Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. Records and Pedigree
2.2. Genomic Information
2.3. Statistical Analysis
3. Results and Discussion
3.1. Phenotypic Values
3.2. Estimation of Variance Components and Heritability
3.3. Comparison of Reliability Between REML and ssGREML
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stott, A.W.; Veerkamp, R.F.; Wassell, T.R. The Economics of Fertility in the Dairy Herd. Anim. Sci. 1999, 68, 49–57. [Google Scholar] [CrossRef]
- MAPA Datos Censales (PURA RAZA ESPANOLA). 2023. Available online: https://servicio.mapa.gob.es/arca/flujos.html?_flowId=datosCensalesRaza-flow&tipoOperacion=CONSULTA&formatoPagina=0&id=50157 (accessed on 10 April 2025).
- ANCCE. Purebred Spanish Horse Breeding Program. 2020. Available online: https://www.lgancce.com/Documentacion/Normativa/Nacional/programa_cria_en.pdf (accessed on 10 April 2025).
- Perdomo-González, D.I.; Molina, A.; Sánchez-Guerrero, M.J.; Bartolomé, E.; Varona, L.; Valera, M. Genetic Inbreeding Depression Load for Fertility Traits in Pura Raza Española Mares. J. Anim. Sci. 2021, 99, skab316. [Google Scholar] [CrossRef] [PubMed]
- Mahon, G.A.T.; Cunningham, E.P. Inbreeding and Infertility in the Thoroughbred Mare. In Annales de Génétique et de Sélection Animale; EDP Sciences: Les Ulis, France, 1982; Volume 14, p. 115. [Google Scholar] [CrossRef]
- Khan, I.U.; Khairullah, A.R.; Khan, A.Y.; Ur Rehman, A.; Mustofa, I. Strategic Approaches to Improve Equine Breeding and Stud Farm Outcomes. Vet. World 2025, 18, 311–328. [Google Scholar] [CrossRef]
- Gómez, M.D.; Sánchez, M.J.; Bartolomé, E.; Cervantes, I.; Poyato-Bonilla, J.; Demyda-Peyrás, S.; Valera, M. Phenotypic and Genetic Analysis of Reproductive Traits in Horse Populations with Different Breeding Purposes. Animal 2020, 14, 1351–1361. [Google Scholar] [CrossRef]
- Laseca, N.; Demyda-Peyrás, S.; Valera, M.; Ramón, M.; Escribano, B.; Perdomo-González, D.I.; Molina, A. A Genome-Wide Association Study of Mare Fertility in the Pura Raza Español Horse. Animal 2022, 16, 100476. [Google Scholar] [CrossRef] [PubMed]
- Perdomo-González, D.I.; Sánchez-Guerrero, M.J.; Bartolomé, E.; Guedes dos Santos, R.; Molina, A.; Valera, M. Designing an Early Selection Morphological Traits Index for Reproductive Efficiency in Pura Raza Española Mares. J. Anim. Sci. 2024, 102, skad409. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot Topic: A Unified Approach to Utilize Phenotypic, Full Pedigree, and Genomic Information for Genetic Evaluation of Holstein Final Score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Misztal, I.; Legarra, A.; Aguilar, I. Computing Procedures for Genetic Evaluation Including Phenotypic, Full Pedigree, and Genomic Information. J. Dairy Sci. 2009, 92, 4648–4655. [Google Scholar] [CrossRef]
- Legarra, A.; Christensen, O.F.; Aguilar, I.; Misztal, I. Single Step, a General Approach for Genomic Selection. Livest. Sci. 2014, 166, 54–65. [Google Scholar] [CrossRef]
- Christensen, O.F. Compatibility of Pedigree-Based and Marker-Based Relationship Matrices for Single-Step Genetic Evaluation. Genet. Sel. Evol. 2012, 44, 37. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.A.L.; Misztal, I.; Tsuruta, S.; Aguilar, I.; Ezra, E.; Ron, M.; Shirak, A.; Weller, J.I. Methods for Genomic Evaluation of a Relatively Small Genotyped Dairy Population and Effect of Genotyped Cow Information in Multiparity Analyses. J. Dairy Sci. 2014, 97, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Ziadi, C.; Demyda-Peyrás, S.; Valera, M.; Perdomo-González, D.; Laseca, N.; Rodríguez-Sainz de los Terreros, A.; Encina, A.; Azor, P.; Molina, A. Comparative Analysis of Genomic and Pedigree-Based Approaches for the Genetic Evaluation of Morphological Traits in Pura Raza Española Horses. Genes 2025, 16, 131. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Marschner, I.C. Glm2: Fitting Generalized Linear Models with Convergence Problems. R J. 2011, 3, 12–15. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing V4.4.2 “Pile of Leaves”. 2024. Available online: https://cran.r-project.org/src/base/R-4/ (accessed on 12 January 2025).
- Legarra, A.; Aguilar, I.; Misztal, I. A Relationship Matrix Including Full Pedigree and Genomic Information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef]
- Lourenco, D.; Tsuruta, S.; Aguilar, I.; Masuda, Y.; Bermann, M.; Legarra, A.; Misztal, I. Recent Updates in the BLUPF90 Software Suite. In Proceedings of the 12th World Congress of Genetics Applied to Livestock Production, Rotterdam, The Netherlands, 3–8 July 2022; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; pp. 1530–1533. [Google Scholar]
- Laseca, N.; Ziadi, C.; Perdomo-Gonzalez, D.I.; Valera, M.; Demyda-Peyras, S.; Molina, A. Reproductive Traits in Pura Raza Española Mares Manifest Inbreeding Depression from Low Levels of Homozygosity. J. Anim. Breed. Genet. 2024, 141, 453–464. [Google Scholar] [CrossRef]
- Karlau, A.; Molina, A.; Antonini, A.; Demyda-Peyrás, S. The Influence of Foreign Lineages in the Genetic Component of Reproductive Traits in Criollo Argentino Mares: A 30-Year Study. Livest. Sci. 2023, 267, 105153. [Google Scholar] [CrossRef]
- Clément, V.; Bibé, B.; Verrier, É.; Elsen, J.-M.; Manfredi, E.; Bouix, J.; Hanocq, É. Simulation Analysis to Test the Influence of Model Adequacy and Data Structure on the Estimation of Genetic Parameters for Traits with Direct and Maternal Effects. Genet. Sel. Evol. 2001, 33, 369. [Google Scholar] [CrossRef] [PubMed]
- Laseca, N.; Molina, A.; Ramón, M.; Valera, M.; Azcona, F.; Encina, A.; Demyda-Peyrás, S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front. Vet. Sci. 2022, 9, 754028. [Google Scholar] [CrossRef] [PubMed]
- Saura, M.; Fernández, A.; Varona, L.; Fernández, A.I.; De Cara, M.; Barragán, C.; Villanueva, B. Detecting Inbreeding Depression for Reproductive Traits in Iberian Pigs Using Genome-Wide Data. Genet. Sel. Evol. 2015, 47, 1. [Google Scholar] [CrossRef] [PubMed]
- Sairanen, J.; Nivola, K.; Katila, T.; Virtala, A.-M.; Ojala, M. Effects of Inbreeding and Other Genetic Components on Equine Fertility. Animal 2009, 3, 1662–1672. [Google Scholar] [CrossRef]
- Vosgerau, S.; Krattenmacher, N.; Falker-Gieske, C.; Seidel, A.; Tetens, J.; Stock, K.F.; Nolte, W.; Wobbe, M.; Blaj, I.; Reents, R.; et al. Genetic and Genomic Characterization Followed by Single-Step Genomic Evaluation of Withers Height in German Warmblood Horses. J. Appl. Genet. 2022, 63, 369–378. [Google Scholar] [CrossRef]
- Haberland, A.M.; von Borstel, U.K.; Simianer, H.; König, S. Integration of Genomic Information into Sport Horse Breeding Programs for Optimization of Accuracy of Selection. Animal 2012, 6, 1369–1376. [Google Scholar] [CrossRef]
- Guinan, F.L.; Wiggans, G.R.; Norman, H.D.; Dürr, J.W.; Cole, J.B.; Van Tassell, C.P.; Misztal, I.; Lourenco, D. Changes in Genetic Trends in US Dairy Cattle since the Implementation of Genomic Selection. J. Dairy Sci. 2023, 106, 1110–1129. [Google Scholar] [CrossRef]
- Baloche, G.; Legarra, A.; Sallé, G.; Larroque, H.; Astruc, J.-M.; Robert-Granié, C.; Barillet, F. Assessment of Accuracy of Genomic Prediction for French Lacaune Dairy Sheep. J. Dairy Sci. 2014, 97, 1107–1116. [Google Scholar] [CrossRef]
- Teissier, M.; Larroque, H.; Robert-Granié, C. Accuracy of Genomic Evaluation with Weighted Single-Step Genomic Best Linear Unbiased Prediction for Milk Production Traits, Udder Type Traits, and Somatic Cell Scores in French Dairy Goats. J. Dairy Sci. 2019, 102, 3142–3154. [Google Scholar] [CrossRef]
- Hayes, B.J.; Visscher, P.M.; Goddard, M.E. Increased Accuracy of Artificial Selection by Using the Realized Relationship Matrix. Genet. Res. 2009, 91, 47–60. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Villanueva, B.; Woolliams, J.A. Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach. PLoS ONE 2008, 3, e3395. [Google Scholar] [CrossRef]
- Goddard, M. Genomic Selection: Prediction of Accuracy and Maximisation of Long Term Response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef]
- Lourenco, D.A.L.; Tsuruta, S.; Fragomeni, B.O.; Masuda, Y.; Aguilar, I.; Legarra, A.; Bertrand, J.K.; Amen, T.S.; Wang, L.; Moser, D.W. Genetic Evaluation Using Single-Step Genomic Best Linear Unbiased Predictor in American Angus. J. Anim. Sci. 2015, 93, 2653–2662. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.M. Comparison of Genomic and Traditional BLUP-estimated Breeding Value Accuracy and Selection Response under Alternative Trait and Genomic Parameters. J. Anim. Breed. Genet. 2007, 124, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, I.; Meuwissen, T.H.E.; MacLeod, I.M.; Goddard, M.E. Predicting the Effect of Reference Population on the Accuracy of within, across, and Multibreed Genomic Prediction. J. Dairy Sci. 2019, 102, 3155–3174. [Google Scholar] [CrossRef]
- Baby, S.; Hyeong, K.E.; Lee, Y.M.; Jung, J.H.; Oh, D.Y.; Nam, K.C.; Kim, T.H.; Lee, H.K.; Kim, J.-J. Evaluation of Genome Based Estimated Breeding Values for Meat Quality in a Berkshire Population Using High Density Single Nucleotide Polymorphism Chips. Asian-Australas. J. Anim. Sci. 2014, 27, 1540. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hidalgo, J.; Lourenco, D.; Tsuruta, S.; Masuda, Y.; Breen, V.; Hawken, R.; Bermann, M.; Misztal, I. Investigating the Persistence of Accuracy of Genomic Predictions over Time in Broilers. J. Anim. Sci. 2021, 99, skab239. [Google Scholar] [CrossRef]
- Scott, B.A.; Haile-Mariam, M.; Cocks, B.G.; Pryce, J.E. How Genomic Selection Has Increased Rates of Genetic Gain and Inbreeding in the Australian National Herd, Genomic Information Nucleus, and Bulls. J. Dairy Sci. 2021, 104, 11832–11849. [Google Scholar] [CrossRef]
- Guarini, A.R.; Lourenco, D.A.L.; Brito, L.F.; Sargolzaei, M.; Baes, C.F.; Miglior, F.; Misztal, I.; Schenkel, F.S. Comparison of Genomic Predictions for Lowly Heritable Traits Using Multi-Step and Single-Step Genomic Best Linear Unbiased Predictor in Holstein Cattle. J. Dairy Sci. 2018, 101, 8076–8086. [Google Scholar] [CrossRef]
- VanRaden, P.M.; Tooker, M.E.; Wright, J.R.; Sun, C.; Hutchison, J.L. Comparison of Single-Trait to Multi-Trait National Evaluations for Yield, Health, and Fertility. J. Dairy Sci. 2014, 97, 7952–7962. [Google Scholar] [CrossRef]
- Misztal, I.; Lourenco, D.; Legarra, A. Current Status of Genomic Evaluation. J. Anim. Sci. 2020, 98, skaa101. [Google Scholar] [CrossRef] [PubMed]
- Vostrỳ, L.; Čapková, Z.; Přibyl, J.; Hofmanová, B.; Vostrá Vydrová, H.; Mach, K. Population Structure of Czech Cold-Blooded Breeds of Horses. Arch. Anim. Breed. 2011, 54, 1–9. [Google Scholar] [CrossRef]
- Stock, K.F.; Jönsson, L.; Ricard, A.; Mark, T. Genomic Applications in Horse Breeding. Anim. Front. 2016, 6, 45–52. [Google Scholar] [CrossRef]
- König, S.; Simianer, H.; Willam, A. Economic Evaluation of Genomic Breeding Programs. J. Dairy Sci. 2009, 92, 382–391. [Google Scholar] [CrossRef]
- Weigel, K.; Chasco, A.; Pacheco, H.; Sigdel, A.; Guinan, F.; Lauber, M.; Fricke, P.; Peñagaricano, F. Genomic Selection in Dairy Cattle: Impact and Contribution to the Improvement of Bovine Fertility. Clin. Theriogenol. 2024, 16, 10399. [Google Scholar] [CrossRef]
- De Roos, A.P.W.; Schrooten, C.; Veerkamp, R.F.; Van Arendonk, J.A.M. Effects of Genomic Selection on Genetic Improvement, Inbreeding, and Merit of Young versus Proven Bulls. J. Dairy Sci. 2011, 94, 1559–1567. [Google Scholar] [CrossRef]
- Doublet, A.-C.; Croiseau, P.; Fritz, S.; Michenet, A.; Hozé, C.; Danchin-Burge, C.; Laloë, D.; Restoux, G. The Impact of Genomic Selection on Genetic Diversity and Genetic Gain in Three French Dairy Cattle Breeds. Genet. Sel. Evol. 2019, 51, 52. [Google Scholar] [CrossRef]
- Forutan, M.; Ansari Mahyari, S.; Baes, C.; Melzer, N.; Schenkel, F.S.; Sargolzaei, M. Inbreeding and Runs of Homozygosity before and after Genomic Selection in North American Holstein Cattle. BMC Genom. 2018, 19, 98. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Woolliams, J.A.; Meuwissen, T.H. Genomic Selection Requires Genomic Control of Inbreeding. Genet. Sel. Evol. 2012, 44, 27. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A. Inbreeding in Genome-wide Selection. J. Anim. Breed. Genet. 2007, 124, 369–376. [Google Scholar] [CrossRef]
Trait | No. Records | Mean | SD | Min | Max | CV (%) |
---|---|---|---|---|---|---|
AFF, months | 47,477 | 63.83 | 32.99 | 23 | 1287 | 51.69 |
ALF, months | 39,620 | 172.74 | 66.85 | 45 | 481 | 38.70 |
AIF, months | 39,497 | 19.89 | 10.13 | 6 | 323 | 50.94 |
FN | 47,502 | 6.36 | 4.33 | 1 | 24 | 68.06 |
IF12, months | 39,504 | 18.97 | 13.44 | 9 | 323 | 70.85 |
PL, months | 22,646 | 136.27 | 63.49 | 7 | 433 | 46.59 |
RE, (%) | 39,620 | 47.83 | 19.41 | 5.26 | 150 | 40.57 |
REML | ssGREML | |||||
---|---|---|---|---|---|---|
Trait | (SE) | (SE) | ||||
AFF | 0.124 | 0.360 | 0.256 (0.010) | 0.128 | 0.357 | 0.264 (0.010) |
ALF | 1.270 | 2.366 | 0.349 (0.010) | 1.291 | 2.346 | 0.355 (0.010) |
AIF | 10.360 | 97.140 | 0.096 (0.008) | 10.730 | 96.854 | 0.100 (0.008) |
FN | 0.835 | 5.289 | 0.136 (0.007) | 0.866 | 5.268 | 0.141 (0.007) |
IF12 | 12.030 | 159.780 | 0.070 (0.007) | 12.420 | 159.400 | 0.072 (0.007) |
PL | 0.111 | 0.443 | 0.200 (0.012) | 0.114 | 0.442 | 0.205 (0.012) |
RE | 49.310 | 167.800 | 0.227 (0.010) | 50.761 | 166.470 | 0.234 (0.010) |
Trait | REML | ssGREML | Increase (%) |
---|---|---|---|
AFF | 0.461 | 0.475 | 3.00 |
ALF | 0.487 | 0.498 | 2.32 |
AIF | 0.281 | 0.290 | 2.98 |
FN | 0.356 | 0.369 | 3.71 |
IF12 | 0.244 | 0.249 | 2.20 |
PL | 0.301 | 0.311 | 3.56 |
RE | 0.406 | 0.419 | 3.13 |
Criteria | ||||||||
---|---|---|---|---|---|---|---|---|
Sex | Number of Stallions’ Foals | Genotyped | Initial REML Reliability | |||||
Trait | Stallions | Mares | ≥40 | <40 | No | Yes | ≥0.6 | <0.6 |
AFF | 4.63 | 2.73 | 0.75 | 3.21 | 1.83 | 18.90 | −0.03 | 2.45 |
ALF | 4.24 | 2.00 | 0.51 | 2.81 | 1.19 | 17.81 | −0.36 | 2.30 |
AIF | 4.57 | 2.68 | 1.76 | 3.42 | 1.55 | 22.20 | 0.00 | 3.08 |
FN | 5.24 | 3.44 | 1.38 | 3.94 | 2.34 | 21.98 | −0.03 | 3.26 |
IF12 | 3.89 | 1.87 | 2.00 | 2.85 | 0.80 | 21.00 | 0.00 | 2.63 |
PL | 4.96 | 3.30 | 3.16 | 3.81 | 2.25 | 24.04 | 0.00 | 3.84 |
RE | 4.84 | 2.83 | 0.96 | 3.47 | 1.83 | 20.72 | 0.13 | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziadi, C.; Valera, M.; Laseca, N.; Perdomo-González, D.; Demyda-Peyrás, S.; de los Terreros, A.R.-S.; Molina, A. Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction. Genes 2025, 16, 562. https://doi.org/10.3390/genes16050562
Ziadi C, Valera M, Laseca N, Perdomo-González D, Demyda-Peyrás S, de los Terreros AR-S, Molina A. Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction. Genes. 2025; 16(5):562. https://doi.org/10.3390/genes16050562
Chicago/Turabian StyleZiadi, Chiraz, Mercedes Valera, Nora Laseca, Davinia Perdomo-González, Sebastián Demyda-Peyrás, Arancha Rodríguez-Sainz de los Terreros, and Antonio Molina. 2025. "Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction" Genes 16, no. 5: 562. https://doi.org/10.3390/genes16050562
APA StyleZiadi, C., Valera, M., Laseca, N., Perdomo-González, D., Demyda-Peyrás, S., de los Terreros, A. R.-S., & Molina, A. (2025). Enhanced Reliability of the Evaluation of Fertility Traits in Pura Raza Española Horses Using Single-Step Genomic Best Linear Unbiased Prediction. Genes, 16(5), 562. https://doi.org/10.3390/genes16050562