Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variant Selection
2.2. Testing for Allele Frequency Differences Between Populations
2.3. In Silico Prediction of Variant Pathogenicity
3. Results
3.1. Pathogenic Variant Analysis
3.2. Pairwise Testing of Allele Frequency Differences Across Eight Populations
3.3. In Silico Pathogenicity Predictions
3.4. African (AFR)
3.5. Admixed American (AMR)
3.6. Ashkenazi Jewish (ASJ)
3.7. East Asian (EAS)
3.8. Finnish (FIN)
3.9. Middle Eastern (MID)
3.10. Non-Finnish European (NFE)
3.11. South Asian (SAS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
OMIM | Online Mendelian Inheritance in Man |
gnomAD | Genome Aggregation Database |
MAF | Minor allele frequency |
AFR | African/African American |
AMR | Admixed American |
ASJ | Ashkenazi Jewish |
FIN | Finnish |
MID | Middle Eastern |
SAS | South East Asian |
NFE | Non-Finnish European |
AMI | Amish |
FDR | False discovery rate |
P/LP | Pathogenic/likely pathogenic |
SNV | Single-nucleotide variant |
AF | Allele frequency |
References
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.; Verbrugge, J.; Schwantes-An, T.H.; Schulze, J.; Foroud, T.; Hall, A.; Marder, K.S.; Mata, I.F.; Mencacci, N.E.; Nance, M.A.; et al. Parkinson’s Disease Variant Detection and Disclosure: PD GENEration, a North American Study. Brain 2024, 147, 2668–2679. [Google Scholar] [CrossRef] [PubMed]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The Genetic Architecture of Parkinson’s Disease. Lancet Neurol. 2019, 19, 170–178. [Google Scholar] [CrossRef]
- Trevisan, L.; Gaudio, A.; Monfrini, E.; Avanzino, L.; Di Fonzo, A.; Mandich, P. Genetics in Parkinson’s Disease, State-of-the-Art and Future Perspectives. Br. Med. Bull. 2024, 149, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Westenberger, A. Genetics of Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a008888. [Google Scholar] [CrossRef]
- Jia, F.; Fellner, A.; Kumar, K.R. Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes 2022, 13, 471. [Google Scholar] [CrossRef]
- Guadagnolo, D.; Piane, M.; Torrisi, M.R.; Pizzuti, A.; Petrucci, S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front. Neurol. 2021, 12, 648588. [Google Scholar] [CrossRef]
- Pitz, V.; Makarious, M.B.; Bandres-Ciga, S.; Iwaki, H.; Singleton, A.B.; Nalls, M.; Heilbron, K.; Blauwendraat, C. Analysis of Rare Parkinson’s Disease Variants in Millions of People. NPJ Park. Dis. 2024, 10, 11. [Google Scholar] [CrossRef]
- Day, J.O.; Mullin, S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes 2021, 12, 1006. [Google Scholar] [CrossRef]
- Jankovic, J.; Tan, E.K. Parkinson’s Disease: Etiopathogenesis and Treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Towns, C.; Fang, Z.-H.; Tan, M.M.X.; Jasaityte, S.; Schmaderer, T.M.; Pollard, M.; Tilney, R.; Hodgson, M.; Wu, L.; Labrum, R.; et al. Parkinson’s Families Project: A UK-Wide Study of Early Onset and Familial Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 188. [Google Scholar] [CrossRef]
- Lesage, S.; Houot, M.; Mangone, G.; Tesson, C.; Bertrand, H.; Forlani, S.; Anheim, M.; Brefel-Courbon, C.; Broussolle, E.; Thobois, S.; et al. Genetic and Phenotypic Basis of Autosomal Dominant Parkinson’s Disease in a Large Multi-Center Cohort. Front. Neurol. 2020, 11, 682. [Google Scholar] [CrossRef]
- Khani, M.; Cerquera-Cleves, C.; Kekenadze, M.; Wild, C.P.; Singleton, A.B.; Bandres-Ciga, S. Towards a Global View of Parkinson’s Disease Genetics. Ann. Neurol. 2024, 95, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Salles, P.A.; Pizarro-Correa, X.; Chaná-Cuevas, P. Genetics of Parkinson’s Disease: Recessive Forms. Neurol. Perspect. 2024, 4, 100147. [Google Scholar] [CrossRef]
- Genetic Study of Early-Onset Parkinson’s Disease in the Malaysian Population. Park. Relat. Disord. 2023, 111, 105399. [CrossRef] [PubMed]
- Skrahina, V.; Gaber, H.; Vollstedt, E.; Förster, T.M.; Usnich, T.; Curado, F.; Brüggemann, N.; Paul, J.; Bogdanovic, X.; Zülbahar, S.; et al. The Rostock International Parkinson’s Disease (ROPAD) Study: Protocol and Initial Findings. Mov. Disord. 2020, 36, 1005. [Google Scholar] [CrossRef] [PubMed]
- Koros, C.; Bougea, A.; Simitsi, A.M.; Papagiannakis, N.; Angelopoulou, E.; Pachi, I.; Antonelou, R.; Bozi, M.; Stamelou, M.; Stefanis, L. The Landscape of Monogenic Parkinson’s Disease in Populations of Non-European Ancestry: A Narrative Review. Genes 2023, 14, 2097. [Google Scholar] [CrossRef]
- Koros, C.; Bougea, A.; Alefanti, I.; Simitsi, A.M.; Papagiannakis, N.; Pachi, I.; Sfikas, E.; Antonelou, R.; Stefanis, L. A Global Perspective of -Related Parkinson’s Disease: A Narrative Review. Genes 2024, 15, 1605. [Google Scholar] [CrossRef]
- Simon, A.; Coop, G. The Contribution of Gene Flow, Selection, and Genetic Drift to Five Thousand Years of Human Allele Frequency Change. Proc. Natl. Acad. Sci. USA 2024, 121, e2312377121. [Google Scholar] [CrossRef]
- Fournier, T.; Abou Saada, O.; Hou, J.; Peter, J.; Caudal, E.; Schacherer, J. Extensive Impact of Low-Frequency Variants on the Phenotypic Landscape at Population-Scale. Elife 2019, 8, 49258. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 2000, 15, 57–61. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public Archive of Relationships among Sequence Variation and Human Phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Glusman, G.; Caballero, J.; Mauldin, D.E.; Hood, L.; Roach, J.C. Kaviar: An Accessible System for Testing SNV Novelty. Bioinformatics 2011, 27, 3216–3217. [Google Scholar] [CrossRef]
- Li, H. A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical Parameter Estimation from Sequencing Data. Bioinformatics 2011, 27, 2987. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Schubach, M.; Witten, D.M. CADD—Combined Annotation Dependent Depletion. Available online: https://cadd.gs.washington.edu/ (accessed on 26 February 2025).
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef]
- Vaser, R.; Adusumalli, S.; Leng, S.N.; Sikic, M.; Ng, P.C. SIFT Missense Predictions for Genomes. Nat. Protoc. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Aslam, M.; Kandasamy, N.; Ullah, A.; Paramasivam, N.; Öztürk, M.A.; Naureen, S.; Arshad, A.; Badshah, M.; Khan, K.; Wajid, M.; et al. Putative Second Hit Rare Genetic Variants in Families with Seemingly GBA-Associated Parkinson’s Disease. NPJ Genom. Med. 2021, 6, 2. [Google Scholar] [CrossRef]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, T.; Xu, J.; Wang, W.; Wang, G.; Chen, C.; Zheng, L.; Pan, L.; Gong, D.; Li, X.; et al. Mutations in the Glucocerebrosidase Gene Are Responsible for Chinese Patients with Parkinson’s Disease. J. Hum. Genet. 2014, 60, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Rui, Q.; Ni, H.; Li, D.; Gao, R.; Chen, G. The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Curr. Neuropharmacol. 2018, 16, 1348. [Google Scholar] [CrossRef] [PubMed]
- Sosero, Y.L.; Gan-Or, Z. LRRK2 and Parkinson’s Disease: From Genetics to Targeted Therapy. Ann. Clin. Transl. Neurol. 2023, 10, 850–864. [Google Scholar] [CrossRef]
- Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; et al. Phenotype, Genotype, and Worldwide Genetic Penetrance of LRRK2-Associated Parkinson’s Disease: A Case-Control Study. Lancet Neurol. 2008, 7, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Okubadejo, N.U.; Rizig, M.; Ojo, O.O.; Jonvik, H.; Oshinaike, O.; Brown, E.; Houlden, H. Leucine Rich Repeat Kinase 2 (LRRK2) GLY2019SER Mutation Is Absent in a Second Cohort of Nigerian Africans with Parkinson Disease. PLoS ONE 2018, 13, e0207984. [Google Scholar] [CrossRef]
- Rizig, M.; Ojo, O.O.; Athanasiou-Fragkouli, A.; Agabi, O.P.; Oshinaike, O.O.; Houlden, H.; Njideka, U. Okubadejo Negative Screening for 12 Rare LRRK2 Pathogenic Variants in a Cohort of Nigerians with Parkinson’s Disease. Neurobiol. Aging 2021, 99, e101.e15–e101.e19. [Google Scholar] [CrossRef]
- Cornejo-Olivas, M.; Torres, L.; Velit-Salazar, M.R.; Inca-Martinez, M.; Mazzetti, P.; Cosentino, C.; Micheli, F.; Perandones, C.; Dieguez, E.; Raggio, V.; et al. Variable Frequency of LRRK2 Variants in the Latin American Research Consortium on the Genetics of Parkinson’s Disease (LARGE-PD), a Case of Ancestry. NPJ Park. Dis. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Kanaya, Y.; Kume, K.; Morino, H.; Ohsawa, R.; Kurashige, T.; Kamada, M.; Torii, T.; Izumi, Y.; Maruyama, H.; Kawakami, H. Analysis of Genetic Risk Factors in Japanese Patients with Parkinson’s Disease. J. Hum. Genet. 2021, 66, 957–964. [Google Scholar] [CrossRef]
- Vande Walle, L.; Lamkanfi, M.; Vandenabeele, P. The Mitochondrial Serine Protease HtrA2/Omi: An Overview. Cell Death Differ. 2008, 15, 453–460. [Google Scholar] [CrossRef]
- Sun, Y.-M.; Zhou, X.-Y.; Liang, X.-N.; Lin, J.-R.; Xu, Y.-D.; Chen, C.; Wei, S.-D.; Chen, Q.-S.; Liu, F.-T.; Zhao, J.; et al. The Genetic Spectrum of a Cohort of Patients Clinically Diagnosed as Parkinson’s Disease in Mainland China. NPJ Park. Dis. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, P.-L.; Tai, C.-H.; Lin, H.-I.; Chen, C.-S.; Chen, M.-L.; Wu, R.-M. A Clinical and Genetic Study of Early-Onset and Familial Parkinsonism in Taiwan: An Integrated Approach Combining Gene Dosage Analysis and next-Generation Sequencing. Mov. Disord. 2019, 34, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chen, M.-L.; Chen, G.S.; Tai, C.-H.; Wu, R.-M. Novel Variant Pro143Ala in HTRA2 Contributes to Parkinson’s Disease by Inducing Hyperphosphorylation of HTRA2 Protein in Mitochondria. Hum. Genet. 2011, 130, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Rudakou, U.; Yu, E.; Ruskey, J.A.; Asayesh, F.; Laurent, S.B.; Spiegelman, D.; Fahn, S.; Waters, C.; Monchi, O.; et al. Association Study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson’s Disease. Neurobiol. Aging 2021, 100, 119.e7–119.e13. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Betancor, O.; Mehta, S.; Ramchandra, J.; Mumuney, S.; Schumacher-Schuh, A.F.; Cornejo-Olivas, M.; Sarapura-Castro, E.H.; Torres, L.; Inca-Martinez, M.A.; Mazzetti, P.; et al. Parkinson’s Disease Gene Screening in Familial Cases from Central and South America. Mov. Disord. 2024, 39, 1843–1855. [Google Scholar] [CrossRef]
- Lesage, S.; Lunati, A.; Houot, M.; Ben Romdhan, S.; Clot, F.; Tesson, C.; Mangone, G.; Le Toullec, B.; Courtin, T.; Larcher, K.; et al. Characterization of Recessive Parkinson Disease in a Large Multicenter Study. Ann. Neurol. 2020, 88, 843–850. [Google Scholar] [CrossRef]
- Menon, P.J.; Sambin, S.; Criniere-Boizet, B.; Courtin, T.; Tesson, C.; Casse, F.; Ferrien, M.; Mariani, L.L.; Carvalho, S.; Lejeune, F.X.; et al. Genotype-Phenotype Correlation in PRKN-Associated Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 72. [Google Scholar] [CrossRef]
- Parkin Mutations in Familial and Sporadic Parkinson’s Disease among Indians. Park. Relat. Disord. 2006, 12, 239–245. [CrossRef]
- Liu, H.; Sun, Y.; Xu, H.; Tan, B.; Yi, Q.; Tian, J.; Zhu, J. PTEN-Induced kinase1 (PINK1): More than Just Mitochondrial Quality Control. In Protein Kinase Inhibitors; Academic Press: Cambridge, MA, USA, 2022; pp. 393–407. [Google Scholar]
- Kasten, M.; Hartmann, C.; Hampf, J.; Schaake, S.; Westenberger, A.; Vollstedt, E.-J.; Balck, A.; Domingo, A.; Vulinovic, F.; Dulovic, M.; et al. Genotype-Phenotype Relations for the Parkinson’s Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov. Disord. 2018, 33, 730–741. [Google Scholar] [CrossRef]
- Sadhukhan, T.; Biswas, A.; Das, S.K.; Ray, K.; Ray, J. DJ-1 Variants in Indian Parkinson’s Disease Patients. Dis. Markers 2012, 33, 127–135. [Google Scholar] [CrossRef]
- Oji, Y.; Hatano, T.; Ueno, S.I.; Funayama, M.; Ishikawa, K.I.; Okuzumi, A.; Noda, S.; Sato, S.; Satake, W.; Toda, T.; et al. Variants in Saposin D Domain of Prosaposin Gene Linked to Parkinson’s Disease. Brain 2020, 143, 1190–1205. [Google Scholar] [CrossRef]
- Kuo, M.C.; Chu, Y.T.; Su, Y.A.; Chen, M.L.; Wu, R.M. Prosaposin Variants in Sporadic, Familial, and Early-Onset Parkinson’s Disease: A Taiwanese Case-Control Study and Meta-Analysis. Sci. Rep. 2024, 14, 2225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.W.; Pan, H.X.; Zeng, Q.; Fang, Z.H.; Liu, Z.H.; Wang, Y.; Jiang, L.; He, R.; Zhou, X.; Zhou, Y.J.; et al. PSAP Variants in Parkinson’s Disease: A Large Cohort Study in Chinese Mainland Population. Brain 2021, 144, e25. [Google Scholar] [CrossRef] [PubMed]
- Darvish, H.; Bravo, P.; Tafakhori, A.; Azcona, L.J.; Ranji-Burachaloo, S.; Johari, A.H.; Paisán-Ruiz, C. Identification of a Large Homozygous VPS13C Deletion in a Patient with Early-Onset Parkinsonism. Mov. Disord. 2018, 33, 1968–1970. [Google Scholar] [CrossRef]
- Ylikotila, P.; Tiirikka, T.; Moilanen, J.S.; Kääriäinen, H.; Marttila, R.; Majamaa, K. Epidemiology of Early-Onset Parkinson’s Disease in Finland. Park. Relat. Disord. 2015, 21, 938–942. [Google Scholar] [CrossRef]
- Hernandez, D.G.; Reed, X.; Singleton, A.B. Genetics in Parkinson Disease: Mendelian versus Non-Mendelian Inheritance. J. Neurochem. 2016, 139, 59–74. [Google Scholar] [CrossRef] [PubMed]
- van Veen, S.; Martin, S.; Van den Haute, C.; Benoy, V.; Lyons, J.; Vanhoutte, R.; Kahler, J.P.; Decuypere, J.-P.; Gelders, G.; Lambie, E.; et al. ATP13A2 Deficiency Disrupts Lysosomal Polyamine Export. Nature 2020, 578, 419–424. [Google Scholar] [CrossRef]
- Zaman, M.S.; Ghahari, S.; McColl, M.A. Barriers to Accessing Healthcare Services for People with Parkinson’s Disease: A Scoping Review. J. Park. Dis. 2021, 11, 1537. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal Trends in the Prevalence of Parkinson’s Disease from 1980 to 2023: A Systematic Review and Meta-Analysis. Lancet Healthy Longev. 2024, 5, E464–E479. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; Luciano, M.S.; Tanner, C. The Epidemiology of Parkinson’s Disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Ocampo, V.; Lim, A.W.-Y.; Ogonowski, N.S.; García-Marín, L.M.; Ong, J.-S.; Yeow, D.; Gonzaga-Jauregui, C.; Kumar, K.R.; Rentería, M.E. Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease. Genes 2025, 16, 454. https://doi.org/10.3390/genes16040454
Flores-Ocampo V, Lim AW-Y, Ogonowski NS, García-Marín LM, Ong J-S, Yeow D, Gonzaga-Jauregui C, Kumar KR, Rentería ME. Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease. Genes. 2025; 16(4):454. https://doi.org/10.3390/genes16040454
Chicago/Turabian StyleFlores-Ocampo, Victor, Amanda Wei-Yin Lim, Natalia S. Ogonowski, Luis M. García-Marín, Jue-Sheng Ong, Dennis Yeow, Claudia Gonzaga-Jauregui, Kishore R. Kumar, and Miguel E. Rentería. 2025. "Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease" Genes 16, no. 4: 454. https://doi.org/10.3390/genes16040454
APA StyleFlores-Ocampo, V., Lim, A. W.-Y., Ogonowski, N. S., García-Marín, L. M., Ong, J.-S., Yeow, D., Gonzaga-Jauregui, C., Kumar, K. R., & Rentería, M. E. (2025). Population-Specific Differences in Pathogenic Variants of Genes Associated with Monogenic Parkinson’s Disease. Genes, 16(4), 454. https://doi.org/10.3390/genes16040454