Bonan, L.; Zinno, L.; Nuredini, A.; Canali, E.; et al. Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case–Control Study. Genes 2025, 16, 309. https://doi.org/10.3390/genes16030309
Ghezzi A, Gianferrari G, Baldassarri E, Zucchi E, Martinelli I, Vacchiano V, Bonan L, Zinno L, Nuredini A, Canali E, et al. Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case–Control Study. Genes. 2025; 16(3):309. https://doi.org/10.3390/genes16030309
Chicago/Turabian StyleGhezzi, Andrea, Giulia Gianferrari, Elisa Baldassarri, Elisabetta Zucchi, Ilaria Martinelli, Veria Vacchiano, Luigi Bonan, Lucia Zinno, Andi Nuredini, Elena Canali, and et al. 2025. "Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case–Control Study" Genes 16, no. 3: 309. https://doi.org/10.3390/genes16030309
APA StyleGhezzi, A., Gianferrari, G., Baldassarri, E., Zucchi, E., Martinelli, I., Vacchiano, V., Bonan, L., Zinno, L., Nuredini, A., Canali, E., Gizzi, M., Terlizzi, E., Medici, D., Sette, E., Currò Dossi, M., Morresi, S., Santangelo, M., Patuelli, A., Longoni, M., ... Mandrioli, J. (2025). Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case–Control Study. Genes, 16(3), 309. https://doi.org/10.3390/genes16030309